JPH065252B2 - Accident location method for cable tracks - Google Patents

Accident location method for cable tracks

Info

Publication number
JPH065252B2
JPH065252B2 JP5762685A JP5762685A JPH065252B2 JP H065252 B2 JPH065252 B2 JP H065252B2 JP 5762685 A JP5762685 A JP 5762685A JP 5762685 A JP5762685 A JP 5762685A JP H065252 B2 JPH065252 B2 JP H065252B2
Authority
JP
Japan
Prior art keywords
cable line
phase
accident
detected
propagation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5762685A
Other languages
Japanese (ja)
Other versions
JPS61215970A (en
Inventor
靖隆 藤原
康光 海老沼
貢 相原
克明 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5762685A priority Critical patent/JPH065252B2/en
Publication of JPS61215970A publication Critical patent/JPS61215970A/en
Publication of JPH065252B2 publication Critical patent/JPH065252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、ケーブル線路の事故点標定法に係り、特に、
事故点が高精度で標定できるケーブル線路の事故点標定
法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a fault location method for a cable line, and in particular,
The present invention relates to an accident point locating method for cable lines that can locate accident points with high accuracy.

[発明の技術的背景] 従来から、ケーブル線路の事故点標定法として第5図に
示すように、事故相のケーブル線路に高電圧源DCGか
ら高電圧を印加して事故点Aで発生した放電パルスを該
ケーブル線路の測定端においてコンデンサCとインピー
ダンスZにより第1の伝播信号S1として検出すると共
に、該放電パルスが測定端において反射され該ケーブル
線路の事故点において負反射され、逆極性パルスとなっ
て再度測定端において第2の伝播信号S2として検出
し、シンクロスコープM上でオシログラムで標定する方
法が知られている。このときのオシログラムの代表例を
第6図に示すと、第1の伝播信号S1は事故点Aから測
定端に直接伝播したパルス、第2の伝播信号S2は放電
パルスが測定端において反射され該ケーブル線路の事故
点Aにおいて負反射され、逆極性パルスとなって再度測
定端に伝播したパルスを示している。従って、測定端に
おける第1の伝播信号S1および第2の伝播信号S2の
時間差t。はパルスが事故点Aと測定端を往復伝播した
時間であり、測定端から事故点Aまでの距離Xはパルス
の伝播速度Vから次式で求められる。
[Technical Background of the Invention] Conventionally, as shown in FIG. 5 as a fault location method of a cable line, a high voltage is applied from a high voltage source DCG to the cable line in the fault phase to cause a discharge at a fault point A. The pulse is detected as the first propagating signal S1 by the capacitor C and the impedance Z at the measuring end of the cable line, and the discharge pulse is reflected at the measuring end and negatively reflected at the fault point of the cable line. Then, a method is known in which the second propagation signal S2 is detected again at the measurement end, and the oscillogram is located on the synchroscope M. A typical example of the oscillogram at this time is shown in FIG. 6. The first propagation signal S1 is a pulse directly propagated from the accident point A to the measurement end, and the second propagation signal S2 is a discharge pulse reflected at the measurement end. It shows a pulse that is negatively reflected at the fault point A of the cable line, becomes a pulse of opposite polarity, and propagates again to the measurement end. Therefore, the time difference t between the first propagation signal S1 and the second propagation signal S2 at the measuring end. Is the time during which the pulse propagates back and forth between the accident point A and the measuring point, and the distance X from the measuring point to the accident point A is obtained from the pulse propagation velocity V by the following equation.

X=Vt。/2 [背景技術の問題点] このような事故点標定法は、線路に接続部Jが含まれて
いると、前記第1の伝播信号S1と第2の伝播信号S2
の間に接続部からの反射波S2′が入り、時間差T。′
を誤測定し、事故点Aの位置標定ができなくなるという
難点がある。
X = Vt. / 2 [Problems of background art] In such an accident point locating method, when the line includes the connection portion J, the first propagation signal S1 and the second propagation signal S2 are included.
The reflected wave S2 'from the connection part enters between the time intervals T and T. ′
There is a problem that the position of the accident point A cannot be located due to the erroneous measurement.

また、事故相の測定端におけるリード線系、事故相およ
び健全相の遠方端の接続におけるリード線系、並びに健
全相の測定端におけるリード線系は、厳密にはパルスの
遅延要素として作用するので、測定の誤差要因になると
いう難点がある。
In addition, since the lead wire system at the measuring end of the accident phase, the lead wire system at the connection of the far end of the accident phase and the sound phase, and the lead wire system at the measuring end of the sound phase act strictly as a delay element of the pulse, However, there is a problem that it becomes a measurement error factor.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、事故点
が高精度で標定できるケーブル線路の事故点標定法を提
供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method for locating an accident point of a cable line capable of locating an accident point with high accuracy.

[発明の概要] このような目的を達成するために本発明のケーブル線路
の事故点標定法によれば、事故相のケーブル線路の測定
端に較正パルスを印加して測定端において検出される第
1の伝播信号と該較正パルスが該ケーブル線路の遠方端
から健全相のケーブル線路を介して該測定端に伝送され
該測定端において検出される第2の伝播信号との時間差
t1を算出し、事故相のケーブル線路の遠方端に較正パ
ルスを印加して測定端において検出される第1の伝播信
号と該較正パルスが該ケーブル線路の遠方端から健全相
のケーブル線路を介して該測定端に伝送され該測定端に
おいて検出される第2の伝播信号との時間差t2を算出
し、事故相のケーブル線路に高電圧を印加して事故点で
発生した放電パルスが測定端において検出される第1の
伝播信号と該放電パルスが該ケーブル線路の遠方端から
健全相のケーブル線路を介して該測定端に伝送され該測
定端において検出される第2の伝播信号との時間差tを
算出し、該測定端から事故点まで距離xを、 x=(t1−t)L1/(t1−t2) (但し、L1は事故相のケーブル線路長である)から求
めることによりケーブル線路の事故点を標定するもので
ある。
[Summary of the Invention] In order to achieve such an object, according to the fault location method of a cable line of the present invention, a calibration pulse is applied to the measurement end of the cable line in the fault phase, and the detection is performed at the measurement end. Calculating a time difference t1 between the one propagation signal and the second propagation signal in which the calibration pulse is transmitted from the distant end of the cable line to the measuring end through the cable line of a healthy phase and detected at the measuring end, A calibration pulse is applied to the far end of the cable line in the accident phase, and the first propagation signal detected at the measurement end and the calibration pulse are applied from the far end of the cable line to the measurement end via the cable line in the sound phase. A time difference t2 from the second propagation signal transmitted and detected at the measurement end is calculated, and a high voltage is applied to the cable line in the accident phase, and a discharge pulse generated at the accident point is detected at the measurement end. The biography of The time difference t between the seed signal and the second propagation signal which is transmitted from the distant end of the cable line to the measuring end via the cable line of the sound phase and is detected at the measuring end is calculated, and the measurement is performed. Locating the fault point of the cable line by determining the distance x from the end to the fault point from x = (t1-t) L1 / (t1-t2) (where L1 is the cable line length of the fault phase) Is.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明する。Embodiments of the Invention Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明のケーブル線路の事故点標定法は第1図に示すシ
ステム構成により実現される。即ち、同図において、事
故相のケーブル線路2の測定端は高電圧源DCGに接続
されていると共に、結合コンデンサC、検出インピーダ
ンスZを介して接地される。このコンデンサC、検出イ
ンピーダンスZはケーブル線路の事故点(例えばA)で
発生した放電パルスを第1の伝播信号S1として検出す
るものである。コンデンサCとインピーダンスZの中間
点は事故相の測定端におけるリード線系3によりデジタ
ルメモリ4のチャンネルCH1に接続されている。リー
ド線系3には遅延時間T1をもつ遅延要素5が存するも
のとする。一方、ケーブル線路2の遠方端はコンデンサ
C、インピーダンスZを介して接地され、コンデンサC
とインピーダンスZの中間点は健全相のケーブル線路6
の遠方端とリード線系7により接続されている。このコ
ンデンサCとインピーダンスZは事故相に印加されてい
る高電圧を健全相に加わるのを防止し、ケーブル線路の
事故点Aで発生した放電パルスを健全相へ通過させるも
のである。リード線系7には遅延時間T2をもつ遅延要
素8が存するものとする。健全相ケーブル線路6の測定
端はコンデンサC、インピーダンスZを介して接地さ
れ、コンデンサCとインピーダンスZの中間点は健全相
の測定端におけるリード線系9によりデジタルメモリ4
のチャンネルCH2に接続されている。リード線系9に
は遅延時間T3をもつ遅延要素10が存するものとす
る。このコンデンサCとインピーダンスZはケーブル線
路2の事故点Aで発生した放電パルスをケーブル線路2
の遠方端から健全相のケーブル線路6を介して測定端に
伝送し該測定端において第2の伝播信号S2として検出
するものである。デジタルメモリ4の出力端は標定器1
1に接続されている。なお、デジタルメモリ4のチャン
ネルCH1、チャンネルCH2は共に第1の伝播信号S
1によりトリガーされる。
The fault location method of the cable line of the present invention is realized by the system configuration shown in FIG. That is, in the figure, the measurement end of the cable line 2 in the accident phase is connected to the high voltage source DCG, and is also grounded via the coupling capacitor C and the detection impedance Z. The capacitor C and the detection impedance Z detect the discharge pulse generated at the accident point (for example, A) of the cable line as the first propagation signal S1. An intermediate point between the capacitor C and the impedance Z is connected to the channel CH1 of the digital memory 4 by the lead wire system 3 at the measurement end of the accident phase. It is assumed that the lead wire system 3 has a delay element 5 having a delay time T1. On the other hand, the far end of the cable line 2 is grounded via a capacitor C and an impedance Z, and
The middle point between the impedance Z and the impedance Z
Is connected to the far end of the lead wire system 7. The capacitor C and the impedance Z prevent the high voltage applied to the fault phase from being applied to the sound phase, and allow the discharge pulse generated at the fault point A of the cable line to pass to the sound phase. It is assumed that the lead wire system 7 has a delay element 8 having a delay time T2. The measuring end of the sound phase cable line 6 is grounded via the capacitor C and the impedance Z, and the intermediate point between the capacitor C and the impedance Z is connected to the digital memory 4 by the lead wire system 9 at the measuring end of the sound phase.
Channel CH2. It is assumed that the lead wire system 9 has a delay element 10 having a delay time T3. The capacitor C and the impedance Z generate the discharge pulse generated at the accident point A of the cable line 2
Is transmitted from the distant end to the measuring end via the cable line 6 of the sound phase and is detected as the second propagation signal S2 at the measuring end. The output end of the digital memory 4 is the standardizer 1
Connected to 1. The channels CH1 and CH2 of the digital memory 4 are both the first propagation signal S.
Triggered by 1.

このようなシステム構成において本発明によるケーブル
線路の事故点標定は次のような手順により行なわれる。
In such a system configuration, the fault location of the cable line according to the present invention is performed by the following procedure.

事故相のケーブル線路2の測定端に較正パルスを印加
してケーブル線路2を伝播して測定端において遠方され
る第1の伝播信号S1と該較正パルスが該ケーブル線路
の遠方端から健全相のケーブル線路6を介して該測定端
に伝送され該測定端において検出される第2の伝播信号
S2とをデジタルメモリ4に取り込み、その時間t1を
算出し、このデータを標定器11に転送する。この時間
差t1は t1=T3+T2-T1+(L1+L2)/V………(1) である(第2図(A))。ここにL1、L2は事故相、
健全相のケーブル線路長、Vはパルスの伝播速度を示
す。
The calibration pulse is applied to the measurement end of the cable line 2 in the accident phase, propagates through the cable line 2, and is distant at the measurement end. The second propagation signal S2 transmitted to the measuring end via the cable line 6 and detected at the measuring end is taken into the digital memory 4, its time t1 is calculated, and this data is transferred to the locator 11. This time difference t1 is t1 = T3 + T2-T1 + (L1 + L2) / V ... (1) (FIG. 2 (A)). Where L1 and L2 are the accident phase,
The length of the cable line in the sound phase, V indicates the propagation velocity of the pulse.

事故相のケーブル線路2の遠方端に較正パルスを印加
してケーブル線路2を伝播して測定端において検出され
る第1の伝播信号S1と該較正パルスが該ケーブル線路2
の遠方端から健全相のケーブル線路6を介して該測定端
に伝送され該測定端において検出される第2の伝播信号
S2とをデジタルメモリ4に取り込み、その時間差t2を算
出し、このデータを標定器11に転送する。この時間差
t2は t2=T3+T2-T1+(L2-L1)/V………(2) である(第2図(b))。
A calibration pulse is applied to the far end of the cable line 2 in the accident phase, propagates through the cable line 2, and is detected at the measurement end.
Second propagation signal transmitted from the distant end of the cable to the measuring end through the cable line 6 having a sound phase and detected at the measuring end
S2 and S2 are loaded into the digital memory 4, the time difference t2 between them is calculated, and this data is transferred to the locator 11. This time difference
t2 is t2 = T3 + T2-T1 + (L2-L1) / V ... (2) (Fig. 2 (b)).

(1)、(2)式から伝播速度Vは V=2L1/(t1-t2)………(3) で求められる。From the equations (1) and (2), the propagation velocity V can be obtained by V = 2L1 / (t1-t2) ... (3).

事故ケーブル線路2に高電圧源DCGから高電圧を印
加する。放電パルスが例えば事故点Aで発生したものと
する。この放電パルスがケーブル線路2を伝播して測定
端において検出される第1の伝播信号S1と該放電パルス
が該ケーブル線路2の遠方端から健全相のケーブル線路
6を介して該測定端に伝送され該測定端において検出さ
れる第2の伝播信号S2とをデジタルメモリ4に取り込
み、その時間差tを算出し、このデータを標定器11に
転送する。この時間差tは t=T3+T2-T1+ ( L2+L1-2X)/V =T3+T2-T1+((L2-L1)+2(L1-X))/V これに(2)、(3)式を代入して t=t2+2(L1-X)/V =t2+(L1-X)(t1-t2)/L1 である(第2図(C))。
A high voltage is applied to the accident cable line 2 from the high voltage source DCG. It is assumed that the discharge pulse occurs at accident point A, for example. The discharge pulse propagates through the cable line 2 and is detected at the measurement end, and the first propagation signal S1 and the discharge pulse are transmitted from the distant end of the cable line 2 to the measurement end via the cable line 6 in the normal phase. Then, the second propagation signal S2 detected at the measuring end is loaded into the digital memory 4, the time difference t thereof is calculated, and this data is transferred to the locator 11. This time difference t is t = T3 + T2-T1 + (L2 + L1-2X) / V = T3 + T2-T1 + ((L2-L1) +2 (L1-X)) / V In addition, (2), (3 Substituting the equation), t = t2 + 2 (L1-X) / V = t2 + (L1-X) (t1-t2) / L1 (FIG. 2 (C)).

よって該測定端から事故点までの距離xは、 x=(t1-t)L1/(t1-t2) として求めることができ、標定器11により位置計算を
実施し、付属のプリンタで計算結果を打ち出すこともで
きる。このようにして既知の事故相のケーブル線路長L
1、測定可能値t1、t2、tのみから距離xは算出され、
遅延要素5、8、10の遅延時間T1、T2、T3の影響を受
けずケーブル線路の事故点が正確に標定されるものであ
る。
Therefore, the distance x from the measurement end to the accident point can be obtained as x = (t1-t) L1 / (t1-t2), the position is calculated by the locator 11, and the calculation result is obtained by the attached printer. You can also launch it. In this way, the cable line length L of the known accident phase
1, the distance x is calculated only from the measurable values t1, t2, t,
The fault point of the cable line is accurately located without being affected by the delay times T1, T2, T3 of the delay elements 5, 8, 10.

また、事故点から遠方へ向かう放電パルスを測定端へ伝
送する際に健全相を使用するようにしたので、線路に普
通接続箱部NJ(第3図(a))が含まれていても、第
1の伝播信号S1と第2の伝播信号S2の時間t(第3
図(b))が正確に測定され、普通接続箱部NJからの
反射波S2′の影響を受けず事故点Aの位置標定ができ
る。
Further, since the sound phase is used when transmitting the discharge pulse going far from the accident point to the measurement end, even if the line normally includes the junction box portion NJ (Fig. 3 (a)), The time t of the first propagation signal S1 and the second propagation signal S2 (the third
The figure (b)) is accurately measured, and the position of the accident point A can be located without being affected by the reflected wave S2 'from the ordinary junction box portion NJ.

なお、第4図(a)に示すように線路が絶縁接続箱部I
Jによりクロスボンド方式で接地されている場合、絶縁
接続箱で事故相から健全相へ放電パルスが伝播波が分波
される誘導が生じるため、事故点から遠方端へ向かう放
電パルスが健全相を通り測定端へ届く前に、事故相を走
る放電パルスがクロスボンド点から入り込み、時間差t
(第4図(b))が不明確となり、事故点の位置標定が
できなくなる。この場合、遅延要素8の遅延時間t2を積
極的に使用するとよい。即ち、遅延要素8の遅延時間T2
を、放電パルスの伝播波が事故相から健全相へ誘導する
時間より大きくとる。このため、事故相から健全相への
誘導が完全に無くなった後、事故点から遠方端へ向かう
放電パルスが健全相を通り測定端に伝送でき、時間差t
が正確に求められ、事故点の位置標定ができる。
In addition, as shown in FIG.
When grounded by the cross bond method by J, the discharge pulse from the accident point to the healthy phase is induced in the insulation junction box from the accident phase to the healthy phase. Before reaching the measurement end, the discharge pulse running in the accident phase enters from the cross bond point and the time difference t
(Fig. 4 (b)) becomes unclear, and it becomes impossible to locate the accident point. In this case, the delay time t2 of the delay element 8 may be positively used. That is, the delay time T2 of the delay element 8
Is larger than the time for the propagating wave of the discharge pulse to be induced from the accident phase to the sound phase. Therefore, after the induction from the accident phase to the sound phase is completely eliminated, the discharge pulse from the accident point to the far end can be transmitted to the measurement end through the sound phase, and the time difference t
Can be accurately determined, and the location of the accident point can be located.

[発明の効果] 以上の実施例からも明らかなように本発明のケーブル線
路の事故点標定法によれば、事故点から遠方端へ向かう
放電パルスを測定端へ伝送する際に健全相のケーブル線
路を使用し、事故相のケーブル線路の測定端に較正パル
スを印加したとき、同じく遠方端に較正パルスを印加し
たとき、および事故相のケーブル線路に高電圧を印加し
て事故点で放電パルスを発生させたとき、それぞれ測定
端において検出される第1の伝播信号と該パルスが該ケ
ーブル線路の遠方端から健全相のケーブル線路を介して
該測定端に伝送され該測定端において検出される第2の
伝播信号との時間差を算出し、測定端から事故点までの
距離を求めるようにしので、遅延要素の遅延時間の影響
を受けず、かつケーブル線路の接続部における反射に左
右されることがなくケーブル線路の事故点が正確に標定
されるものである。
[Effects of the Invention] As is clear from the above embodiments, according to the fault location method of the cable line of the present invention, the cable of the sound phase when transmitting the discharge pulse from the fault point to the far end to the measurement end When a calibration pulse is applied to the measurement end of the cable line in the accident phase, a calibration pulse is also applied to the far end, and a high voltage is applied to the cable line in the accident phase, a discharge pulse is applied at the accident point. The first propagation signal and the pulse, which are respectively detected at the measurement end, are transmitted from the far end of the cable line to the measurement end through the cable line of the sound phase and are detected at the measurement end. Since the time difference from the second propagation signal is calculated and the distance from the measurement end to the fault point is calculated, it is not affected by the delay time of the delay element, and it is affected by the reflection at the connection part of the cable line. The accident point of the cable line is accurately located without being damaged.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるケーブル線路のコイル事故点標定
法を実現するためのシステム構成図、第2図(a)、
(b)、(c)は同標定法で得られる放電パルス伝播信
号の波形図、第3図(a)、(b)はそれぞれ同標定法
が適用できる普通接続箱による線路システム構成図およ
びその放電パルス伝播信号の波形図、第4図(a)、
(b)はそれぞれ同標定法が適用できる絶縁接続箱によ
る線路システム構成図およびその放電パルス伝播信号の
波形図、第5図、第6図はそれぞれ従来の事故点標定法
に用いられるシステム構成図およびその放電パルス伝播
信号の波形図である。 2……事故相のケーブル線路 S1……第1の伝播信号 6……健全相のケーブル線路 S2……第2の伝播信号 t1、t2、t……時間差 A……事故点 x……距離
FIG. 1 is a system configuration diagram for realizing a coil fault point locating method for a cable line according to the present invention, FIG. 2 (a),
(B) and (c) are waveform diagrams of the discharge pulse propagation signal obtained by the same orientation method, and FIGS. 3 (a) and 3 (b) are line system configuration diagrams using a normal junction box to which the same orientation method can be applied, respectively. Waveform diagram of discharge pulse propagation signal, FIG. 4 (a),
(B) is a line system configuration diagram with an insulated junction box to which the same orientation method can be applied and a waveform diagram of its discharge pulse propagation signal, and FIGS. 5 and 6 are system configuration diagrams used in the conventional fault location method. FIG. 3 is a waveform diagram of a discharge pulse propagation signal thereof and FIG. 2 ... Accident phase cable line S1 ... First propagation signal 6 ... Healthy phase cable line S2 ... Second propagation signal t1, t2, t ... Time difference A ... Accident point x ... Distance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 難波 克明 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (56)参考文献 特開 昭56−16878(JP,A) 特開 昭60−100061(JP,A) 特公 昭46−35465(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuaki Namba 2-1-1, Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa (Showa Electric Wire & Cable Co., Ltd.) (56) Reference JP-A-56-16878 (JP, A) JP-A-60-100061 (JP, A) JP-B-46-35465 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】事故相のケーブル線路の測定端に較正パル
スを印加して測定端において検出される第1の伝播信号
と該較正パルスが該ケーブル線路の遠方端から健全相の
ケーブル線路を介して該測定端に伝送され該測定端にお
いて検出される第2の伝播信号との時間差(t1)を算
出し、事故相のケーブル線路の遠方端に較正パルスを印
加して測定端において検出される第1の伝播信号と該較
正パルスが該ケーブル線路の遠方端から健全相のケーブ
ル線路を介して該測定端に伝送され該測定端において検
出される第2の伝播信号との時間差(t2)を算出し、
事故相のケーブル線路に高電圧を印加して事故点で発生
した放電パルスが測定端において検出される第1の伝播
信号と該放電パルスが該ケーブル線路の遠方端から健全
相のケーブル線路を介して該測定端に伝送され該測定端
において検出される第2の伝播信号との時間差(t)を
算出し、該測定端から事故点までの距離xを、 x=(t1−t)L1/(t1−t2) (但し、L1は事故相のケーブル線路長である)から求
めることによりケーブル線路の事故点を標定することを
特徴とするケーブル線路の事故点標定法。
1. A first propagation signal detected at the measuring end by applying a calibration pulse to the measuring end of the cable line in the accident phase and the calibration pulse from the far end of the cable line through the cable line in the healthy phase. The time difference (t1) from the second propagation signal transmitted to the measurement end and detected at the measurement end is calculated, and a calibration pulse is applied to the far end of the cable line in the fault phase to be detected at the measurement end. A time difference (t2) between the first propagating signal and the second propagating signal which is transmitted from the far end of the cable line to the measuring end through the cable line of a healthy phase and is detected at the measuring end is calculated. Calculate,
The first propagation signal in which the discharge pulse generated at the accident point by applying a high voltage to the cable line in the accident phase is detected at the measurement end and the discharge pulse from the far end of the cable line through the cable line in the healthy phase Then, the time difference (t) from the second propagation signal transmitted to the measuring end and detected at the measuring end is calculated, and the distance x from the measuring end to the fault point is calculated as x = (t1-t) L1 / (T1-t2) (where L1 is the cable line length of the accident phase), and the fault point locating method of the cable line is characterized by locating the fault point of the cable line.
JP5762685A 1985-03-22 1985-03-22 Accident location method for cable tracks Expired - Lifetime JPH065252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5762685A JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5762685A JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Publications (2)

Publication Number Publication Date
JPS61215970A JPS61215970A (en) 1986-09-25
JPH065252B2 true JPH065252B2 (en) 1994-01-19

Family

ID=13061092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5762685A Expired - Lifetime JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Country Status (1)

Country Link
JP (1) JPH065252B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599613B2 (en) * 1988-03-24 1997-04-09 東北電力 株式会社 Transmission line fault location system using artificial satellites
US5682100A (en) * 1995-09-06 1997-10-28 Electric Power Research Institute Inc. System and method for locating faults in electric power cables
IT1393307B1 (en) 2009-03-27 2012-04-20 Techimp Technologies S A Ora Techimp Technologies S R L DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.
IT1393308B1 (en) * 2009-03-27 2012-04-20 Techimp Technologies S A Ora Techimp Technologies S R L DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.

Also Published As

Publication number Publication date
JPS61215970A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
JPS6239885B2 (en)
US6314055B1 (en) Range measuring system
JPH065252B2 (en) Accident location method for cable tracks
GB2056203A (en) Waveguide arc locator
JPS61215971A (en) Accident point standardizing method for cable line
JPH065253B2 (en) Accident location method for cable tracks
JPS6255570A (en) Location of fault point for cable line
JP2650935B2 (en) Partial discharge location method
US2448399A (en) Supersonic inspection
JP3419924B2 (en) Partial discharge measurement method
JPS59225366A (en) Disconnection position detecting system
US3580058A (en) Dual ultrasonic sensors employing a single mode of ultrasonic transmission
JPS6161068A (en) Detecting method of partial discharge occurrence position in cable connection part
GB2262341A (en) Method and apparatus for measuring distances using an acoustic signal
US3538752A (en) Ultrasonic thickness measuring apparatus
JPS6262299B2 (en)
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method
JPH1138074A (en) Partial discharge position orienting method for cable
JPS61210970A (en) Method for plotting accident point of cable line
JPH065251B2 (en) Accident location method for cable tracks
JPH0353583B2 (en)
JPH0580627B2 (en)
JPH065250B2 (en) Accident location method for cable tracks
JPH07117564B2 (en) Cable insulation deterioration point location method
JPS60225071A (en) Measurement of partial discharge generating position in cable