JPS61215905A - Position detecting device - Google Patents

Position detecting device

Info

Publication number
JPS61215905A
JPS61215905A JP60057890A JP5789085A JPS61215905A JP S61215905 A JPS61215905 A JP S61215905A JP 60057890 A JP60057890 A JP 60057890A JP 5789085 A JP5789085 A JP 5789085A JP S61215905 A JPS61215905 A JP S61215905A
Authority
JP
Japan
Prior art keywords
beams
frequency
signal
phase difference
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60057890A
Other languages
Japanese (ja)
Other versions
JPH0575044B2 (en
Inventor
Nobutaka Umagome
伸貴 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60057890A priority Critical patent/JPS61215905A/en
Priority to US06/840,880 priority patent/US4710026A/en
Publication of JPS61215905A publication Critical patent/JPS61215905A/en
Priority to US07/627,925 priority patent/USRE34010E/en
Publication of JPH0575044B2 publication Critical patent/JPH0575044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To execute the highly accurate position detection by obtaining a prescribed frequency difference at two beams of luminous fluxe, generating the optical beat at the interference of two or more diffracted light beams and detecting the phase difference with a reference signal having the frequency of the difference between the optical beat signal and the frequency of two beams of luminous fluxe. CONSTITUTION:A laser beam LB from a laser light source 1 makes incident on an acoustic optical modulator 2 and a zero-order beam 10 parallel to the beam LB irradiates a substrate 4 from diagonally. A beam 12 frequency-modulated by the modulator 2 is deflected by a certain angle only to the beam 10 and irradiates the substrate 4 from diagonally. Since for the beam 10 and the beam 12, only the frequency (f) is different, the photoelectric signal goes to be an optical beat signal, and goes to be the sine waveform of the frequency (f) similar to a reference signal MS. The phase difference between the signal MS and the photoelectric signal is obtained by the level of a phase difference signal PDS from a phase difference detecting circuit 8. Here, presently, when the substrate 4 is positioned for two beams of luminous fluxe 10 and 12, the coarse positioning is executed by using a stage 5, after this is completed, a main control device 22 reads the signal PDS and the direction of dislocation is detected by the polarity and the dislocation quantity is detected by the size.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は回折格子を用いたウェハやマスク等の位置検出
装置に関し、特にホログラフィック・アライメント法と
呼ばれる位置合わせに好適な位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a position detection device for a wafer, mask, etc. using a diffraction grating, and particularly to a position detection device suitable for alignment called a holographic alignment method.

(発明の背景) 近年、半導体装置の微細化と高密度化は著しく進み、半
導体装置(特に超LSI)を製造する上で必要なマスク
(レチクル)とウェハの位置合わせ(アライ・メント)
も、より高精度に行なう必要が生じてきた。その高精度
化の1つの方法として、例えば特開昭59−19291
7号公報に開示されたよりなホログラフィック・アライ
メント法と呼ばれるものが提案されている。この方法は
、互いに等しい周波数のコヒーレントな光t−2方向か
ら入射させて、その2光束の干渉により得られる干渉縞
に対して、平行に配列するような回折格子を持ったウェ
ハを、2光束の光路中に配置し、回折格子によつて反射
、又は透過した光、あるいは回折光を再度干渉させて、
その干渉強度を光電検出した信号に基づいて、2光束に
よる干渉縞と回折格子との相対位置を検出するものであ
る。この方法は別の見方をすれば、2光束のうち一方の
光束Aを回折格子に照射したとき、特定の方向に発生し
た回折光(a)と、他方の光束Bを回折格子に照射した
とき、その特定方向に発生し九回折光(−との位相が、
回折格子と2光束との相対的な移動によって変化するこ
とによって生じる回折光(a)、(b)の干渉強度の変
化を検出していることになる。このような検出方法によ
れば、確かに高精度な位置検出が可能であるが、実際の
装置化にあ几っては大きな問題がある。それは、コヒー
レントな2光束を発生する光源の強度変化、2光束同志
の強度比変化、及び回折格子の不整等に起因した回折光
(a)、(b)の強度変化等がそのまま位置検出の誤差
になることである。光源の強度変化や、2光束同志の強
度比変化は装置の設計、製造時にかなりのところまで押
えることができるが、経時的な変化に対しては、やはり
誤差となってしまう。また回折光(−1(b)の強度変
化は回折格子の形状、表面状態等に応じて生ずるので、
装置側で対処することは困難である。
(Background of the Invention) In recent years, the miniaturization and densification of semiconductor devices have progressed significantly, and alignment of masks (reticles) and wafers is necessary for manufacturing semiconductor devices (especially VLSI).
There is also a need to perform this with higher precision. As one method for increasing the precision, for example, Japanese Patent Application Laid-Open No. 59-19291
A method called a more holographic alignment method disclosed in Japanese Patent No. 7 has been proposed. In this method, two beams of coherent light of equal frequency are incident from the t-2 direction, and a wafer with a diffraction grating arranged parallel to the interference fringes obtained by interference of the two beams is is placed in the optical path of the diffraction grating, and the light reflected or transmitted by the diffraction grating, or the diffracted light, is interfered again,
The relative position between the interference fringes of the two light beams and the diffraction grating is detected based on a signal obtained by photoelectrically detecting the interference intensity. Looking at this method from another perspective, when one of the two light beams A is irradiated onto the diffraction grating, the diffracted light (a) generated in a specific direction, and the other light beam B is irradiated onto the diffraction grating. , the phase of the nine-diffracted light (-) generated in that specific direction is
This means that a change in the interference intensity of the diffracted lights (a) and (b) caused by a change due to the relative movement of the diffraction grating and the two light beams is detected. According to such a detection method, it is certainly possible to detect a position with high precision, but there are major problems when it comes to actual device implementation. Errors in position detection are caused by changes in the intensity of the light source that generates two coherent beams, changes in the intensity ratio of the two beams, and changes in the intensity of the diffracted lights (a) and (b) caused by irregularities in the diffraction grating. It is to become. Although changes in the intensity of the light source and changes in the intensity ratio between the two beams can be suppressed to a considerable extent during the design and manufacture of the device, changes over time still result in errors. In addition, the intensity change of the diffracted light (-1(b) occurs depending on the shape and surface condition of the diffraction grating, so
It is difficult to deal with this on the equipment side.

さらに、2光束によって作られた干渉縞とウェハ上の回
折格子とを相対的に移動させてみないと、位置ずれに応
じてレベル変化する光電信号が得られない。これは干渉
縞と回折格子とを相対的に1周期8度動かすまでは正確
な位置合わせができないことを意味し、装置化した場合
に、アライメント時間を根本的に短縮できないといった
欠点を生じる。
Furthermore, unless the interference fringes created by the two light beams and the diffraction grating on the wafer are moved relative to each other, a photoelectric signal whose level changes depending on the positional shift cannot be obtained. This means that accurate alignment cannot be achieved until the interference fringes and the diffraction grating are moved relative to each other by 8 degrees per cycle, which results in the drawback that when integrated into a device, the alignment time cannot be fundamentally shortened.

(発明の目的) 本発明はこれらの欠点を解決し、光の強度変化に関係な
く高精度な位置検出ができるとともに、2光束と回折格
子とを相対的に移動させなくとも1周期以内の位置ずれ
量を検出することができる位置検出装置を得ることを目
的とする。
(Objective of the Invention) The present invention solves these drawbacks, enables highly accurate position detection regardless of changes in light intensity, and detects the position within one period without relatively moving the two light beams and the diffraction grating. An object of the present invention is to obtain a position detection device that can detect the amount of deviation.

(発明の概要〕 本発明は2光束に所定の周波数差をもたせ、回折格子か
らの回折光(a)、(b)同志の干渉に光ビートを発生
させ、その光ビート信号と2光束の周波数の差分の周波
数をもつ基準信号との位相差を検出する、所謂元ヘトロ
ダイン干渉法を用いて、その位相差から基板の位置を検
出することを技術的要点としている。
(Summary of the Invention) The present invention provides a predetermined frequency difference between two beams of light, generates an optical beat in interference between the diffracted lights (a) and (b) from a diffraction grating, and combines the optical beat signal with the frequency of the two beams. The technical point is to detect the position of the substrate from the phase difference using the so-called original heterodyne interferometry, which detects the phase difference with a reference signal having a frequency equal to the difference in frequency.

(実施例) 第1図は、本発明の第1の実施例による位置検出装置の
概略的な構成を示す図である。レーザ光源1からのレー
ザ光LBは、2光束発生手段としての音響光学変調器2
に入射し、レーザ光LBの平行な零次光10はミラー3
で反射されてウェハ等の基板4を斜めから照射する。音
響光学変調器2(以下単に光変調器2と呼ぶ)で周波数
変調された!(+1次光)12は零次光10に対しであ
る角度だけ偏向され、基板4を斜めから平行光束となっ
て照射する。光変調器2は、基準信号発生手段としての
発嶽回路6から周波数fの基準信号(変調信号)MS−
i入力して、変調光12の周波数を零次光の周波数に対
してfだけ異ならせる。
(Embodiment) FIG. 1 is a diagram showing a schematic configuration of a position detection device according to a first embodiment of the present invention. The laser beam LB from the laser light source 1 is transmitted through an acousto-optic modulator 2 as a two-beam generating means.
The parallel zero-order light 10 of the laser beam LB is incident on the mirror 3
The light is reflected by the beam and irradiates the substrate 4 such as a wafer from an oblique direction. Frequency modulated by acousto-optic modulator 2 (hereinafter simply referred to as optical modulator 2)! The (+1st order light) 12 is deflected by a certain angle with respect to the zero order light 10, and irradiates the substrate 4 obliquely as a parallel light beam. The optical modulator 2 receives a reference signal (modulation signal) MS- of a frequency f from an output circuit 6 as a reference signal generating means.
i is input to make the frequency of the modulated light 12 different from the frequency of the zero-order light by f.

基板4には図中紙面と垂直な方向に伸びた細長い格子を
、図中紙面内の左右方向に一定のピッチで平行に形成し
た回折格子4aが設けられている。
The substrate 4 is provided with a diffraction grating 4a in which elongated gratings extending in a direction perpendicular to the plane of the drawing are formed parallel to each other at a constant pitch in the left-right direction in the plane of the drawing.

そして零次光10と変調光12との干渉によって得られ
る干渉縞が、回折格子4aの格子と平行になるように、
2つのAltlo、12を入射する。このとき零次光1
0と変調光12とは周波数が異なるため、2つの光束に
よる干渉縞は基板4に対して静止しているのではなく周
波数fで流れており、これが所謂光ビートである。尚、
その干渉縞のピッチと回折格子4aのピッチは整数倍の
関係に定められている。さて基板4は位置合わせのため
のステージ5に載置されており、このステージ5は図中
紙面内の圧右方向に、駆動モータ21によって移動され
る。またステージ5の位置はレーザ光波干渉計等の測長
器20によって逐次検出される。
Then, so that the interference fringes obtained by interference between the zero-order light 10 and the modulated light 12 are parallel to the grating of the diffraction grating 4a,
Inject two Altlo, 12. At this time, zero-order light 1
0 and the modulated light 12 have different frequencies, the interference fringes formed by the two light beams do not remain stationary with respect to the substrate 4, but flow at a frequency f, and this is a so-called optical beat. still,
The pitch of the interference fringes and the pitch of the diffraction grating 4a are determined to be integral multiples. Now, the substrate 4 is placed on a stage 5 for positioning, and this stage 5 is moved by a drive motor 21 in the rightward direction in the plane of the drawing. Further, the position of the stage 5 is sequentially detected by a length measuring device 20 such as a laser beam interferometer.

ところで零次光10を回折格子4aに照射すると、いろ
いろな次数の回折光が、それぞれの回折角で発生する。
By the way, when the zero-order light 10 is irradiated onto the diffraction grating 4a, diffracted lights of various orders are generated at respective diffraction angles.

そのうち角度βで発生するある次数の回折光11、を格
子と平行なスリットを有するスリット板7aを介してフ
ォトマルチプライヤ−等の光電検出器7で受光する。角
度βは零次光10と回折光11との成す角度である。同
時に、変調光12が回折格子4aを照射しているので、
七tによっているいろな次数の回折光がそれぞれの回折
角で発生する。光電検出器7は、そのうち角度αで発生
し、回折光11とほぼ同じ光路で進んでくるある次数の
回折光13をスリン) & 7 aを介して受光する。
Among them, diffracted light 11 of a certain order generated at an angle β is received by a photoelectric detector 7 such as a photomultiplier via a slit plate 7a having slits parallel to the grating. The angle β is the angle formed by the zero-order light 10 and the diffracted light 11. At the same time, since the modulated light 12 is irradiating the diffraction grating 4a,
Diffracted light of various orders due to t is generated at each diffraction angle. The photoelectric detector 7 receives the diffracted light 13 of a certain order, which is generated at an angle α and travels along substantially the same optical path as the diffracted light 11, through the diffracted light 13 (Surin) & 7a.

光電検出器7の受光面においては、回折光11と13と
の干渉により明暗の変化が生じるが、その明暗は光ビー
トの周波数、すなわち基準信号MSの周波数fで変化し
ている。
On the light receiving surface of the photoelectric detector 7, a change in brightness occurs due to interference between the diffracted lights 11 and 13, and the brightness changes with the frequency of the optical beat, that is, the frequency f of the reference signal MS.

よって光電検出器7の光電信号も周波数fの正弦波状の
波形となる。その光電信号は増幅器9で増幅された後、
位相差検出子°段としての位相差検出回路8に入力する
。位相差検出回路8は発振回路6からの基準信号MSも
入力して、基準信号MSに対する光電信号の位相ずれを
検出し、そのずれ量に応じた位相差信号PDSを出力す
る。
Therefore, the photoelectric signal from the photoelectric detector 7 also has a sinusoidal waveform of frequency f. After the photoelectric signal is amplified by an amplifier 9,
The signal is input to a phase difference detection circuit 8 as a stage of phase difference detectors. The phase difference detection circuit 8 also receives the reference signal MS from the oscillation circuit 6, detects a phase shift of the photoelectric signal with respect to the reference signal MS, and outputs a phase difference signal PDS corresponding to the amount of shift.

主制御装置22は、その位相差信号PDSと測長器20
からの位置情報とを入力して、例えば位相差信号PDS
が零(位相ずれが零)になるように駆動モータ21をサ
ーボ制御する。これによって基板4の一次元の位置合わ
せが行なわれる。尚、位相差検出回路8としてはFM検
波回路、7・ニーズメータ等がそのまま利用できる。ま
た発振回路6には発振周波数fを変化させるための周波
数調整器30が接続されている。これは光変調器2から
射出する零次光10に対する変調光12の偏向角を可変
にして、角度αを調整するためである。一般に回折格子
のピッチ、コヒーレント光の波長、及びコヒーレント光
の入射角が決まってしまうと、発生する各次数の回折光
の方向は一義的に定まってしまう。このためある次数の
回折光13が、他方の回折光11と平行な光路に宿って
発生し、スリット板7afe正確に透過するとはかぎら
ない。
The main controller 22 uses the phase difference signal PDS and the length measuring device 20.
For example, the phase difference signal PDS is input by inputting the position information from
The drive motor 21 is servo-controlled so that the phase difference becomes zero (the phase shift is zero). This allows one-dimensional positioning of the substrate 4. Incidentally, as the phase difference detection circuit 8, an FM detection circuit, a needs meter 7, etc. can be used as is. Further, a frequency adjuster 30 for changing the oscillation frequency f is connected to the oscillation circuit 6. This is because the deflection angle of the modulated light 12 with respect to the zero-order light 10 emitted from the optical modulator 2 is made variable to adjust the angle α. Generally, once the pitch of the diffraction grating, the wavelength of the coherent light, and the angle of incidence of the coherent light are determined, the direction of the generated diffracted light of each order is uniquely determined. Therefore, the diffracted light 13 of a certain order is generated in an optical path parallel to the other diffracted light 11, and is not necessarily transmitted accurately through the slit plate 7afe.

そこで変調光12の入射角を政調することによって、あ
る次数の回折f、13が丁度回折光11と平行になるよ
うに光学的な調J!!を行なうものである。
Therefore, by adjusting the incident angle of the modulated light 12, the optical adjustment J! ! This is what we do.

このように発振回路6の周波数fを可変できるようにし
ておくと、後からの調整が自由にできるノテ、レーザ光
源1、光変調器2、ミラー3、スかも各光学部材は機械
的に動かす必要がないので。
By making the frequency f of the oscillation circuit 6 variable in this way, you can freely adjust it later.Note: The laser light source 1, optical modulator 2, mirror 3, and optical components can be moved mechanically. Because there's no need.

経時変化による誤差も発生しにくい。また発振周波数f
の微調は、光電検出器7からの光電信号の振幅(例えば
ピーク・トウ・ピーク)を検出して、その値が最大とな
るようにすればよい。この場合、調整器30に光電信号
の像幅を検出する回路と、その振幅値の最大値を記憶す
る回路と、発振周波数をある範囲内でスイープする回路
等を設け、例えば−回目の周波数スイープ時に振幅の最
大値を記憶し、二回目の周波数スイープ時には、記憶さ
れた最大値と検出された振幅値とを比較しつつ、両者が
一致した時点でスィーブを停止して七の周波数に固定す
るようにすれば、装置を常に理想的な状態に自動設定(
セルフセット)できる、という効果も得られる。
Errors due to changes over time are also less likely to occur. Also, the oscillation frequency f
The fine adjustment can be made by detecting the amplitude (for example, peak-to-peak) of the photoelectric signal from the photoelectric detector 7 and adjusting the amplitude to the maximum value. In this case, the adjuster 30 is provided with a circuit for detecting the image width of the photoelectric signal, a circuit for storing the maximum value of the amplitude value, a circuit for sweeping the oscillation frequency within a certain range, etc. During the second frequency sweep, the maximum amplitude value is compared with the detected amplitude value, and when the two match, the sweep is stopped and fixed at frequency 7. If you do this, the device will always be automatically set to the ideal condition (
You can also get the effect of being able to self-set.

尚、第1図においては、変調光12と零次光10とが比
較的大きな偏向角で分離されているように示されている
が、実際はそれ程大きな偏向角とはならないので、ミラ
ー等を用いて変調光12の光路を折り曲げて第1図のよ
うな入射状態を作り出すことになる。また、零次光10
と変調光12とはfだけ周波数が異なるから、当然その
波長自体も両者で異なる訳であるが、両光束の波長の絶
対値に対する波長差分は極めて小さく(io’〜lO程
度)、はとんど同一波長とみなすことができる。
Although FIG. 1 shows that the modulated light 12 and the zero-order light 10 are separated by a relatively large deflection angle, in reality the deflection angle is not that large, so a mirror or the like is used. The optical path of the modulated light 12 is bent to create an incident state as shown in FIG. Also, zero order light 10
Since the frequency of the modulated light 12 and the modulated light 12 differ by f, the wavelength itself is naturally different between the two, but the wavelength difference with respect to the absolute value of the wavelength of both light beams is extremely small (about io' to lO) and extremely They can be regarded as having the same wavelength.

次に本実施例の動作を第2図(a)、(bl、(c)の
各波形図を参照して説明する。第2図(a)は基準信号
MSの波形図でSす、第2図(b)は光電検出器7の光
電信号Iの波形図であり、ともに横軸は時間tを表わし
、縦軸は各信号のレベルを表わす。先にも述べたように
、零次光10と変調光12とは周波数fだけ異なってい
るため、光電信号Iは所謂光ビート信号となり、基準信
号MSと相似な周波数fの正弦波形となる。基板4が2
つの光束10.12に対しである位置に停止していると
すると、基準信号MSと光電信号lとの位相差0は一定
の値になる。この位相差lは位相差検出回路8からの位
相差信号PDSのレベルによってただちに求まる。また
基板4がステージ5によって移動していると、位相差θ
はその移動量に比例して連続的に変化する。もちろん位
相差がとして検出できるレンジは2−1cの範囲5位相
ずれの方向を加味すれば±πの範囲内である。第2図(
c)は位相差信号PDSの出力特性図であり、縦軸は信
号PDSの出力レベルを表わし、横軸は2つの光束10
.12と基板4との相対的な位置Xを表わす。基板4を
2つの光束10.12に対して位置合わせする場合は、
予め公知のクリアライメント手段やクローバルアライメ
ント手段によって1位置合わせ誤差が範囲LP(位相差
で±π)内になるようにステージ5を使って粗位置決め
を行なう。その範囲LPは2つの光束10.12の波長
をλとすると、次式で表わされる。
Next, the operation of this embodiment will be explained with reference to the waveform diagrams of FIGS. 2(a), (bl, and (c)). FIG. 2(b) is a waveform diagram of the photoelectric signal I from the photoelectric detector 7, in which the horizontal axis represents time t and the vertical axis represents the level of each signal.As mentioned earlier, zero-order light 10 and the modulated light 12 differ by the frequency f, the photoelectric signal I becomes a so-called optical beat signal, and has a sine waveform with a frequency f similar to the reference signal MS.
Assuming that one light beam 10.12 is stopped at a certain position, the phase difference 0 between the reference signal MS and the photoelectric signal l becomes a constant value. This phase difference l is immediately determined by the level of the phase difference signal PDS from the phase difference detection circuit 8. Furthermore, when the substrate 4 is moved by the stage 5, the phase difference θ
changes continuously in proportion to the amount of movement. Of course, the range in which the phase difference can be detected is within the range of ±π if the direction of the phase shift is taken into account in the range 2-1c. Figure 2 (
c) is an output characteristic diagram of the phase difference signal PDS, in which the vertical axis represents the output level of the signal PDS, and the horizontal axis represents the two luminous fluxes 10
.. 12 and the substrate 4 relative to each other. When aligning the substrate 4 with respect to the two light beams 10.12,
Rough positioning is performed in advance using the stage 5 using known clear alignment means or crowbar alignment means so that one positioning error is within the range LP (±π in terms of phase difference). The range LP is expressed by the following equation, where λ is the wavelength of the two light beams 10.12.

LP=λ/(@inα+sinβ) −例として、波長λft600 nm (0,6pm)
とし、角度α、βをともに30・とすると、上記式より
範囲LPFi0.6μ電となる。位置合わせの正確な位
置が位相差信号PDSの零点であるとすると、粗位置決
めの精度は±0.3μmが必要となる。
LP=λ/(@inα+sinβ) - For example, wavelength λft600 nm (0,6pm)
If both the angles α and β are 30·, the range LPFi is 0.6μ from the above formula. Assuming that the correct position for alignment is the zero point of the phase difference signal PDS, the rough positioning accuracy needs to be ±0.3 μm.

もちろん同じ波長であっても角度α、βがともに小さく
なればなるほど、範囲LPは広がり、粗位置決めの精度
はゆるくなる。粗位置決めが終了したら、主制御装置2
2は位相差信号PDSを読み込み、その極性によりずれ
の方向を、その大きさによってずれ量を検出し、駆動モ
ータ21を制御して位相差信号PDSが零になるように
ステージ5を微動させる。あるいは位相差信号PDSが
直線的に変化することから、モータ制御回路のフィード
バックループ内の誤差信号として直接位相差信号PDS
を取り込むようにしてもよい。この場合、先の例で言え
ば、±0.3μI11までは測長器20の位置情報に基
づいて駆動モータ21を制御し、±0.3μm以内にな
ったら、位相差信号PDSに基づいて駆動モータ21を
制御するように制御系を自動的に切替えれば、ステージ
5は位相差信号PDSの零点にサーボロックさハるまで
、自動的に移動することになる。このことは、オートア
ライメントにおける高精度化と高速化とを両立できる点
で有効である。
Of course, even if the wavelength is the same, the smaller both angles α and β become, the wider the range LP becomes, and the accuracy of rough positioning becomes looser. After rough positioning is completed, main controller 2
2 reads the phase difference signal PDS, detects the direction of shift based on its polarity, detects the amount of shift based on its magnitude, and controls the drive motor 21 to slightly move the stage 5 so that the phase difference signal PDS becomes zero. Alternatively, since the phase difference signal PDS changes linearly, the phase difference signal PDS can be directly used as an error signal in the feedback loop of the motor control circuit.
It may also be possible to incorporate In this case, using the previous example, the drive motor 21 is controlled based on the position information of the length measuring device 20 up to ±0.3μI11, and when it becomes within ±0.3μm, the drive motor 21 is driven based on the phase difference signal PDS. If the control system is automatically switched to control the motor 21, the stage 5 will automatically move until it is servo-locked to the zero point of the phase difference signal PDS. This is effective in that both high precision and high speed can be achieved in auto-alignment.

以上本実施例においては一次元の位置合わせを例にした
が、2次元の位置合わせを行なう場合は、回折格子4a
と直交する方向に伸びたもう1つの回折格子を基&4に
設け、同様に2方向から異なる周波数の光束を照射すれ
ばよい。またスリット板7aのスリットは回折格子4λ
の各格子と平行になるように定めたが、スリット以外に
ピンホールのような開口でもよい。さらに、スリット板
7aと基板4との間に、回折格子4aの一部分像をスI
J ツ)板7a上に拡大投影するような光学系を設けて
もよい。
In the above embodiment, one-dimensional alignment was taken as an example, but when performing two-dimensional alignment, the diffraction grating 4a
Another diffraction grating extending in a direction perpendicular to the radial direction may be provided at base &4, and light beams of different frequencies may be irradiated from two directions in the same manner. Moreover, the slit of the slit plate 7a is the diffraction grating 4λ.
Although the openings were set to be parallel to each grid, other than slits, openings such as pinholes may also be used. Furthermore, a partial image of the diffraction grating 4a is placed between the slit plate 7a and the substrate 4 by the slit plate 7a.
J) An optical system for enlarging and projecting the image onto the plate 7a may be provided.

次に本発明の第2の実施例t−第3図を参照して説明す
る。本実施例において先の第1図と同様の部材について
は同じ符号をつけてめる。本実施例ではコヒーレント光
源としてゼーマン効果を利用したゼーマンレーザ元源4
0を用いる。レーザ光源40からのゼーマンレーザLB
’はP偏光とS偏光との両方の波を含み、しかもP偏光
とS偏光とでわずかに・周波数が異なる。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the same members as in FIG. 1 are given the same reference numerals. In this embodiment, a Zeeman laser source 4 using the Zeeman effect is used as a coherent light source.
Use 0. Zeeman laser LB from laser light source 40
' includes both P-polarized and S-polarized waves, and the P-polarized and S-polarized waves have slightly different frequencies.

そのゼーマンレーザLB’は、ハーフミラ−41で2つ
に分割され、一方の透過光束はさらに偏光ビームスプリ
ッタ−42によってP偏光10′とS偏光12′とに分
離される。P偏光10′はミラー43.44で反射され
て、基板40回折格子4aを斜めに照射する。S偏光1
2′はミラー45で反射されて回折格子4aを斜めに照
射する。このP偏光10′とS偏光12′との入射条件
等は第1図の場合と同様であり、両党束10’、12’
の干渉によって回折格子4a上では、光ビートの周波数
で干渉縞が流れていることがアナライザーを用いると観
察される。本実施例の場合、偏光を用いるので、不図示
ではあるがPm元10’とS偏光12’の夫々の光路中
にアナライザーを設けるか、又は回折格子4aと光゛眼
検出器7との間の光路中にアナライザーを設ける必要が
ある。一方、ハーフミラ−41で反射し几ゼーマンV−
ザL B’はアナライザー46を透過した後フォトマル
チプライヤ−47に入射する。アナライザー46を通過
した光は、セーマンレーザLB’のP偏光とS偏光との
周波数の差の周波数で強度変化するものとなる。そこで
フォトマルチプライヤ−47の光電信号を増幅器48で
増幅すると、第1図と同様の基準信号MSが得られる。
The Zeeman laser LB' is split into two by a half mirror 41, and one of the transmitted light beams is further separated by a polarizing beam splitter 42 into P polarized light 10' and S polarized light 12'. The P-polarized light 10' is reflected by mirrors 43, 44 and obliquely illuminates the diffraction grating 4a of the substrate 40. S polarized light 1
2' is reflected by the mirror 45 and irradiates the diffraction grating 4a obliquely. The conditions of incidence of the P-polarized light 10' and the S-polarized light 12' are the same as in the case of FIG.
Using an analyzer, it can be observed that interference fringes are flowing on the diffraction grating 4a at the frequency of the optical beat due to the interference. In the case of this embodiment, since polarized light is used, an analyzer is provided in each optical path of the Pm source 10' and the S polarized light 12', although not shown, or between the diffraction grating 4a and the optical eye detector 7. It is necessary to install an analyzer in the optical path of the On the other hand, it was reflected by half mirror 41 and Zeeman V-
The LB' passes through the analyzer 46 and then enters the photomultiplier 47. The intensity of the light that has passed through the analyzer 46 changes at a frequency corresponding to the difference in frequency between the P-polarized light and the S-polarized light of the Seman laser LB'. Therefore, when the photoelectric signal from the photomultiplier 47 is amplified by the amplifier 48, a reference signal MS similar to that shown in FIG. 1 is obtained.

よって位相差検出回路8で基準信号MSと光電信号Iと
の位相差を検出すれば、基板4の相対位置が検出できる
。本実施例においては、ゼーマンレーザ光源40.’偏
光ビームスプリッター42、ミラー43.44.45に
よって2光束発生手段全構成し、ハーフミラ−41、ア
ナライザー46、フォトマルチプライヤ−47、増幅器
48によって基準信号発生手段を構成する。
Therefore, if the phase difference detection circuit 8 detects the phase difference between the reference signal MS and the photoelectric signal I, the relative position of the substrate 4 can be detected. In this embodiment, Zeeman laser light source 40. 'The polarizing beam splitter 42 and the mirrors 43, 44, and 45 constitute the two-beam generating means, and the half mirror 41, the analyzer 46, the photomultiplier 47, and the amplifier 48 constitute the reference signal generating means.

次に本発明の第3の実施例を第4図に基づいて説明する
。この実施例は2光束発生手段の変形例であり、機械的
に回転するラジアルグレーテイング板50にレーザ光L
Bを入射させることにより、周波数が微少量だけ異なる
2つのコヒーレント光束A、Bを得るものである。光束
Aは第1図中の零次光lOと同等であり、光束Bは第1
図中の変調光12と同等である。このとき2つの光束A
、Hの周波数の差はラジアルグレーテイング板50の回
転速度、具体的にはラジアルグレーティングのレーザ光
LBに対する移動速度に比例したものになる。従って基
準信号はラジアルグレーテイング板50の回転を検出す
る速度センサー等から容易に得られる。このように機械
式に2光束を得る場合は、2光束の周波数の差は多くて
も数十KHzであるため、光電検出器7として、フォト
マルチグライヤーよりも応答性の悪い半導体受光素子が
利用できるという利点もある。
Next, a third embodiment of the present invention will be described based on FIG. This embodiment is a modification of the two-beam generating means, and the laser beam L is applied to a mechanically rotating radial grating plate 50.
By making light B incident, two coherent light beams A and B whose frequencies differ by a very small amount are obtained. The luminous flux A is equivalent to the zero-order light lO in Fig. 1, and the luminous flux B is the first
This is equivalent to the modulated light 12 in the figure. At this time, two luminous fluxes A
, H is proportional to the rotational speed of the radial grating plate 50, specifically, the moving speed of the radial grating with respect to the laser beam LB. Therefore, the reference signal can be easily obtained from a speed sensor or the like that detects the rotation of the radial grating plate 50. When obtaining two luminous fluxes mechanically in this way, the difference in frequency between the two luminous fluxes is at most several tens of kilohertz, so a semiconductor photodetector element with lower responsiveness than a photomultiglayer is used as the photoelectric detector 7. It also has the advantage of being available.

またその他の変形例として、2つの同種の半導体レーザ
をそれぞれの光束の発生手段としてもよい。一般に同種
の半導体レーザといえども、少なからず個々に特性のバ
ラつきがあるため、そのレーザ光同志は微少に周波数が
異なることになる。
As another modification, two semiconductor lasers of the same type may be used as means for generating respective luminous fluxes. In general, even if semiconductor lasers are of the same type, there are considerable individual variations in their characteristics, so the frequencies of their laser beams will differ slightly.

このバラつ1!!を積極的に利用して2光束を得る訳で
ある。この場合、その周波数の差が一定でない ゛こと
が考えられるので、それぞれの半導体レーザからの光束
を夫々縦偏光と横偏光とにするポラライザーを設け、異
なる偏光を与えられた2つの元t−1つの光束に合成し
九仮、第3図に示したようなアナライザーに入射して、
基準信号を得るようにする。
This rose 1! ! This means that two luminous fluxes are obtained by actively utilizing the light. In this case, since the difference in frequency may not be constant, a polarizer is provided to convert the light flux from each semiconductor laser into vertically polarized light and horizontally polarized light, respectively, and the two elements t-1 given different polarizations are Combined into one light beam, it enters an analyzer like the one shown in Figure 3.
Try to get a reference signal.

このようにすれば極めてコンパクトな位置検出装置が得
られる。ただし、半導体レーザの個々においては、発振
周波数が十分に安定で、モードジャンプ等がないものが
必要である。
In this way, an extremely compact position detection device can be obtained. However, each semiconductor laser must have a sufficiently stable oscillation frequency and no mode jumps.

(発明の効果) 以上本発明によれば、2光束の周波数を異ならせ、その
差による光ビートを利用した、いわゆる光ヘテロダイン
干渉法を用いるため、基板の位置が光電検出信号(ビー
ト信号)と基準信号の位相差で直接検出できる。位相差
は電気的にかなりの分解能で、かつ高精度に検出できる
。このため、光強度の変動によらず安定な位置合わせが
可能となる。まfc2光束に対して基板を相対的に移動
させなくても、位置ずれ量が検出できるので、基板の位
置決め時に位相差信号を使ってステージ等を直接サーボ
制御することができるとともに、位置積卸のために基板
を予備的に移動させることが不要となり、この結果、高
精度と高速化とを両立させたオートアライメントが可1
ヒとなる。
(Effects of the Invention) According to the present invention, the so-called optical heterodyne interference method is used in which the frequencies of two light beams are made different and the optical beat generated by the difference is used. Can be directly detected using the phase difference between the reference signals. Phase differences can be electrically detected with considerable resolution and with high precision. Therefore, stable positioning is possible regardless of fluctuations in light intensity. Since the amount of positional deviation can be detected without moving the substrate relative to the fc2 light beam, it is possible to directly servo control the stage etc. using a phase difference signal when positioning the substrate, and also to control the positioning and unloading. Therefore, it is no longer necessary to move the board preliminarily, and as a result, automatic alignment with both high precision and high speed is possible1.
It becomes Hi.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による位置検出装置の概
略的な構成を示す図、第2図(al(blは第1図中の
各信号の波形図、第2図(c)は位相差信号の出力特性
図、第3図は第2の・実施例による位置検出装置の概略
的な構成を示す図、第4図は第3の実施例による2光束
発生手段の主要部の構成を示す斜視図である。 〔主要部分の符号の説明〕
FIG. 1 is a diagram showing a schematic configuration of a position detection device according to a first embodiment of the present invention, FIG. 2 (al (bl is a waveform diagram of each signal in FIG. 1, and FIG. 3 is a diagram showing the output characteristics of the phase difference signal, FIG. 3 is a diagram showing the schematic configuration of the position detection device according to the second embodiment, and FIG. 4 is a diagram showing the main parts of the two-beam generating means according to the third embodiment. It is a perspective view showing the configuration. [Explanation of symbols of main parts]

Claims (3)

【特許請求の範囲】[Claims] (1)位置検出すべき基板に形成された回折格子に、異
なる方向からコヒーレントな2光束を照射し、該2光束
の夫々によって前記回折格子から発生した回折光同志を
干渉させ、その干渉強度を光電検出した信号に基づいて
前記基板の位置を検出する装置において、 前記2光束の各周波数を所定の値だけ異ならせて前記回
折格子に照射する2光束発生手段と;該2光束の周波数
の差に応じた周波数の基準信号を出力する基準信号発生
手段と;該2光束の照射によつて前記差に応じた周波数
で強度変調された前記干渉のビート信号と前記基準信号
との位相差を検出する位相差検出手段とを備え、該位相
差に基づいて前記基板の位置を検出することを特徴とす
る位置検出装置。
(1) A diffraction grating formed on a substrate whose position is to be detected is irradiated with two coherent beams from different directions, each of the two beams causes the diffracted beams generated from the diffraction grating to interfere with each other, and the interference intensity is measured. A device for detecting the position of the substrate based on a photoelectrically detected signal, comprising: two beam generating means for irradiating the diffraction grating with the frequencies of the two beams differing by a predetermined value; a difference in frequency between the two beams; a reference signal generating means for outputting a reference signal with a frequency corresponding to the frequency; detecting a phase difference between the interference beat signal and the reference signal, intensity modulated at a frequency corresponding to the difference by irradiation with the two light beams; A position detection device comprising: a phase difference detection means for detecting the position of the substrate based on the phase difference.
(2)前記基準信号発生手段は、任意の周波数fの基準
信号を発生する発振回路を有し、 前記2光束発生手段は、コヒーレント光源からの光束と
、前記発振回路からの基準信号とを入力して、周波数が
fだけ異なる2つの光束を射出する光変調器を有するこ
とを特徴とする特許請求の範囲第1項記載の装置。
(2) The reference signal generation means has an oscillation circuit that generates a reference signal with an arbitrary frequency f, and the two-beam generation means inputs the light flux from the coherent light source and the reference signal from the oscillation circuit. 2. The device according to claim 1, further comprising an optical modulator that emits two light beams having frequencies different by f.
(3)前記2光束発生手段は、偏光方向によって互いに
異なる周波数を含むゼーマンレーザを入射して、偏光に
よって前記2光束に分離する偏光分離素子を有すること
を特徴とする特許請求の範囲第1項記載の装置。
(3) The two beam generating means includes a polarization separation element that receives a Zeeman laser having different frequencies depending on the polarization direction and separates the beam into the two beams by polarization. The device described.
JP60057890A 1985-03-22 1985-03-22 Position detecting device Granted JPS61215905A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60057890A JPS61215905A (en) 1985-03-22 1985-03-22 Position detecting device
US06/840,880 US4710026A (en) 1985-03-22 1986-03-18 Position detection apparatus
US07/627,925 USRE34010E (en) 1985-03-22 1990-12-17 Position detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057890A JPS61215905A (en) 1985-03-22 1985-03-22 Position detecting device

Publications (2)

Publication Number Publication Date
JPS61215905A true JPS61215905A (en) 1986-09-25
JPH0575044B2 JPH0575044B2 (en) 1993-10-19

Family

ID=13068580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057890A Granted JPS61215905A (en) 1985-03-22 1985-03-22 Position detecting device

Country Status (1)

Country Link
JP (1) JPS61215905A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274216A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring fine displacement
EP0313681A1 (en) * 1987-10-30 1989-05-03 Ibm Deutschland Gmbh Phase-sensitive interferometric mask-wafer alignment
JPH01255222A (en) * 1988-04-05 1989-10-12 Toshiba Corp Ttl aligner
US5164789A (en) * 1990-11-09 1992-11-17 Hitachi, Ltd. Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
US5488230A (en) * 1992-07-15 1996-01-30 Nikon Corporation Double-beam light source apparatus, position detecting apparatus and aligning apparatus
US5942357A (en) * 1996-05-24 1999-08-24 Nikon Corporation Method of measuring baseline amount in a projection exposure apparatus
US6242754B1 (en) 1995-02-01 2001-06-05 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US7106444B2 (en) 1999-03-24 2006-09-12 Nikon Corporation Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method
CN102566301A (en) * 2010-11-30 2012-07-11 Asml荷兰有限公司 Measuring method, apparatus and substrate
US8693006B2 (en) 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891321A (en) * 1972-08-21 1975-06-24 Leitz Ernst Gmbh Optical method and apparatus for measuring the relative displacement of a diffraction grid
JPS52154369A (en) * 1976-06-17 1977-12-22 Philips Nv Method of positioning mask pattern and apparatus therefor
JPS5938521A (en) * 1982-08-25 1984-03-02 Mitsui Eng & Shipbuild Co Ltd Incinerating disposal method for gas containing nitrogenated chemical compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891321A (en) * 1972-08-21 1975-06-24 Leitz Ernst Gmbh Optical method and apparatus for measuring the relative displacement of a diffraction grid
JPS52154369A (en) * 1976-06-17 1977-12-22 Philips Nv Method of positioning mask pattern and apparatus therefor
JPS5938521A (en) * 1982-08-25 1984-03-02 Mitsui Eng & Shipbuild Co Ltd Incinerating disposal method for gas containing nitrogenated chemical compound

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274216A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring fine displacement
EP0313681A1 (en) * 1987-10-30 1989-05-03 Ibm Deutschland Gmbh Phase-sensitive interferometric mask-wafer alignment
JPH01255222A (en) * 1988-04-05 1989-10-12 Toshiba Corp Ttl aligner
US5164789A (en) * 1990-11-09 1992-11-17 Hitachi, Ltd. Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
US5488230A (en) * 1992-07-15 1996-01-30 Nikon Corporation Double-beam light source apparatus, position detecting apparatus and aligning apparatus
US6242754B1 (en) 1995-02-01 2001-06-05 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US6677601B2 (en) 1995-02-01 2004-01-13 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US7053390B2 (en) 1995-02-01 2006-05-30 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US7109508B2 (en) 1995-02-01 2006-09-19 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US5942357A (en) * 1996-05-24 1999-08-24 Nikon Corporation Method of measuring baseline amount in a projection exposure apparatus
US7106444B2 (en) 1999-03-24 2006-09-12 Nikon Corporation Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method
US8693006B2 (en) 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
CN102566301A (en) * 2010-11-30 2012-07-11 Asml荷兰有限公司 Measuring method, apparatus and substrate
US10151987B2 (en) 2010-11-30 2018-12-11 Asml Netherlands B.V. Measuring method, apparatus and substrate

Also Published As

Publication number Publication date
JPH0575044B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US4710026A (en) Position detection apparatus
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
JP2893823B2 (en) Positioning method and apparatus
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
US5721607A (en) Alignment method and apparatus
JP3364382B2 (en) Sample surface position measuring device and measuring method
KR19980018960A (en) Projection exposure apparatus
JP3077149B2 (en) Measuring apparatus, measuring method, exposure apparatus, exposure method, and circuit pattern chip
JPS61215905A (en) Position detecting device
US5448357A (en) Position detecting system for detecting a position of an object by detecting beat signals produced through interference of diffraction light
USRE34010E (en) Position detection apparatus
JPH0794969B2 (en) Positioning method and device thereof
JPS6256818A (en) Position shift detecting device
JPH07161611A (en) Position detecting apparatus
JP2514699B2 (en) Position shift detection method and position shift detection device using diffraction grating
US5164789A (en) Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
JP2996211B2 (en) Position detecting device and method
JP2931082B2 (en) Method and apparatus for measuring small displacement
JPH06137814A (en) Minute displacement measuring method and its device
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JPH10270347A (en) Method and device for detecting alignment offset
JP3085248B2 (en) Position detecting device and position detecting method
JP2837532B2 (en) Method and apparatus for measuring small displacement
JP2694045B2 (en) Positioning device using diffraction grating
JP2996212B2 (en) Position detecting device and mark detecting method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term