JP2694045B2 - Positioning device using diffraction grating - Google Patents

Positioning device using diffraction grating

Info

Publication number
JP2694045B2
JP2694045B2 JP2313313A JP31331390A JP2694045B2 JP 2694045 B2 JP2694045 B2 JP 2694045B2 JP 2313313 A JP2313313 A JP 2313313A JP 31331390 A JP31331390 A JP 31331390A JP 2694045 B2 JP2694045 B2 JP 2694045B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
mask
wafer
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2313313A
Other languages
Japanese (ja)
Other versions
JPH04188608A (en
Inventor
雅則 鈴木
篤▲よう▼ 宇根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2313313A priority Critical patent/JP2694045B2/en
Publication of JPH04188608A publication Critical patent/JPH04188608A/en
Application granted granted Critical
Publication of JP2694045B2 publication Critical patent/JP2694045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえばマスクとウエハを位置合せした後
にマスクパタンをウエハ上に焼き付けて半導体ICやLSI
を製造するための露光装置や、位置を検出するエンコー
ダに応用して好適な、回折格子を用いた光ヘテロダイン
干渉法による位置合せ位置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a semiconductor IC or LSI by, for example, aligning a mask with a wafer and then baking a mask pattern on the wafer.
The present invention relates to an aligning position by an optical heterodyne interferometry method using a diffraction grating, which is suitable for application to an exposure apparatus for manufacturing a device and an encoder for detecting a position.

〔従来の技術〕[Conventional technology]

半導体ICやLSIパタンの微細化に伴い、マスクパタン
をウエハ上に露光転写する装置では、マスクとウエハと
を互いに高精度に位置合せする技術の進展が不可欠のも
のとなっている。
Along with the miniaturization of semiconductor IC and LSI patterns, in a device for exposing and transferring a mask pattern onto a wafer, it is indispensable to develop a technique for aligning the mask and the wafer with high precision.

光ヘテロダイン干渉法は、わずかに周波数の異なる2
つのレーザー光を干渉させてヘテロダイン信号を得、基
準となるヘテロダイン信号(参照信号)と測定したヘテ
ロダイン信号間の位相差を求め、マスクとウエハの位置
合せや位置検出を行っている。
Optical heterodyne interferometry has two slightly different frequencies.
A heterodyne signal is obtained by interfering two laser beams, a phase difference between a standard heterodyne signal (reference signal) and the measured heterodyne signal is obtained, and the mask and the wafer are aligned and the position is detected.

従来、回折格子を用いた光ヘテロダイン干渉法を利用
して微細変位測定、或いは精密な位置合せを行う装置と
して、第3図に示すようなX線露光装置に応用したもの
がある(特願昭61−104186号)。第3図において、20は
周波数が互いにわずかに異なり、変更面方向は互いに直
交する2波長の光を発する横ゼーマン効果形2周波直交
偏光He−Neレーザー光源(光源)、21,21′,21″,21
はミラーであり、これらのミラーのうちミラー21′,2
1″は過度調整自在とされていて入射角調整手段を構成
している。22は円筒レンズ、23は偏光ビームスプリッタ
ー、24はプリズム状ミラー、25,25′は集光レンズ、26,
26′は光電検出器(第1、第2の検出手段)、27は信号
処理制御部(信号処理制御手段)、28はマスクステー
ジ、29はウエハステージ、30はマスク(第1の物体)、
31はウエハ(第2の物体)、32はマスク回折格子(第1
の回折格子)、33は単色光入射・光回折取り出し窓、34
はウエハ回折格子(第2の回折格子)、44,44′は偏光
板である。ここで前記単色光入射・回折光取り出し窓33
は、マスク30に設けられた開口部であり、この窓33を通
して回折格子34に対して入射光が直接入射でき、且つそ
の回折格子34からの回折光が直接取り出せるようになっ
ている。また、マスクステージ28及びウエハステージ29
は、マスク30及びウエハ31を相対的に動かす移動機構を
構成している。
Conventionally, there is an apparatus applied to an X-ray exposure apparatus as shown in FIG. 3 as an apparatus for performing fine displacement measurement or precise alignment by using an optical heterodyne interferometry method using a diffraction grating (Japanese Patent Application No. Sho. 61-104186). In FIG. 3, reference numeral 20 denotes a transverse Zeeman effect type dual-frequency orthogonal polarization He-Ne laser light source (light source) which emits light of two wavelengths whose frequencies are slightly different from each other and whose change plane directions are orthogonal to each other. ",twenty one
Is a mirror, and of these mirrors 21 ', 2
1 ″ is configured to be excessively adjustable and constitutes an incident angle adjusting means. 22 is a cylindrical lens, 23 is a polarizing beam splitter, 24 is a prism mirror, 25 and 25 ′ are condenser lenses, and 26,
26 'is a photoelectric detector (first and second detecting means), 27 is a signal processing control section (signal processing control means), 28 is a mask stage, 29 is a wafer stage, 30 is a mask (first object),
31 is a wafer (second object), 32 is a mask diffraction grating (first
Diffraction grating), 33 is a monochromatic light incident / light diffraction extraction window, 34
Is a wafer diffraction grating (second diffraction grating), and 44 and 44 'are polarizing plates. Here, the monochromatic light incident / diffracted light extraction window 33
Is an opening provided in the mask 30 so that incident light can be directly incident on the diffraction grating 34 through the window 33, and diffracted light from the diffraction grating 34 can be directly extracted. Further, the mask stage 28 and the wafer stage 29
Constitute a moving mechanism for relatively moving the mask 30 and the wafer 31.

2波長直交偏光レーザー光源20から発した光は、ミラ
ー21、円筒レンズ22を通して楕円状のビームとなり、そ
のビームは偏光ビームスプリッター23により、それぞれ
水平部分、あるいは垂直成分のみを有する直線偏光でし
かも周波数が互いにわずかに異なる2波長の光に分割さ
れ、分割された光はそれぞれミラー21′,21″を介して
所望の入射角で回折格子32、及び回折格子34に入射す
る。第3図の例では、回折格子32,34はそれぞれ格子ラ
イン方向にずれており、しかも2波長の入射光の同一楕
円ビーム内に配置されている。また、回折格子32,34の
回折格子ピッチは等しくされている。回折格子32から得
られる回折光、及び単色光入射・回折光取り出し窓33を
通して回折格子34から得られる回折光は、ミラー21、
プリズム状ミラー24、偏光板44,44′、集光レンズ25,2
5′を介して光検出器26,26′にそれぞれ導かれ、回折光
ビート信号として信号処理制御部27で処理される。信号
処理制御部27では、回折格子32,34から得られた回折光
のそれぞれのビート信号のいずれか一方の信号を基準ビ
ート信号として両ビート信号の位相差を検出し、位相差
が0゜になるようにマスクステージ28、或いはウエハス
テージ29を相対移動させ、マスク面上のパタンがウエハ
面上の所定の位置に精度よく重なって露光できるように
マスク30とウエハ31との間の精密な位置合せを行うよう
にされている。
The light emitted from the two-wavelength orthogonal polarization laser light source 20 becomes an elliptical beam through the mirror 21 and the cylindrical lens 22, and the beam is a linearly polarized light having only a horizontal part or a vertical component by the polarization beam splitter 23 and has a frequency. Is split into two light beams having slightly different wavelengths, and the split light beams are incident on the diffraction grating 32 and the diffraction grating 34 at desired incident angles via the mirrors 21 'and 21 ", respectively. , The diffraction gratings 32 and 34 are respectively displaced in the grating line direction and are arranged in the same elliptical beam of incident light of two wavelengths, and the diffraction grating pitches of the diffraction gratings 32 and 34 are made equal. The diffracted light obtained from the diffraction grating 32 and the diffracted light obtained from the diffraction grating 34 through the monochromatic light incident / diffracted light extraction window 33 are reflected by the mirror 21,
Prism mirror 24, polarizing plates 44,44 ', condenser lenses 25,2
It is guided to the photodetectors 26, 26 'via 5', respectively, and processed by the signal processing controller 27 as a diffracted light beat signal. The signal processing control unit 27 detects the phase difference between the beat signals using one of the beat signals of the diffracted light obtained from the diffraction gratings 32 and 34 as a reference beat signal, and the phase difference becomes 0 °. The mask stage 28 or the wafer stage 29 is relatively moved so that the pattern on the mask surface is accurately overlapped with a predetermined position on the wafer surface so that the exposure can be performed accurately. It is supposed to be matched.

次に、このように構成された位置合せ装置による位置
合せ方法を第4図を参照して説明する。第4図におい
て、35はマスク回折格子(第1の回折格子)、36はウエ
ハ回折格子(第2の回折格子)、37,38は周波数が互い
にわずかに異なる2波長の入射光、39,40は回折光(光
ヘテロダイン干渉回折光)、41は透明薄膜からなるマス
ク(第1の物体)、43は回折格子35を構成するための不
透明薄膜、42はウエハ(第2の物体)である。また、B1
−B1′はウエハ回折格子36の格子ライン方向、B2−B2
はマスク回折格子35の格子ライン方向、A1−A1′はB1
B1′に垂直な格子ピッチ方向、A2−A2′はB2−B2′に垂
直な格子ピッチ方向、C1−C1′はウエハ回折格子36の格
子面に対して垂直な方向、C2−C2′はマスク回折格子35
の格子面に対して垂直な方向である。第4図の例ではマ
スク、ウエハ回折格子35,36のピッチはいずれもPと等
しくされており、また、マスク回折格子35はウエハ回折
格子36の格子面と重ならないようにB2−B2′方向(格子
ライン方向)にずらして配置され、ウエハ回折格子36の
垂直方向上方には前記取り出し窓33(第4図では図示
略)が設けられている。
Next, a positioning method using the positioning device thus configured will be described with reference to FIG. In FIG. 4, 35 is a mask diffraction grating (first diffraction grating), 36 is a wafer diffraction grating (second diffraction grating), 37 and 38 are two wavelengths of incident light whose frequencies are slightly different from each other, and 39 and 40. Is diffracted light (optical heterodyne interference diffracted light), 41 is a mask (first object) made of a transparent thin film, 43 is an opaque thin film for forming the diffraction grating 35, and 42 is a wafer (second object). Also, B 1
−B 1 ′ is the grating line direction of the wafer diffraction grating 36, B 2 −B 2
Is the grating line direction of the mask diffraction grating 35, and A 1 −A 1 ′ is B 1
A grating pitch direction perpendicular to B 1 ′, A 2 −A 2 ′ is a grating pitch direction perpendicular to B 2 −B 2 ′, C 1 −C 1 ′ is a direction perpendicular to the grating plane of the wafer diffraction grating 36. , C 2 −C 2 ′ are mask diffraction gratings 35
Is the direction perpendicular to the lattice plane of. In the example of FIG. 4, the pitches of the mask and the wafer diffraction gratings 35 and 36 are made equal to P, and the mask diffraction grating 35 is B 2 -B 2 so as not to overlap with the grating surface of the wafer diffraction grating 36. The takeout window 33 (not shown in FIG. 4) is provided above the wafer diffraction grating 36 in the vertical direction above the wafer diffraction grating 36.

そして、入射光37,38の入射方向は、前記ミラー21′,
21″の角度を調節することにより回折格子35,36に垂直
な方向C1−C1′(或いはC2−C2′)に対して回折格子3
5,36のそれぞれ±1次回折光の角度θ-1=sin-1(λ1/
P)、θ=sin-1(λ2/P)に設定されている。ここ
で、入射光37,38の波長はそれぞれλ1であり、周
波数差△fは数k Hzから数百k Hz程度の値であり、光速
をcとすると、 △f=|c/λ−c/λ2| となり、△f≪cであるためθ-1≒θ(或いはλ=λ
≒λ)となる。
Then, the incident direction of the incident light 37, 38, the mirror 21 ',
By adjusting the angle of 21 ″, the diffraction grating 3 can be aligned with the direction C 1 −C 1 ′ (or C 2 −C 2 ′) perpendicular to the diffraction gratings 35 and 36.
5,36 ± 1st-order diffracted light angle θ −1 = sin −11 /
P), θ 1 = sin −12 / P). Here, the wavelengths of the incident lights 37 and 38 are λ 1 and λ 2 , respectively, and the frequency difference Δf is a value of several kHz to several hundreds kHz. Letting the speed of light be c, Δf = | c / λ 1 −c / λ 2 | and Δf << c, so θ −1 ≈ θ 1 (or λ = λ
1 ≈λ 2 ).

こうすることにより、回折格子35,36に入射した入射
光37,38はそれぞれ回折格子35,36でそれぞれ格子面に垂
直な方向(C1−C1′、或いはC2−C2′方向)に−1次回
折されて光学系に合成され、それぞれ光ヘテロダイン干
渉回折光39,40となる。これらの光ヘテロダイン干渉回
折光39,40は、異なる回折格子35,36によって回折した回
折光であるが、入射光37,38の入射角が格子面の垂直方
向に対して左右対称であるため、回折格子35,36はそれ
ぞれ垂直方向(C1−C1′或いはC2−C2′方向)、格子ラ
イン方向(B1−B1′或いはB2−B2′方向)にずれて配置
されているが、入射光37と入射光38の回折格子35或いは
回折格子36へ入射するまでの光路長変化は等しくなり、
回折光39,40から得られるビート信号の位相差には、回
折格子35,36の鉛直方向、格子ライン方向の変位に対す
る位相ずれの影響を受けない。即ち、回折光39,40から
得られるビート信号の位相差は回折格子35と回折格子36
のピッチ方向(A2−A2′或いはA1−A1′方向)に対して
の空間的配置、即ち相対的変位量に応じてのみ変化す
る。そして、回折格子35,36が、格子ライン方向に一直
線となったとき、回折光39,40から得られるビート信号
の位相差は0゜となり、位置合せが完了する。なお、ピ
ッチ方向に対しての回折格子35,36の相対的変位量を△
xとし、ビート信号の位相差を△φとすると △φ=2π・△x/(P/2) の関係にあり、位相差△φは、回折格子のピッチの1/2
の相対的変位量を周期として変わる。
By doing so, the incident lights 37 and 38 incident on the diffraction gratings 35 and 36 are respectively in the directions (C 1 -C 1 ′ or C 2 -C 2 ′ direction) perpendicular to the grating surface in the diffraction gratings 35 and 36, respectively. −1st-order diffracted to be combined into an optical system to become optical heterodyne interference diffracted lights 39 and 40, respectively. These optical heterodyne interference diffracted lights 39, 40 are diffracted lights diffracted by different diffraction gratings 35, 36, but since the incident angles of the incident lights 37, 38 are symmetrical with respect to the vertical direction of the grating surface, The diffraction gratings 35 and 36 are arranged in the vertical direction (C 1 -C 1 ′ or C 2 -C 2 ′ direction) and in the grating line direction (B 1 -B 1 ′ or B 2 −B 2 ′ direction), respectively. However, the change in the optical path length of the incident light 37 and the incident light 38 until they enter the diffraction grating 35 or the diffraction grating 36 becomes equal,
The phase difference of the beat signals obtained from the diffracted lights 39 and 40 is not affected by the phase shift with respect to the displacement of the diffraction gratings 35 and 36 in the vertical direction and the grating line direction. That is, the phase difference between the beat signals obtained from the diffracted lights 39 and 40 is the diffraction grating 35 and the diffraction grating 36.
In the pitch direction (A 2 -A 2 ′ or A 1 -A 1 ′ direction), that is, only in accordance with the relative displacement amount. Then, when the diffraction gratings 35 and 36 are aligned in the grating line direction, the phase difference of the beat signals obtained from the diffracted lights 39 and 40 becomes 0 °, and the alignment is completed. Note that the relative displacement of the diffraction gratings 35 and 36 with respect to the pitch direction is
If x and the phase difference of the beat signal are Δφ, there is a relation of Δφ = 2π · Δx / (P / 2), and the phase difference Δφ is 1/2 of the pitch of the diffraction grating.
Changes with the relative displacement amount of.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、上記従来の装置では、前記マスク30とウエ
ハ31とが数十μmに近接して配置されているため、入射
光37,38、或いは入射光によって生じた回折光の一部
は、マスク、ウエハ面で多重反射し、回折光39,40と同
一方向に出射する。
By the way, in the above conventional apparatus, since the mask 30 and the wafer 31 are arranged close to each other by several tens of μm, the incident light 37, 38 or a part of the diffracted light generated by the incident light is generated by the mask, The light is multiply reflected on the wafer surface and emitted in the same direction as the diffracted lights 39 and 40.

そのことについて第5図を参照して説明する。第5図
(a)はマスク回折格子部での多重反射の様子を示すも
の、第5図(b)はウエハ回折格子部での多重反射の様
子を示すものである。第5図に破線で示した回折光50は
マスク回折格子35で透過回折しウエハ面で反射した回折
光、回折光51はマスク回折格子35を透過しウエハ面で反
射しマスク回折格子35で透過回折した回折光、回折光52
はウエハ回折格子36で反射回折した後、マスク及びウエ
ハ面で反射した回折光、回折光53はマスク及びウエハ面
で反射した後、ウエハ回折格子36で反射回折した回折光
である。第5図ではマスク及びウエハ面でそれぞれ1回
反射した回折光のみを示したが、実際にはさらに反射、
回折した回折光が存在する。また、入射光37についての
多重反射の様子を示したが、左右対称の入射光38につい
ても同様のことが言える。
This will be described with reference to FIG. FIG. 5 (a) shows the state of multiple reflection at the mask diffraction grating portion, and FIG. 5 (b) shows the state of multiple reflection at the wafer diffraction grating portion. The diffracted light 50 shown by the broken line in FIG. 5 is diffracted by the mask diffraction grating 35 and diffracted by the wafer surface, and the diffracted light 51 is transmitted by the mask diffraction grating 35, reflected by the wafer surface and transmitted by the mask diffraction grating 35. Diffracted light, diffracted light 52
Is the diffracted light that is reflected and diffracted by the wafer diffraction grating 36 and then reflected by the mask and wafer surfaces, and diffracted light 53 is the diffracted light that is reflected and diffracted by the wafer diffraction grating 36 after being reflected by the mask and wafer surfaces. In FIG. 5, only the diffracted light reflected once by the mask and the wafer surface is shown.
There is diffracted light. Further, although the state of multiple reflection of the incident light 37 is shown, the same can be said for the left and right symmetrical incident light 38.

このように、上記従来の位置合せ装置では、所望の回
折光39或いは回折光40に、不要の回折光50,51或いは回
折光52,53が干渉する。そして、これら多重干渉回折光
は、マスク、ウエハ回折格子の格子面に垂直な方向に対
しての間隔、即ちギャップGの微小変動に敏感となり、
λ/2のギャップGの変動を周期として強度変動を生ず
る。従って、この強度変動はビート信号の振幅変動とな
って現れ、位相差検出信号を不安定化させ、位置合せ精
度を劣化させるという欠点を有していた。
As described above, in the above-described conventional alignment apparatus, the unwanted diffracted light 50, 51 or the unnecessary diffracted light 52, 53 interferes with the desired diffracted light 39 or 40. Then, these multiple interference diffracted lights become sensitive to a minute variation of the gap G, that is, the gap G with respect to the direction perpendicular to the grating surface of the mask and the wafer diffraction grating,
Intensity fluctuation occurs with the fluctuation of the gap G of λ / 2 as a cycle. Accordingly, the intensity fluctuation appears as a fluctuation in the amplitude of the beat signal, destabilizing the phase difference detection signal and deteriorating the positioning accuracy.

〔課題を解決するための手段〕[Means for solving the problem]

前述の問題を解決するために、本発明は、位置合せを
するべき第1の物体と第2の物体との間の距離(ギャッ
プ)Gに対し、多重干渉の効果がもっとも小さくなるよ
うな最適回折格子ピッチを理論計算から設定し、ビート
信号の振幅変動の影響を最小にして位置合せを行うこと
を特徴とするものである。すなわち、第1と第2の回折
格子面間の距離をGとし、光源から発生する2波長の波
長をそれぞれλ1とした場合、第1及び第2の回折
格子の格子ピッチPを、次式 P=(2λ1G/n)1/2、或いは P=(2λ2G/n)1/2 (但し、nは奇数) の関係を満たすように設定するのである。
In order to solve the above-mentioned problem, the present invention provides an optimum method for the distance (gap) G between the first object and the second object to be aligned such that the effect of multiple interference is minimized. The diffraction grating pitch is set by theoretical calculation, and the alignment is performed by minimizing the influence of the amplitude fluctuation of the beat signal. That is, when the distance between the first and second diffraction grating surfaces is G and the wavelengths of the two wavelengths generated from the light source are λ 1 and λ 2 , respectively, the grating pitch P of the first and second diffraction gratings is The following equation P = (2λ 1 G / n) 1/2 or P = (2λ 2 G / n) 1/2 (where n is an odd number) is set.

〔作用〕[Action]

位置合せ装置のギャップGに対応して、第1の物体及
び第2の物体の回折格子ピッチPを上式により設定する
ことにより、多重干渉の効果が小さくなり、その結果、
ビート信号の振幅変動の影響が小さくなり、AGC回路等
による信号処理が容易となり、安定した位相差信号が得
られ、高精度の位置合せが可能となる。
By setting the diffraction grating pitch P of the first object and the second object according to the gap G of the alignment device by the above equation, the effect of multiple interference is reduced, and as a result,
The influence of the amplitude fluctuation of the beat signal becomes small, the signal processing by the AGC circuit, etc. becomes easy, a stable phase difference signal is obtained, and highly accurate alignment becomes possible.

〔実施例〕〔Example〕

以下、第1図、第2図を参照して本発明の実施例を説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本発明に係わる位置合せ装置の一実施例、
即ち半導体ICやLSIを製造するためのX線露光装置の要
部を示す図である。なお、この実施例の位置合せ装置の
全体構成は基本的に第3図に示したものとほぼ同じであ
る。
FIG. 1 shows an embodiment of an alignment apparatus according to the present invention,
That is, it is a diagram showing a main part of an X-ray exposure apparatus for manufacturing a semiconductor IC or LSI. The overall structure of the alignment device of this embodiment is basically the same as that shown in FIG.

第1図(a)はマスク回折格子部を示し、第1図
(b)はウエハ回折格子部を示す。第1図において符号
1はマスク回折格子(第1の回折格子)、2はウエハ回
折格子(第2の回折格子)、3,4は周波数が互いにわず
かに異なり波長がそれぞれλ、λの入射光、5,6は
回折光(光ヘテロダイン干渉回折光)、7は透明薄膜か
らなるマスク(第1の物体)、8はマスク回折格子1を
形成するための不透明薄膜、9はウエハ(第2の物体)
である。
FIG. 1A shows a mask diffraction grating portion, and FIG. 1B shows a wafer diffraction grating portion. In FIG. 1, reference numeral 1 is a mask diffraction grating (first diffraction grating), 2 is a wafer diffraction grating (second diffraction grating), and 3 and 4 are slightly different in frequency from each other and have wavelengths of λ 1 and λ 2 , respectively. Incident light, 5 and 6 are diffracted light (optical heterodyne interference diffracted light), 7 is a mask (first object) made of a transparent thin film, 8 is an opaque thin film for forming the mask diffraction grating 1, and 9 is a wafer (first object). 2 object)
It is.

ビート周波数△f=|c/λ−c/λ2|は光速cに比べ
て△f≪cであるため、λ=λ≒λとなり、マスク
回折格子1及びウエハ回折格子2のピッチPを次式 P=(2λG/n)1/2=(2λ1G/n)1/2 ≒(2λ2G/n)1/2 より設定することにより、多重干渉の栄光を最小にする
ことが可能である(但し、nは奇数)。
Beat frequency △ f = | c / λ 1 -c / λ 2 | order is compared to △ F«c the speed of light c, λ = λ 1 ≒ λ 2 , and the pitch of the mask diffraction grating 1 and the wafer diffraction grating 2 By setting P according to the following equation P = (2λ G / n) 1/2 = (2λ 1 G / n) 1/2 ≈ (2λ 2 G / n) 1/2 , glory of multiple interference is minimized. It is possible (however, n is an odd number).

第2図はλ=633nm、P=6μmのときの多重干渉回
折光の強度変化の実験結果である。横軸はギャップG
(μm)を表し、縦軸は回折光強度変化を光電変換器に
より検出した出力電圧値(V)を表す。上式より、n=
1の場合のギャップG≒28.4μm、n=3の場合のギャ
ップG=85.3μmで強度変動が最小になっていることが
わかる。即ち、上式を満たすギャップG≒28.4μm(或
いはG85.3μm)、回折格子ピッチP=6μmの条件に
より多重干渉の効果が小さくなり、ビート信号の振幅変
動の影響が小さく安定した位相差信号が得られ、高精度
の位置合せができる。
FIG. 2 shows the experimental results of the intensity change of the multiple interference diffracted light when λ = 633 nm and P = 6 μm. Horizontal axis is gap G
(Μm), and the vertical axis represents the output voltage value (V) detected by the photoelectric converter for changes in diffracted light intensity. From the above equation, n =
It can be seen that the intensity fluctuation is minimized when the gap G is approximately 18.4 μm when n = 3 and when the gap G is 85.3 μm when n = 3. That is, the effect of multiple interference is reduced under the conditions of the gap G≈28.4 μm (or G85.3 μm) and the diffraction grating pitch P = 6 μm satisfying the above formula, and the stable phase difference signal is less affected by the amplitude fluctuation of the beat signal. It is possible to obtain highly accurate alignment.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、第1の物体と
第2の物体との間での反射による多重干渉の影響を最小
にすることができるので、位相差信号が安定化し、位置
合せの高精度化という効果が得られる。
As described above, according to the present invention, the influence of multiple interference due to reflection between the first object and the second object can be minimized, so that the phase difference signal is stabilized and the alignment is performed. It is possible to obtain the effect of improving the accuracy of.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る位置合せ装置の一実施例を示すも
ので、このうち(a)はマスク回折格子部を示す図、
(b)はウエハ回折格子部を示す図、第2図はこの実施
例の装置の効果を説明するための実験結果を示す図、第
3図は回折格子を用いた位置合せ装置の全体概略構成
図、第4図はその装置の回折格子部の詳細斜視図、第5
図(a),(b)はその装置における多重反射の説明図
である。 G……ギャップ(第1、第2の回折格子面間の距離)、 P……第1、第2の回折格子の格子ピッチ、 1……マスク回折格子(第1の回折格子)、 2……ウエハ回折格子(第2の回折格子)、 3……波長λの入射光、4……波長λの入射光、 5,6……光ヘテロダイン干渉回折光、 7……マスク(第1の物体)、 9……ウエハ(第2の物体)、 20……横ゼーマン効果形2周波直交偏光He−Neレーザー
光源(光源)、 21,21……ミラー、 21′,21″……ミラー(入射角調整手段)、 22……円筒レンズ、 23……偏光ビームスプリッター、 24……プリズム状ミラー、 25,25′……集光レンズ、 26……光電検出器(第1の検出手段)、 26′……光電検出器(第2の検出手段)、 27……信号処理制御部(信号処理制御手段)、 28……マスクステージ、29……ウエハステージ、 30……マスク(第1の物体)、 31……ウエハ(第2の物体)、 32……マスク回折格子(第1の回折格子)、 33……単色光入射・回折光取り出し窓、 34……ウエハ回折格子(第2の回折格子)、 44,44′……偏光板。
FIG. 1 shows an embodiment of an alignment apparatus according to the present invention, in which (a) is a view showing a mask diffraction grating portion,
(B) is a diagram showing a wafer diffraction grating part, FIG. 2 is a diagram showing experimental results for explaining the effect of the device of this embodiment, and FIG. 3 is a general schematic configuration of an alignment device using a diffraction grating. 4 and 5 are detailed perspective views of the diffraction grating portion of the apparatus, and FIG.
(A) and (b) are explanatory views of multiple reflection in the apparatus. G ... Gap (distance between the first and second diffraction grating surfaces), P ... Grating pitch of the first and second diffraction gratings, 1 ... Mask diffraction grating (first diffraction grating), 2 ... ... wafer diffraction grating (second diffraction grating), 3 ... incident light of wavelength λ 1 , 4 ... incident light of wavelength λ 2 , 5, 6 ... optical heterodyne interference diffracted light, 7 ... mask (first Object), 9 ... Wafer (second object), 20 ... Transverse Zeeman effect dual frequency orthogonal polarization He-Ne laser light source (light source), 21,21 ... Mirror, 21 ', 21 "... Mirror (Incident angle adjusting means), 22 ... Cylindrical lens, 23 ... Polarizing beam splitter, 24 ... Prism mirror, 25,25 '... Condensing lens, 26 ... Photoelectric detector (first detecting means) , 26 '... Photoelectric detector (second detection means), 27 ... Signal processing control section (signal processing control means), 28 ... Mask stage, 29 ... Hastage, 30 ... Mask (first object), 31 ... Wafer (second object), 32 ... Mask diffraction grating (first diffraction grating), 33 ... Monochromatic light incident / diffracted light extraction window, 34 …… Wafer diffraction grating (second diffraction grating), 44,44 ′ …… Polarizing plate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の物体に設けた第1の回折格子と、第
2の物体に設けた第2の回折格子と、前記第1及び第2
の物体を相対的に動かす移動機構と、周波数が互いにわ
ずかに異なる2波長の単色光を発生する光源と、前記光
源から発生した2波長の単色光を前記第1及び第2の回
折格子のそれぞれに対して所定の入射角度で入射させる
入射角調整手段と、前記第1の回折格子から生じる光ヘ
テロダイン干渉回折光を検出して第1のビート信号を生
成する第1の検出手段と、前記第2の回折格子から生じ
る光ヘテロダイン干渉回折光を検出して第2のビート信
号を生成する第2の検出手段と、それら第1及び第2の
検出手段によって生成された第1及び第2のビート信号
の位相差に応じて前記移動機構に制御信号を送り出し、
前記第1及び第2の物体を相対的に動かして位置合せす
る信号処理制御手段とを具備してなる回折格子を用いた
位置合せ装置において、前記第1と第2の回折格子面間
の距離をGとし、前記光源から発生する2波長の波長を
それぞれλ1として、前記第1及び第2の回折格子
の格子ピッチPを、次式 P=(2λ1G/n)1/2、或いは P=(2λ2G/n)1/2 (但し、nは奇数) の関係を満たすように設定したことを特徴とする回折格
子を用いた位置合せ装置。
1. A first diffraction grating provided on a first object, a second diffraction grating provided on a second object, and the first and second diffraction gratings.
Moving mechanism for relatively moving the object, a light source for generating monochromatic light of two wavelengths having frequencies slightly different from each other, and monochromatic light of two wavelengths generated from the light source for each of the first and second diffraction gratings. Incident angle adjusting means for making the light incident at a predetermined incident angle, first detecting means for detecting optical heterodyne interference diffracted light generated from the first diffraction grating, and generating a first beat signal, Second detecting means for detecting optical heterodyne interference diffracted light generated from the second diffraction grating to generate a second beat signal, and first and second beats generated by the first and second detecting means. Sending a control signal to the moving mechanism according to the phase difference of the signal,
In a positioning device using a diffraction grating, which comprises a signal processing control means for moving the first and second objects relative to each other, a distance between the first and second diffraction grating surfaces. Is G and the wavelengths of the two wavelengths generated from the light source are λ 1 and λ 2 , respectively, and the grating pitch P of the first and second diffraction gratings is expressed by the following equation P = (2λ 1 G / n) 1 / 2 or P = (2λ 2 G / n) 1/2 (where n is an odd number).
JP2313313A 1990-11-19 1990-11-19 Positioning device using diffraction grating Expired - Fee Related JP2694045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313313A JP2694045B2 (en) 1990-11-19 1990-11-19 Positioning device using diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313313A JP2694045B2 (en) 1990-11-19 1990-11-19 Positioning device using diffraction grating

Publications (2)

Publication Number Publication Date
JPH04188608A JPH04188608A (en) 1992-07-07
JP2694045B2 true JP2694045B2 (en) 1997-12-24

Family

ID=18039723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313313A Expired - Fee Related JP2694045B2 (en) 1990-11-19 1990-11-19 Positioning device using diffraction grating

Country Status (1)

Country Link
JP (1) JP2694045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341213A (en) * 1992-07-21 1994-08-23 Avco Corporation Alignment of radiation receptor with lens by Fourier optics
JP3302164B2 (en) * 1993-03-15 2002-07-15 株式会社東芝 Positioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158521U (en) * 1983-04-12 1984-10-24 日産自動車株式会社 Sun blind mounting structure for industrial vehicles

Also Published As

Publication number Publication date
JPH04188608A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
US4710026A (en) Position detection apparatus
US6757066B2 (en) Multiple degree of freedom interferometer
US6819434B2 (en) Multi-axis interferometer
JPH06188176A (en) Method and apparatus for mask-wafer gap control
US4895447A (en) Phase-sensitive interferometric mask-wafer alignment
WO2003005067A2 (en) Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements
JPH1026513A (en) Instrument and method for measuring surface position of sample
US5465148A (en) Apparatus and method for detecting the relative positional deviation between two diffraction gratings
US6856402B2 (en) Interferometer with dynamic beam steering element
JPH0749926B2 (en) Alignment method and alignment device
JPH06177013A (en) Position detecting device
USRE34010E (en) Position detection apparatus
JP2694045B2 (en) Positioning device using diffraction grating
JPH0575044B2 (en)
JPS5938521B2 (en) Micro displacement measurement and alignment equipment
JPH06207808A (en) Optical heterodyne interference measuring apparatus
JPH09138110A (en) Method and apparatus for position alignment using diffraction grating
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JP3195018B2 (en) Complex reflectance measurement method and apparatus
JP2642392B2 (en) TTL alignment system
JPH0663739B2 (en) Position detection method and position detection apparatus using diffraction grating
JP2677662B2 (en) Relative alignment method and device
JP3302164B2 (en) Positioning device
JPH06160020A (en) Measuring device
JPH04186116A (en) Method and device for measuring microdisplacement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees