JP3195018B2 - Complex reflectance measurement method and apparatus - Google Patents

Complex reflectance measurement method and apparatus

Info

Publication number
JP3195018B2
JP3195018B2 JP774792A JP774792A JP3195018B2 JP 3195018 B2 JP3195018 B2 JP 3195018B2 JP 774792 A JP774792 A JP 774792A JP 774792 A JP774792 A JP 774792A JP 3195018 B2 JP3195018 B2 JP 3195018B2
Authority
JP
Japan
Prior art keywords
light
measured
complex reflectance
reflected
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP774792A
Other languages
Japanese (ja)
Other versions
JPH05196567A (en
Inventor
保彦 中山
正孝 芝
良彦 相場
進 小森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP774792A priority Critical patent/JP3195018B2/en
Publication of JPH05196567A publication Critical patent/JPH05196567A/en
Application granted granted Critical
Publication of JP3195018B2 publication Critical patent/JP3195018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ウエハ表面に回路パタ
ーンを生成する際等に用いる複素反射率測定方法及び装
置に係り、特に、半導体の生成もしくは処理された薄膜
の測定に好適な複素反射率測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a complex reflectance used for forming a circuit pattern on a wafer surface, and more particularly to a complex reflection method suitable for measuring a thin film formed or processed on a semiconductor. The present invention relates to a method and an apparatus for measuring a rate.

【0002】[0002]

【従来の技術】現在、半導体集積回路の製造において、
回路パターンの生成には、縮小投影法を用いたフォトリ
ソグラフィ技術が広く用いられている。この技術は、ウ
エハ表面上にレジストを塗布して塗膜を作り、紫外線を
用いて、これにマスクパターンの像を投影露光すること
により、レジストを部分的に感光させ、さらに、現像処
理を経ることにより、エッチング等の加工対象部分を露
出させ、加工を限定した領域で行わせることにより、微
細パターンを形成するものである。
2. Description of the Related Art Currently, in the manufacture of semiconductor integrated circuits,
A photolithography technique using a reduced projection method is widely used for generating a circuit pattern. In this technique, a resist is applied on a wafer surface to form a coating film, and the resist is partially exposed to light by projecting and exposing an image of a mask pattern thereto using ultraviolet rays, and further undergoes a development process. In this way, a fine pattern is formed by exposing a portion to be processed such as etching and performing the processing in a limited region.

【0003】ところで、近年、半導体の高集積化は著し
く、パターン寸法はますます微細化し、また、素子構造
も立体化して製造行程がますます複雑化してきている。
このため、フォトリソグラフィでは、パターン解像力を
高めることが不可欠であり、これを実現するために、レ
ンズのNA(開口数)を増大化し、露光光を短波長化し
ていた。
In recent years, the degree of integration of semiconductors has been remarkably increased, the pattern dimensions have been further miniaturized, and the element structure has been made three-dimensional, so that the manufacturing process has become more and more complicated.
For this reason, in photolithography, it is essential to increase the pattern resolution, and to achieve this, the NA (numerical aperture) of the lens has been increased and the wavelength of the exposure light has been shortened.

【0004】一方、露光光としては、比較的波長バンド
で狭い単一波長のものが用いられており、このため、図
9に示すように、レジスト膜50や光透過性を有する下
地層形成膜51が存在する場合、露光光52がこれらの
膜中で多重反射し、これら反射光の相互干渉が起こっ
て、図10のように、レジスト膜50内の深さ方向で光
の強度が変化する。このため、この深さ方向で露光エネ
ルギーに差が生じ、現象すると、レジスト膜50の断面
は深さ方向で凸凹になる。
On the other hand, a single wavelength light having a relatively narrow wavelength band is used as the exposure light. Therefore, as shown in FIG. 9, a resist film 50 and a light-transmitting underlayer forming film are formed as shown in FIG. When 51 is present, the exposure light 52 is multiple-reflected in these films, and mutual interference of these reflected lights occurs, and the light intensity changes in the depth direction in the resist film 50 as shown in FIG. . For this reason, when a difference occurs in the exposure energy in the depth direction and the phenomenon occurs, the cross section of the resist film 50 becomes uneven in the depth direction.

【0005】また、成膜装置等の各種製造装置にプロセ
ス変動があると、レジスト膜厚tや光透過性を有する下
地層の形成状態がウエハ内やウエハ毎に異なる。このた
め、同じ露光エネルギーでレジストを露光した場合、レ
ジスト膜厚tや図13の式(1)で表される複素反射率
A(=aexp(iθ);a:振幅、a2=反射率強
度、θ:位相)を有する下地層の形成状態が異なると、
深さ方向の凸凹の形状が変化するため、下地層の最上層
に接するレジストの幅Wが図11に示すように変化し、
所望とするパターン寸法に比べて形成されるパターン寸
法が異なる。従って、このパターン寸法を安定化するた
めには、これらプロセス変動に対応した最適露光エネル
ギーの設定が不可欠であり、レジスト膜厚tや下地層の
形成状態変動に応じた複素反射率Aを測定する必要があ
る。
[0005] Further, when there is a process variation in various manufacturing apparatuses such as a film forming apparatus, the resist film thickness t and the formation state of the light-transmitting underlayer are different within the wafer and from wafer to wafer. Therefore, when the resist is exposed with the same exposure energy, the resist thickness t and the complex reflectance A (= aexp (iθ); a: amplitude, a 2 = reflectance intensity represented by the equation (1) in FIG. 13) , Θ: phase) are different,
Since the shape of the unevenness in the depth direction changes, the width W of the resist in contact with the uppermost layer of the underlayer changes as shown in FIG.
The formed pattern size is different from the desired pattern size. Therefore, in order to stabilize the pattern size, it is indispensable to set the optimum exposure energy corresponding to these process fluctuations, and measure the complex reflectance A according to the resist film thickness t and the formation state fluctuation of the underlayer. There is a need.

【0006】ここで、下地層の複素反射率測定におい
て、振幅aはウエハの反射率強度から容易に求めること
ができるが、位相θは容易には求められない。
Here, in the measurement of the complex reflectance of the underlayer, the amplitude a can be easily obtained from the reflectance intensity of the wafer, but the phase θ cannot be easily obtained.

【0007】このための1つの方法として例えば偏光解
析法がある。偏光解析法は、図12に示すように、偏光
子60によって方位角61が特定の角度に設定された光
62を試料63に照射し、この試料63の表面で反射さ
れることによって楕円偏光になる反射光の偏光状態(楕
円偏光の方位角64や楕円角65)の変化を検光子66
を用いて測定することにより、試料63の表面の層の光
学定数である複素反射率A(図13)を決定する方法で
ある。
One method for this purpose is, for example, an ellipsometry. In the ellipsometry, as shown in FIG. 12, a sample 63 is irradiated with light 62 having an azimuth 61 set to a specific angle by a polarizer 60, and reflected on the surface of the sample 63 to form elliptically polarized light. The change in the polarization state of the reflected light (the azimuthal angle 64 and the elliptical angle 65 of the elliptically polarized light) is determined by the analyzer 66.
This is a method of determining the complex reflectance A (FIG. 13), which is the optical constant of the layer on the surface of the sample 63, by performing measurement using.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記従来技術
では、偏光解析法の性能上、1層ないし2層という限ら
れた層数の光透過性を有する薄膜上に形成される薄膜に
対してのみ、膜厚及び光学特性を測定することが可能で
あった。つまり、下地層が多層構造になると、上記従来
の偏光解析法を用いた方式では、各層の薄膜や光学特性
を遂次測定し、その結果をもとに計算して複素反射率を
求めなければならないが、この方式で多層構造上の薄膜
の膜厚や光学特性を測定することができないため、複素
反射率を測定することができない。
However, in the above prior art, due to the performance of the ellipsometry, a thin film formed on a light transmitting thin film having a limited number of one or two layers is required. Only the film thickness and the optical characteristics could be measured. In other words, when the underlying layer has a multilayer structure, in the method using the above-mentioned conventional ellipsometry, the thin film and optical characteristics of each layer must be measured successively, and the complex reflectance must be calculated based on the results. However, since this method cannot measure the thickness and optical characteristics of a thin film on a multilayer structure, it cannot measure the complex reflectance.

【0009】本発明の目的は、かかる問題を解消し、多
層構造の下地層に対して複素反射率を簡易に測定するこ
とができるようにした複素反射率測定方法及び装置を提
供することにある。
An object of the present invention is to provide a method and an apparatus for measuring a complex reflectance which can solve such a problem and can easily measure a complex reflectance with respect to an underlayer having a multilayer structure. .

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、可干渉性かつ高指向性の平行光を、基準
高さ位置に設定された被測定物の表面に、垂直及びほぼ
水平に近い斜方から照射し、該被測定物の表面からの垂
直照射光の反射光と参照光との干渉による2つの干渉光
の位相差と、該被測定物の表面にほぼ水平に近い斜方か
らの照射光の反射光と参照光との干渉による干渉光と該
参照光自体の干渉による干渉光との位相差とから該被測
定物の複素反射率の位相項を検出し、垂直照射光の反射
光の強度から被測定物の複素反射率の振幅を検出して複
素反射率を求める。
In order to achieve the above-mentioned object, the present invention provides a coherent and highly directional parallel light beam which is vertically and coherently set on a surface of an object to be measured set at a reference height position. Irradiation is performed from a nearly horizontal oblique direction, and the phase difference between two interference lights due to interference between the reflected light of the vertical irradiation light from the surface of the object and the reference light, and substantially horizontally on the surface of the object to be measured. The phase term of the complex reflectance of the device under test is detected from the phase difference between the interference light due to the interference between the reflected light of the irradiation light from the near oblique direction and the reference light and the interference light due to the interference of the reference light itself, The complex reflectance is determined by detecting the amplitude of the complex reflectance of the device under test from the intensity of the reflected light of the vertical irradiation light.

【0011】[0011]

【作用】被測定物の複素反射率は、図13に示したよう
に、振幅aの項と位相θの項とを有しており、振幅aの
項は該被測定物への垂直照射光の反射光の強度から得ら
れる。
The complex reflectance of the device under test has a term of amplitude a and a term of phase θ as shown in FIG. From the intensity of the reflected light.

【0012】上記参照光には被測定物の複素反射率の位
相の項が含まれないが、上記垂直照射光の反射光には被
測定物の複素反射率の位相の項が含まれており、これら
の干渉による2つの干渉光の位相差にこの位相の項が含
まれる。これに対し、被測定物の表面にほぼ水平に近い
斜方からの照射光の反射光にも、また、参照光にも複素
反射率の位相の項が含まれておらず、これらの干渉によ
る干渉光と該参照光自体の干渉による干渉光との位相差
には、この位相の項が含まれない。従って、これら位相
差から複素反射率の位相の項が算出できる。
Although the reference light does not include the phase term of the complex reflectance of the object to be measured, the reflected light of the vertical irradiation light includes the phase term of the complex reflectance of the object to be measured. This phase term is included in the phase difference between two interference lights due to these interferences. On the other hand, the reflected light of the irradiation light from the oblique direction which is almost horizontal to the surface of the object to be measured, and the reference light also does not include the phase term of the complex reflectance. The phase difference between the interference light and the interference light due to the interference of the reference light itself does not include this phase term. Therefore, the phase term of the complex reflectance can be calculated from these phase differences.

【0013】[0013]

【実施例】まず、本発明の原理について説明する。図2
において、平行平面のガラス板1の上面(基準面)68
と下地層のみもしくは下地層に薄膜が形成されたウエハ
6の上面が平行となるように、これらを所定の間隔(基
準高さ)Hで配置する。この場合、ウエハ6の上面の状
態に応じて基準高さHに変位ΔZが生じ、従って、ガラ
ス板1とウエハ6との間隔はH+ΔZとなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the present invention will be described. FIG.
, The upper surface (reference surface) 68 of the parallel flat glass plate 1
These are arranged at a predetermined interval (reference height) H such that the upper surface of the wafer 6 having only the underlayer or the thin film formed on the underlayer is parallel. In this case, a displacement ΔZ occurs in the reference height H according to the state of the upper surface of the wafer 6, and therefore, the distance between the glass plate 1 and the wafer 6 is H + ΔZ.

【0014】この原理は、図13に示す複素反射率Aの
位相θを測定するために、ヘテロダイン干渉を用いる場
合を例とするものである。
This principle is based on an example in which heterodyne interference is used to measure the phase θ of the complex reflectance A shown in FIG.

【0015】即ち、レーザ光等の可干渉性でかつ指向性
の高い平行光を上方からガラス板1に照射するすると、
その一部はガラス板1の基準面68で反射して反射光
(以下、参照光という)(A0)となり、他はガラス1
を透過し、ウエハ6で反射して反射光(A1)となる。
ここでウエハ6の下地層が光透過性の多層構造をなして
いると、反射光(A1)は、ウエハ6の上面からの反射
光ばかりでなく、各層からの反射光を含んでいる。ま
た、入射角θ0を大きくして水平に近い方向からレーザ
光等の可干渉性でかつ指向性の高い平行光をウエア6に
照射し、その反射光(A2) とする。
That is, when a coherent and highly directional parallel light such as a laser beam is irradiated onto the glass plate 1 from above,
A part of the light is reflected by the reference surface 68 of the glass plate 1 and becomes reflected light (hereinafter referred to as reference light) (A 0 ).
And reflected by the wafer 6 to become reflected light (A 1 ).
If the underlying layer of the wafer 6 has a light-transmitting multilayer structure, the reflected light (A 1 ) includes not only the reflected light from the upper surface of the wafer 6 but also the reflected light from each layer. Also, the incident angle θ 0 is increased to irradiate the coherent and highly directional parallel light, such as laser light, from the near-horizontal direction to the wear 6 to obtain the reflected light (A 2 ).

【0016】参照光(A0)と反射光(A1)との干渉ビ
ート信号は、基準高さH,変位ΔZの成分や複素反射率
Aの位相θの成分を含んでおり、また、参照光(A0
と反射光(A1) との干渉ビート信号は基準高さH、変
位ΔZの成分のみを含んでいる。従って、これら干渉ビ
ート信号から位相θを求めることができる。
The interference beat signal between the reference light (A 0 ) and the reflected light (A 1 ) contains a component of the reference height H, a displacement ΔZ and a component of the phase θ of the complex reflectance A. Light (A 0 )
The interference beat signal between the reflected light (A 1 ) and the reflected light (A 1 ) contains only the components of the reference height H and the displacement ΔZ. Therefore, the phase θ can be obtained from these interference beat signals.

【0017】即ち、いま、参照光(A0),反射光
(A1)は周波数f1,f2(f1>f2)がわずかに異な
る2つの平行光F1,F2からなり、また、反射光
(A2) が周波数f1,f2 の平行光F1,F2のうちのい
ずれか一方からなるものとすると、参照光(A0)と反
射光(A2)とを干渉させたときの干渉縞の強度I
1(t) は次の式(1.1)で表わされる。
That is, the reference light (A 0 ) and the reflected light (A 1 ) are composed of two parallel lights F 1 and F 2 having slightly different frequencies f 1 and f 2 (f 1 > f 2 ). If the reflected light (A 2 ) is composed of one of the parallel lights F 1 and F 2 having the frequencies f 1 and f 2 , the reference light (A 0 ) and the reflected light (A 2 ) Interference fringe intensity I when caused to interfere
1 (t) is represented by the following equation (1.1).

【0018】 I1(t)=a+bcos(2π(f1−f2)t+4πf2cosθ0ΔZ/c +φ01) ……(1.1) ここで、tは時間、cは光の速度、φ01は初期位相であ
る。
I 1 (t) = a + bcos (2π (f 1 −f 2 ) t + 4πf 2 cos θ 0 ΔZ / c + φ 01 ) (1.1) where t is time, c is the speed of light, and φ 01 is the initial phase.

【0019】また、参照光(A0) の光F1,F2どうし
で干渉させると、干渉縞の強度I2(t)は次の式
(1.2)で表わされる。
When the lights F 1 and F 2 of the reference light (A 0 ) are caused to interfere with each other, the intensity I 2 (t) of the interference fringe is expressed by the following equation (1.2).

【0020】 I2(t)=a+bcos(2π(f1−f2)t+φ02) ……(1.2) ここで、φ02は初期位相である。I 2 (t) = a + bcos (2π (f 1 −f 2 ) t + φ 02 ) (1.2) where φ 02 is an initial phase.

【0021】従って、強度I1(t)の干渉ビート信号
と強度I2(t)の干渉ビート信号との位相差φは、 φ=4πf2cosθ0ΔZ/c+φ01−φ02 ……(1.3) となり、変位ΔZの関数として与えられる。この式
(1.3)から、変位ΔZは次の式(1.4)で表わさ
れる。
Accordingly, the phase difference φ between the interference beat signal having the intensity I 1 (t) and the interference beat signal having the intensity I 2 (t) is as follows: φ = 4πf 2 cos θ 0 ΔZ / c + φ 01 −φ 02 (1) .3) and is given as a function of the displacement ΔZ. From this equation (1.3), the displacement ΔZ is expressed by the following equation (1.4).

【0022】 ΔZ=c(φ−φ01+φ02)/4πf2cosθ0 ……(1.4) 一方、ウエハ6からの反射光(A1)と参照光(A0)を
干渉させると、一方の光F1と他方の光F2との干渉ビー
ト信号の干渉縞の強度I3(t)、一方の光F2と他方の
光F1との干渉ビット信号の干渉縞の強度I4(t)は夫
々、φ03,φ04を初期位相とすると、次の式(1.
5),(1.6)で表わされる。
ΔZ = c (φ−φ 01 + φ 02 ) / 4πf 2 cos θ 0 (1.4) On the other hand, if the reflected light (A 1 ) from the wafer 6 and the reference light (A 0 ) interfere with each other, The intensity I 3 (t) of the interference fringe of the interference beat signal between the one light F 1 and the other light F 2, and the intensity I 4 of the interference fringe of the interference bit signal between the one light F 2 and the other light F 1 (T), assuming that φ 03 and φ 04 are initial phases, respectively, the following equation (1.
5), (1.6).

【0023】 I3(t)=a+bcos(2π(f1−f2)t+4πf1ΔZ/c+θ+φ03 ) ……(1.5) I4(t)=a+bcos(2π(f1−f2)t+4πf2ΔZ/c−θ+φ04 ) ……(1.6) そして、強度I3(t)の干渉ビート信号と強度I
4(t)の干渉ビート信号の位相差ψは、次の式(1.
7)に示すように、ウエハ6複素反射率Aの位相θと変
位ΔZとの関数で表すことができる。
I 3 (t) = a + bcos (2π (f 1 −f 2 ) t + 4πf 1 ΔZ / c + θ + φ 03 ) (1.5) I 4 (t) = a + bcos (2π (f 1 −f 2 ) t + 4πf 2 ΔZ / c−θ + φ 04 ) (1.6) The interference beat signal having the intensity I 3 (t) and the intensity I
4 The phase difference 干 渉 of the interference beat signal in (t) is expressed by the following equation (1.
As shown in 7), the complex reflectance A of the wafer 6 can be represented by a function of the phase θ and the displacement ΔZ.

【0024】 ψ=4π(f1+f2)ΔZc+2θ+φ03−φ04 ……(1.7) 従って、式(1.4)と式(1.7)とより、ウエハ6
の複素反射率Aの位相θは θ=(ψ−(f1+f2)(φ−φ01+φ02)/f2cosθ0−φ03+φ04) /2 ……(1.8) となる。
Ψ = 4π (f 1 + f 2 ) ΔZc + 2θ + φ 03 −φ 04 (1.7) Therefore, the wafer 6 is obtained from the equations (1.4) and (1.7).
Θ = (ψ− (f 1 + f 2 ) (φ−φ 01 + φ 02 ) / f 2 cos θ 0 −φ 03 + φ 04 ) / 2 (1.8) .

【0025】図3(a)は上記式(1.1),(1.
2)で表わされる干渉縞の強度I1(t),I2(t)の
時間的な変化と上記式(1.3)で表わされるこれらの
位相差φを示しており、図3(b)は上記式(1.
5),(1.6)で表わされる干渉縞の強度I
3(t),I4(t)の時間的な変化と上記式(1.7)
で表わされるこれらの位相差ψを示している。これら干
渉縞の強度I1(t),I2(t),I3(t),I
4(t) を夫々センサで検出し、検出された強度I
1(t),I2(t)から位相差φを、検出された強度I
3(t),I4(t)から位相差ψを夫々求めることがで
き、従って、図13で示したウエハ6の複素反射率Aの
位相θを求めることができる。
FIG. 3A shows the equations (1.1) and (1.
FIG. 3B shows a temporal change in the intensity I 1 (t) and I 2 (t) of the interference fringes expressed by 2) and their phase difference φ expressed by the above equation (1.3). ) Is the above equation (1.
5), the intensity I of the interference fringes represented by (1.6)
3 (t), I 4 (t) with time and the above equation (1.7)
These phase differences さ れ る are represented by The intensity of these interference fringes I 1 (t), I 2 (t), I 3 (t), I
4 (t) are detected by the respective sensors, and the detected intensity I
1 (t) and I 2 (t), the phase difference φ is detected and the detected intensity I
The phase difference ψ can be obtained from 3 (t) and I 4 (t), and therefore, the phase θ of the complex reflectance A of the wafer 6 shown in FIG. 13 can be obtained.

【0026】以上説明した原理に基づく本発明の実施例
を、以下、図面によって説明する。
An embodiment of the present invention based on the above-described principle will be described below with reference to the drawings.

【0027】図1は本発明による複素反射率測定方法及
び装置の一実施例を示す図であって、1はガラス板から
なる回折光マスク,2,3は回折格子,4はλ/4波長
板,5はオートフォーカス系,6はウエハ,7はプリズ
ム,8,9,10は偏光ビームスプリッタ,11はミラ
ー,12はλ/2波長板,13,14,15はビームス
プリッタ,16,17はレンズ,18,19,20,2
1はセンサである。
FIG. 1 is a diagram showing an embodiment of a method and apparatus for measuring complex reflectance according to the present invention, wherein 1 is a diffractive light mask made of a glass plate, 2 and 3 are diffraction gratings, and 4 is a λ / 4 wavelength. Plate, 5 is an autofocus system, 6 is a wafer, 7 is a prism, 8, 9, and 10 are polarization beam splitters, 11 is a mirror, 12 is a λ / 2 wavelength plate, 13, 14, and 15 are beam splitters, and 16 and 17. Is a lens, 18, 19, 20, 2
1 is a sensor.

【0028】同図において、下地層のみもしくは薄膜が
形成されたウエハ6の上方に所定の間隔でもって回折光
マスク1が設けられている。オートフォーカス系5によ
り、回折光マスク1とウエア6との間隔が基準高さHに
あるときの検出信号に対し、位相が2πずれない範囲と
なるように、この回折光マスク1とウエア6との間隔が
設定されている。
In FIG. 1, a diffractive light mask 1 is provided at a predetermined interval above a wafer 6 on which only a base layer or a thin film is formed. The diffracted light mask 1 and the wear 6 are moved by the autofocus system 5 so that the phase is not shifted by 2π with respect to the detection signal when the distance between the diffracted light mask 1 and the wear 6 is at the reference height H. Is set.

【0029】回折光マスク1はガラス板の上面に、回折
格子2,3が設けられたA位置,C位置を除いて、前面
にクロム層が形成されて反射面をなしている。そして、
回折格子2に可干渉性、高指向性の平行光C1が、回折
格子2に同じく平行光C3が、A位置とC位置間のB位
置に同じく平行光C2 が夫々斜方から照射される。これ
ら平行光C1,C2,C3は、偏光方向が互いに直交する
周波数f1pの平行光F1p(p偏光)と周波数F2sの
平行光F2s(s偏光)とからなり、これら周波数f
1p,f2sはわずかに異なっている(f1p>f2s)。
The diffractive light mask 1 has a chromium layer formed on the front surface of the upper surface of the glass plate except for the positions A and C where the diffraction gratings 2 and 3 are provided to form a reflection surface. And
The parallel light C 1 having coherence and high directivity is applied to the diffraction grating 2, the parallel light C 3 is applied to the diffraction grating 2, and the parallel light C 2 is applied to the position B between the positions A and C from an oblique direction. Is done. These parallel lights C 1 , C 2 , and C 3 are composed of a parallel light F 1 p (p-polarized light) having a frequency f 1 p and a parallel light F 2 s (s-polarized light) having a frequency F 2 s whose polarization directions are orthogonal to each other. And these frequencies f
1 p, f 2 s are slightly different (f 1 p> f 2 s ).

【0030】平行光C1は回折格子2で回折されて−1
次回折光を発生し、この−1次回折光がウエハ6上に入
射角θ0で入射する。この入射角θ0は、平行光C1の波
長と回折光2のピッチとにより、充分大きくなるように
設定されており、このため、この−1次回折光はウエハ
6の表面でほぼ全反射し、プリズム7を通って偏光ビー
ムスプリッタ8に送られる。この偏光ビームスプリッタ
8は、入射された光のうちの反射率が高いs偏光F2
のみを通過させる。このs偏光F2sが図2での反射光
2 である。
The parallel light C 1 is diffracted by the diffraction grating 2 and −1
A first-order diffracted light is generated, and the minus first-order diffracted light is incident on the wafer 6 at an incident angle θ 0 . The incident angle θ 0 is set to be sufficiently large depending on the wavelength of the parallel light C 1 and the pitch of the diffracted light 2, so that the −1st-order diffracted light is almost totally reflected on the surface of the wafer 6. , Through the prism 7 to the polarization beam splitter 8. The polarization beam splitter 8 has a high reflectance s-polarized light F 2 s of the incident light.
Only let through. This s-polarized light F 2 s is the reflected light A 2 in FIG.

【0031】入射平行光C2は回折光マスク1上A,C
位置間のB位置で反射され、図2における参照光
(A0)となる。
The incident parallel light C 2 is reflected on the diffracted light mask 1 by A, C
The light is reflected at the position B between the positions, and becomes the reference light (A 0 ) in FIG.

【0032】また、入射平行光C3は回折光マスク1上
C位置の回折格子3に照射され、ウエハ6の表面に垂直
な方向の1次回折光が生ずる。この1次回折光はλ/4
波長板4を通ってウエハ6に垂直に照射されて反射し、
再度λ/4波長板4,回折格子3を通る。この回折格子
3を通った光が図2での反射光(A1)であり、回折格
子3で反射した光(図2の参照光(A0)に相当)と合
成される。この反射光(A1)は、λ/4波長板4を2
度通るので、元の入射平行光C3に対して偏光角がπ/
2だけずれている。即ち、反射光(A1)においては、
入射平行光C3のp偏光F1pがs偏光F1sに、s偏光
2sがp偏光F2pとなっている。
The incident parallel light C 3 irradiates the diffraction grating 3 at the position C on the diffractive light mask 1 to generate first-order diffracted light in a direction perpendicular to the surface of the wafer 6. This first-order diffracted light is λ / 4
Irradiated perpendicularly to the wafer 6 through the wave plate 4 and reflected,
The light again passes through the λ / 4 wavelength plate 4 and the diffraction grating 3. The light passing through the diffraction grating 3 is the reflected light (A 1 ) in FIG. 2, and is combined with the light reflected by the diffraction grating 3 (corresponding to the reference light (A 0 ) in FIG. 2). The reflected light (A 1 ) passes through the λ / 4 wavelength plate 4
Degree, the polarization angle of the original incident parallel light C 3 is π /
It is off by two. That is, in the reflected light (A 1 ),
The p-polarized light F 1 p of the incident parallel light C 3 is s-polarized light F 1 s, and the s-polarized light F 2 s is p-polarized light F 2 p.

【0033】以上のようにして、図2に示した参照光
(A0)及び反射光(A1),(A2)が得られる。参照
光(A0)は偏光ビームスプリッタ9に送られ、この参
照光(A0)のp偏光F1pが透過し、s偏光F2sが反
射することにより、これら偏光成分に分離される。p偏
光F1pはミラー11で反射し、λ/2波長板12でs
偏光F1sに変化し、ビームスプリッタ13で2分され
る。ビームスプリッタ13からの一方のs偏光F1sは
ビームスプリッタ15に送られ、偏光ビームスプリッタ
8からの反射光(A2)であるs偏光F2sと合成される。
この合成光がレンズ17によってウエハ6の位置と共役
の位置にあるセンサ18上でヘテロダイン干渉し、上記
式(1.1)で表わされる干渉縞強度I1(t) の干渉
ビート信号が得られる。
As described above, the reference light (A 0 ) and the reflected lights (A 1 ) and (A 2 ) shown in FIG. 2 are obtained. The reference light (A 0 ) is sent to the polarization beam splitter 9, where the p-polarized light F 1 p of the reference light (A 0 ) is transmitted and the s-polarized light F 2 s is reflected, thereby being separated into these polarized light components. . The p-polarized light F 1 p is reflected by the mirror 11 and is reflected by the λ / 2 wave plate 12 as s
The polarization changes to F 1 s, and is split into two by the beam splitter 13. One s-polarized light F 1 s from the beam splitter 13 is sent to the beam splitter 15 and is combined with the s-polarized light F 2 s, which is the reflected light (A 2 ) from the polarized beam splitter 8.
This combined light undergoes heterodyne interference on the sensor 18 at a position conjugate with the position of the wafer 6 by the lens 17, and an interference beat signal having the interference fringe intensity I 1 (t) represented by the above equation (1.1) is obtained. .

【0034】また、ビームスプリッタ13からの他方の
s偏光F1s はビームスプリッタ14に送られ、偏光ビ
ームスプリッタ9からのs偏光F2s と合成される。こ
の合成光はセンサ19上でヘテロダイン干渉し、上記式
(1.2)で表わされる干渉縞強度I2(t) の干渉ビ
ート信号が得られる。
The other s-polarized light F 1 s from the beam splitter 13 is sent to the beam splitter 14 and combined with the s-polarized light F 2 s from the polarization beam splitter 9. This combined light undergoes heterodyne interference on the sensor 19, and an interference beat signal having the interference fringe intensity I 2 (t) represented by the above equation (1.2) is obtained.

【0035】回折光マスク1上のC位置からの参照光
(A0)はp偏光F1p、s偏光F2sからなり、反射光
(A1)はp偏光F2p,s偏光F1sからなっている。
これら参照光(A0)と反射光(A1)との合成光はレン
ズ16を通り、偏光ビームスプリッタ10により、p偏
光F1p,F2pの合成光とs偏光F1s,F2sの合成光
とに分離され、前者はレンズ16によってウエハ6と共
役位置にあるセンサ21上で、また、後者は同じくレン
ズ16によってウエハ6と共役位置のあるセンサ20上
で夫々ヘテロダイン干渉する。これにより、センサ20
で上記式(1.5)で表わされる干渉縞強度I3(t)
の干渉ビート信号が得られ、センサ21で上記式(1.
6)で表わされる干渉縞強度I4(t)の干渉ビート信
号が得られる。
The reference light (A 0 ) from the C position on the diffractive light mask 1 is composed of p-polarized light F 1 p and s-polarized light F 2 s, and the reflected light (A 1 ) is p-polarized light F 2 p and s-polarized light F 1 s.
The combined light of the reference light (A 0 ) and the reflected light (A 1 ) passes through the lens 16 and is combined by the polarization beam splitter 10 with the combined light of the p-polarized light F 1 p and F 2 p and the s-polarized light F 1 s and F 1 . The light is separated into a combined light of 2 s, and the former undergoes heterodyne interference by the lens 16 on the sensor 21 conjugated with the wafer 6, and the latter also by the lens 16 on the sensor 20 conjugated to the wafer 6. . Thereby, the sensor 20
The interference fringe intensity I 3 (t) represented by the above equation (1.5)
Is obtained, and the sensor 21 obtains the above-mentioned equation (1.
An interference beat signal having the interference fringe intensity I 4 (t) represented by 6) is obtained.

【0036】従って、これら干渉ビート信号により、上
記のようにして、複素反射率Aの位相θを求めることが
でき、また、従来と同様、垂直照射光に対するウエア6
の反射率強度から複素反射率Aの振幅a(a2 =反射率
強度)が容易に求められるから、図13に示した式によ
り、ウエハ6の複素反射率Aを求めることができる。
Therefore, the phase θ of the complex reflectance A can be obtained from these interference beat signals as described above, and the wear 6 for the vertical irradiation light can be obtained as in the conventional case.
Since the amplitude a (a 2 = reflectance intensity) of the complex reflectivity A can be easily obtained from the reflectivity intensity, the complex reflectivity A of the wafer 6 can be obtained by the equation shown in FIG.

【0037】図4は本発明による複素反射率測定方法及
び装置の他の実施例を示す図であって、22,23,2
4,25はビームスプリッタ,26,27,28,29
はミラー,30は入/2波長板であり、図1に対応する
部分には同一符号をつけている。
FIG. 4 is a diagram showing another embodiment of the method and apparatus for measuring the complex reflectance according to the present invention.
4, 25 are beam splitters, 26, 27, 28, 29
Is a mirror, and 30 is an input / two-wavelength plate, and the portions corresponding to those in FIG.

【0038】図1に示した実施例では、回折格子やプリ
ズムを用いてウエハ6への斜方、垂直照射を行なうよう
にしたが、図4に示した実施例では、これとは異なる手
段で同様の照射を行なうようにしたものである。
In the embodiment shown in FIG. 1, the wafer 6 is irradiated obliquely and vertically by using a diffraction grating or a prism. In the embodiment shown in FIG. 4, however, a different means is used. The same irradiation is performed.

【0039】図4において、入射平行光Fはビームスプ
リッタ22で2分され、これから出力される一方の平行
光F1は、ミラー26により、ウエハ6の表面にほぼ水
平に斜方照射されてほぼ全反射され、この反射光のs偏
光F2sのみが偏光ビームスプリッタ8で抽出されて反
射光(A2) となる。
In FIG. 4, the incident parallel light F is split into two by a beam splitter 22, and one of the parallel lights F 1 output from the beam is substantially horizontally obliquely applied to the surface of the wafer 6 by a mirror 26, and is substantially oblique. The light is totally reflected, and only the s-polarized light F 2 s of the reflected light is extracted by the polarization beam splitter 8 to become reflected light (A 2 ).

【0040】また、ビームスプリッタ22から出力され
る他方の平行光F2は、ビームスプリッタ23で一部が
反射されて参照光(A0)となり、残りは通過し、その
一部がさらにビームスプリッタ24を通過して参照光
(A0)となる。この参照光(A0)と反射光A2との処
理は図1に示した実施例と同様であり、センサ18で上
記式(1.1)で表わされる干渉縞強度I1(t)の干
渉ビート信号が、センサ19で上記式(1.2)で表わ
される干渉縞強度I2(t)の干渉ビート信号が夫々検
出される。なお、ミラー28は。偏光ビームスプリッタ
9で分離されたs偏光F2sを、ビームスプリッタ25
からのs偏光F1sと合成するために、反射してビーム
スプリッタ14に供給するためのものである。
The other parallel light F 2 output from the beam splitter 22 is partially reflected by the beam splitter 23 to become reference light (A 0 ), the rest passes, and part of the parallel light F 2 is further transmitted to the beam splitter. The light passes through the reference light 24 and becomes reference light (A 0 ). The processing of the reference light (A 0 ) and the reflected light A 2 is the same as in the embodiment shown in FIG. 1, and the sensor 18 calculates the interference fringe intensity I 1 (t) represented by the above equation (1.1). The interference beat signal is detected by the sensor 19 as the interference beat signal having the interference fringe intensity I 2 (t) represented by the above equation (1.2). In addition, the mirror 28. The s-polarized light F 2 s separated by the polarization beam splitter 9 is converted into a beam splitter 25.
To be reflected and supplied to the beam splitter 14 in order to combine with the s-polarized light F 1 s.

【0041】ビームスプリッタ24で反射される平行光
はビームスプリッタ25を通ってウエハ6に垂直に照射
され、その反射光はビームスプリッタ25,24を通っ
て反射光(A1)となる。この反射光(A1)はλ/2波
長板30を通り(図1でλ/4波長板4を2度通過する
のに相当する),レンズ6を介して偏光ビームスプリッ
タ10に供給され、ビームスプリッタ23からミラー2
9を介して送られてくる参照光(A0)と合成される。
図1の実施例では、参照光(A0) と反射光(A1)と
を回折光マスク1のC位置で合成したが、図4では、偏
光ビームスプリッタ10で合成するようにしている。従
って、センサ20で上記式(1.5)で表わされる干渉
縞強度I3(t)の干渉ビート信号が、センサ21で上
記式(1.6)で表わされる干渉縞強度I4(t)の干
渉ビート信号が夫々検出される。なお、ビームスプリッ
タ25は、オートフォーカス系5で使用するビームの光
路を垂直照射のための平行光の光路に重ねるためのもの
である。
The parallel light reflected by the beam splitter 24 passes through the beam splitter 25 and irradiates the wafer 6 vertically, and the reflected light passes through the beam splitters 25 and 24 to become reflected light (A 1 ). This reflected light (A 1 ) passes through the λ / 2 wavelength plate 30 (corresponding to twice passing through the λ / 4 wavelength plate 4 in FIG. 1), and is supplied to the polarization beam splitter 10 through the lens 6. Beam splitter 23 to mirror 2
9 is combined with the reference light (A 0 ) transmitted through the reference light 9.
In the embodiment shown in FIG. 1, the reference light (A 0 ) and the reflected light (A 1 ) are combined at the position C of the diffractive light mask 1, but in FIG. 4, they are combined by the polarization beam splitter 10. Therefore, the interference beat signal of the interference fringe intensity I 3 (t) expressed by the above equation (1.5) is obtained by the sensor 20, and the interference fringe intensity I 4 (t) expressed by the above equation (1.6) is obtained by the sensor 21. Are detected respectively. Note that the beam splitter 25 is for overlapping the optical path of the beam used in the autofocus system 5 with the optical path of the parallel light for vertical irradiation.

【0042】このようにして、この実施例においても、
図13で示した複数反射率Aの位相θを求めることがで
きる。
As described above, also in this embodiment,
The phase θ of the plurality of reflectances A shown in FIG. 13 can be obtained.

【0043】図5は本発明による複素反射率測定方法及
び装置のさらに他の実施例を示す図であって、1’は回
折光マスク,3’は回折格子,7a,7bはプリズム,
9’は偏光ビームスプリッタ,11a,11bはミラ
ー,12a,12bはλ/2波長板,16a,16bは
レンズ,31はビームスプリッタ,32はプリズム,3
3は偏光ビームスプリッタ,34はレーザ出力ユニッ
ト,35はAOMユニット,36は導光ユニット,37
は測定ユニット,38はレーザ光源,39はレーザパワ
ーコントローラ,40はハーフミラー,41はλ/2波
長板,42,43はミラー,44,45は音響光学素
子,46,47はピンホール,48は偏光ビームスプリ
ッタ,49〜52はレンズ,53,54はピンホール,
55はミラーであり、前出図面に対応する部分には同一
符号をつけている。
FIG. 5 is a view showing still another embodiment of the method and apparatus for measuring complex reflectance according to the present invention, wherein 1 'is a diffracted light mask, 3' is a diffraction grating, 7a and 7b are prisms,
9 'is a polarizing beam splitter, 11a and 11b are mirrors, 12a and 12b are λ / 2 wavelength plates, 16a and 16b are lenses, 31 is a beam splitter, 32 is a prism, 3
3 is a polarization beam splitter, 34 is a laser output unit, 35 is an AOM unit, 36 is a light guide unit, 37
Is a measurement unit, 38 is a laser light source, 39 is a laser power controller, 40 is a half mirror, 41 is a λ / 2 wavelength plate, 42 and 43 are mirrors, 44 and 45 are acousto-optical elements, 46 and 47 are pinholes, 48 Is a polarizing beam splitter, 49 to 52 are lenses, 53 and 54 are pinholes,
Reference numeral 55 denotes a mirror, and portions corresponding to the above-mentioned drawings are denoted by the same reference numerals.

【0044】図5において、この実施例は、レーザ出力
を安定化させるレーザ出力ユニット34と、この出力レ
ーザ光を2つに分岐して偏光方向が異なるp偏光とs偏
光にし、音響光学素子によってこれらの周波数が若干異
ならせて再び光軸を一致させて合成するAOMユニット
35と、測定点での照射光の視野限定とレーザビームの
迷光除去を行ない、測定ユニット37へ合成光を導く導
光ユニット36と、この導光ユニット36から導かれる
合成光により複素反射率を測定する複数の干渉計からな
る測定ユニット37と、測定点のフォーカス合わせを行
なうオートフォーカスユニット5とからなっている。
Referring to FIG. 5, in this embodiment, a laser output unit 34 for stabilizing a laser output, and this output laser light is branched into two to form p-polarized light and s-polarized light having different polarization directions. An AOM unit 35 for making the frequencies slightly different and aligning the optical axes again for synthesis, and a light guide for guiding the synthesized light to the measurement unit 37 by limiting the visual field of the irradiation light at the measurement point and removing the stray light of the laser beam. It comprises a unit 36, a measuring unit 37 composed of a plurality of interferometers for measuring complex reflectivity with the combined light guided from the light guiding unit 36, and an autofocus unit 5 for focusing measurement points.

【0045】レーザ出力ユニット34においては、露光
光にg線(436nm)を用い、そのときの複素反射率
を測定するならば、レーザ光源38としては、例えば波
長の近い直線偏光のHe−Cdレーザ(441.6n
m)を採用する。レーザパワーコントローラ39は、レ
ーザの出力を安定化させるものである。
In the laser output unit 34, if g-line (436 nm) is used as the exposure light and the complex reflectance at that time is measured, the laser light source 38 may be, for example, a linearly polarized He-Cd laser having a near wavelength. (441.6n
m). The laser power controller 39 stabilizes the output of the laser.

【0046】AOMユニット35においては、ハーフミ
ラー40によってレーザ出力ユニット34からのレーザ
光が2つに分岐される。分岐された一方のレーザはλ/
2波長板41によって偏光方向が逆転し、ミラー42で
反射された後音響光学素子45に供給される。分岐され
た他方のレーザ光は音響光学素子44に供給される。こ
れにより、これらレーザ光は各々1次回折光の周波数が
若干異なる光λ1p,λ2sになる。これら2のつ光λ1
p,λ2sはピンホール47,46を通り、光λ2s は
ミラーで反射されて偏光ビームスプリッタ48で合成さ
れ、光軸の一致した1つのレーザ光となる。これらピン
ホール47,46は、音響光学素子45,46からの0
次回折光を遮光するためのものである。
In the AOM unit 35, the laser beam from the laser output unit 34 is split into two by the half mirror 40. One of the split lasers is λ /
The polarization direction is reversed by the two-wavelength plate 41, and after being reflected by the mirror 42, it is supplied to the acousto-optic element 45. The other split laser light is supplied to the acousto-optic element 44. As a result, these laser beams become light beams λ 1 p and λ 2 s having slightly different frequencies of the first-order diffracted light beams. These two lights λ 1
p and λ 2 s pass through the pinholes 47 and 46, and the light λ 2 s is reflected by a mirror and combined by the polarization beam splitter 48 to form one laser beam having the same optical axis. These pinholes 47 and 46 are provided with 0
This is for blocking the next-order diffracted light.

【0047】導光ユニット36においては、AOMユニ
ット35からのレーザ光が対物レンズ49の焦点位置に
あるピンホール53により、迷光が除去され、レンズ5
0により平行光となる。この平行光はミラー55で光路
が変更され、レンズ51,52間のウエハ6との共役位
置のピンホール54により、測定領域が限定される。
In the light guide unit 36, stray light is removed from the laser light from the AOM unit 35 by the pinhole 53 at the focal position of the objective lens 49, and
0 makes parallel light. The optical path of the parallel light is changed by the mirror 55, and the measurement area is limited by the pinhole 54 at the position conjugate with the wafer 6 between the lenses 51 and 52.

【0048】測定ユニット37においては、プリズム3
2が導光ユニット36からの平行光を3つの平行光
1,C2,C3に分岐する。プリズム32からの平行光
2は、回折格子マスク1’のクロム面で正反射され、
反射光(A0) として偏光ビームスプリッタ9’に送ら
れてs偏光とp偏光とに分離される。偏光ビームスプリ
ッタ9’で反射したs偏光は、プリズム11aで反射
し、λ/2波長板12bで偏光方向が逆転してp偏光と
なる。偏光ビームスプリッタ9’を透過するp偏光は、
ビームスプリッタ31で2分された後、その一方がプリ
ズム11bで反射し、ビームスプリッタ14でλ/2波
長板12bからのs偏光と合成され、センサ19に導か
れて光λ1p,λ2sのヘテロダイン干渉による干渉ビー
ト信号が得られる。これが上記式(1.2)で示した干
渉縞強度の基準ビート信号となる。
In the measuring unit 37, the prism 3
2 splits the parallel light from the light guide unit 36 into three parallel lights C 1 , C 2 and C 3 . The parallel light C 2 from the prism 32 is specularly reflected on the chrome surface of the diffraction grating mask 1 ′,
The reflected light (A 0 ) is sent to the polarizing beam splitter 9 ′ to be separated into s-polarized light and p-polarized light. The s-polarized light reflected by the polarization beam splitter 9 ′ is reflected by the prism 11a, and the polarization direction is reversed by the λ / 2 wavelength plate 12b to become p-polarized light. The p-polarized light transmitted through the polarizing beam splitter 9 ′ is
After being split into two by the beam splitter 31, one of them is reflected by the prism 11 b, combined with the s-polarized light from the λ / 2 wave plate 12 b by the beam splitter 14, guided to the sensor 19, and the light λ 1 p, λ 2 An interference beat signal due to s heterodyne interference is obtained. This becomes the reference beat signal of the interference fringe intensity shown in the above equation (1.2).

【0049】また、プリズム32からの平行光C3 は、
回折格子マスク1’に設けられた回折格子3’に入射角
Θで入射する。これによって1次回折光が生ずるが、こ
の回折光がウエハ6に垂直に照射するように、回折格子
3’のピッチpと入射角Θを、回折格子3’の入射平行
光C3 の波長をλとすると、以下の関係を満たすように
設定する。 sinΘ=λ/p 回折格子マスク1’の回折格子3’とは反対側に面にλ
/4波長板4が設けられており、回折格子3’で発生し
た直線偏光の一次回折光は、このλ/4波長板4によ
り、円偏光になってウエハ6に垂直方向から照射する。
ウエハ6からのその反射光は再びλ/4波長板4を通
り、平行光C3に対して偏光方向が逆転した光λ1s,λ
2pとなって回折格子3’で再び回折し、入射平行光C3
と合成されて参照光(A0)と反射光(A1)との合成
光として同じ方向に進む。この合成光は、偏光ビームス
プリッタ10により、p偏光とs偏光に分けられ、前者
がレンズ16bによってウエハ6と共役位置にあるセン
サ21に、後者がレンズ16aによってウエハ6と共役
位置にあるセンサ20に夫々達し、ヘテロダイン干渉し
て上記式(1.5),(1.6)の干渉縞強度の干渉ビ
ート信号が得られる。
The parallel light C 3 from the prism 32 is
The light is incident on the diffraction grating 3 ′ provided on the diffraction grating mask 1 ′ at an incident angle Θ. As a result, first-order diffracted light is generated. The pitch p and the incident angle Θ of the diffraction grating 3 ′ are set to λ, and the wavelength of the incident parallel light C 3 of the diffraction grating 3 ′ is set so that the diffracted light irradiates the wafer 6 vertically. Then, the setting is made so as to satisfy the following relationship. sinΘ = λ / p The surface of the diffraction grating mask 1 ′ is λ on the side opposite to the diffraction grating 3 ′.
A quarter-wave plate 4 is provided, and the linearly-polarized first-order diffracted light generated by the diffraction grating 3 ′ is circularly polarized by the λ / 4 wave plate 4 and irradiates the wafer 6 in the vertical direction.
The reflected light from the wafer 6 passes through the λ / 4 wavelength plate 4 again, and the lights λ 1 s, λ whose polarization directions are reversed with respect to the parallel light C 3 .
A 2 p and again diffracted by the diffraction grating 3 ', the incident parallel light C 3
And travels in the same direction as combined light of the reference light (A 0 ) and the reflected light (A 1 ). This combined light is split into p-polarized light and s-polarized light by the polarization beam splitter 10, and the former is provided to the sensor 21 at a position conjugate to the wafer 6 by the lens 16b, and the latter is provided to the sensor 20 at the position conjugate to the wafer 6 by the lens 16a. And the interference beat signals having the interference fringe intensities of the above equations (1.5) and (1.6) are obtained by heterodyne interference.

【0050】さらに、プリズム32からの平行光C1
は、偏光ビームスプリッタ33でウエハ6での表面反射
率が高い偏光のλ2sのみが選択され、プリズム7aに
よってほぼ水平に近い入射角でウエハ6の表面に照射さ
れてほぼ全反射する。この反射光は、プリズム7bを介
し、反射光A2としてビームスプリッタ15に導かれ
る。このビームスプリッタ15には、また、ビームスプ
リッタ31で分離されたp偏光がλ/2波長板12aで
偏光方向が逆転されてs偏光λ1sとなって導かれ、反
射光(A1)と合成されて、レンズ17によってウエハ
6と共役位置にあるセンサ18に導かれる。このセンサ
18では、合成光がヘテロダイン干渉し、上記式(1.
1)の干渉縞強度の干渉ビート信号が得られる。
Further, the parallel light C 1 from the prism 32
In the polarization beam splitter 33, only λ 2 s of the polarized light having a high surface reflectance on the wafer 6 is selected by the polarization beam splitter 33, and the prism 7a irradiates the surface of the wafer 6 at an almost horizontal incident angle and is almost totally reflected. This reflected light through the prism 7b, is guided to the beam splitter 15 as reflected light A 2. This beam splitter 15, also guided a p-polarized light that has been separated polarization direction at lambda / 2 wave plate 12a are reversed s-polarized light lambda 1 s by the beam splitter 31, the reflected light (A 1) The light is synthesized and guided by a lens 17 to a sensor 18 at a position conjugate with the wafer 6. In the sensor 18, the combined light causes heterodyne interference, and the above equation (1.
An interference beat signal having the interference fringe intensity of 1) is obtained.

【0051】以上の4つのセンサ18〜21で測定され
る干渉ビート信号を上記のようにフーリエ変換すること
により、複素反射率Aの位相θを求めることができ、従
って、複素反射率Aを求めることができる。
By subjecting the interference beat signals measured by the four sensors 18 to 21 to Fourier transform as described above, the phase θ of the complex reflectance A can be obtained, and therefore, the complex reflectance A is obtained. be able to.

【0052】薄膜を生成する前の下地層の複素反射率及
び屈折率が既知ならば、図13に示した式をもとに複素
反射率Aを測定することにより、多層薄膜上に生成、処
理された薄膜の膜厚を求めることができる。
If the complex reflectivity and the refractive index of the underlayer before forming the thin film are known, the complex reflectivity A is measured based on the equation shown in FIG. The thickness of the thin film thus obtained can be obtained.

【0053】図6は本発明を用いた膜厚測定装置の一具
体例を示すブロック図である。同図において、薄膜を生
成、処理したウエハが以上の実施例として説明した複素
反射率測定部56に搬入されると、任意の位置で測定さ
れた上記の干渉ビート信号が得られる。これら干渉ビー
ト信号は位相検出部57に転送されてその複素反射率A
が求められる。位相検出部57で求めた複素反射率Aの
測定結果とデータ部59に格納されている屈折率及び薄
膜を生成、処理する前に下地層に対して予め測定した複
素反射率の測定結果とにより、膜厚測定部58で薄膜の
膜厚が算出される。
FIG. 6 is a block diagram showing a specific example of a film thickness measuring apparatus using the present invention. In the figure, when the wafer on which the thin film is generated and processed is carried into the complex reflectance measuring section 56 described as the above embodiment, the above-mentioned interference beat signal measured at an arbitrary position is obtained. These interference beat signals are transferred to the phase detection unit 57 and the complex reflectance A
Is required. The measurement result of the complex reflectance A obtained by the phase detection unit 57 and the measurement result of the complex reflectance previously measured for the underlayer before the generation and processing of the refractive index and the thin film stored in the data unit 59 are performed. The thickness of the thin film is calculated by the thickness measuring unit 58.

【0054】図7は、本発明を用いた薄膜生成、処理装
置の制御システムの一具体例を示すブロック図である。
同図において、薄膜を生成、処理したウエハは図6で示
した構成をなす複素反射率測定装置56で複素反射率が
測定される。プロセス制御系62では、この結果と、デ
ータ部63の薄膜を生成、処理する前のウエハの複素反
射率の測定結果と、生成、処理される薄膜の屈折率等の
情報とを用いて生成、処理された薄膜の膜厚を求め、こ
の膜厚データからプロセス変動量を算出して薄膜生成、
処理装置60にフィードバックし、プロセス条件を制御
することにより、薄膜生成、処理装置60の安定化が図
られる。
FIG. 7 is a block diagram showing a specific example of a control system for a thin film forming and processing apparatus using the present invention.
In the figure, the complex reflectance of the wafer on which the thin film is formed and processed is measured by the complex reflectance measuring device 56 having the configuration shown in FIG. The process control system 62 uses the result, the measurement result of the complex reflectance of the wafer before generating and processing the thin film of the data unit 63, and information such as the refractive index of the thin film to be generated and processed. The thickness of the processed thin film is determined, and the process variation is calculated from the thickness data to generate a thin film.
By feeding back to the processing device 60 and controlling the process conditions, thin film formation and stabilization of the processing device 60 are achieved.

【0055】図8は本発明を用い、ステッパの露光量を
制御するようにしたシステムの一具体例を示すブロック
図である。
FIG. 8 is a block diagram showing a specific example of a system using the present invention to control the exposure amount of a stepper.

【0056】なお、以上の実施例では、半導体の下地層
に多層の薄膜上に形成された薄膜の膜厚を測定するもの
であったが、半導体に限らず、レンズ、ガラス等の物質
上に生成された薄膜の膜厚の測定にも応用できる。
In the above embodiment, the thickness of a thin film formed on a multilayer thin film as an underlayer of a semiconductor is measured. However, the present invention is not limited to a semiconductor but may be applied to a material such as a lens or glass. It can also be applied to the measurement of the thickness of the formed thin film.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
多層構造の下地層に対しても、その複素反射率を簡単に
測定することができ、かかる下地層に生成、処理された
薄膜の膜厚を正確に測定することが可能となる。
As described above, according to the present invention,
The complex reflectance of the underlying layer having a multilayer structure can be easily measured, and the thickness of the thin film formed and processed on the underlying layer can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による複素反射率測定方法及び装置の一
実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a method and an apparatus for measuring complex reflectance according to the present invention.

【図2】本発明の原理図である。FIG. 2 is a principle diagram of the present invention.

【図3】図2での干渉ビート信号の干渉縞の強度を示す
図である。
FIG. 3 is a diagram showing the intensity of interference fringes of the interference beat signal in FIG. 2;

【図4】本発明による複素反射率測定方法及び装置の他
の実施例を示す図である。
FIG. 4 is a diagram showing another embodiment of the method and apparatus for measuring complex reflectance according to the present invention.

【図5】本発明による複素反射率測定方法及び装置のさ
らに他の実施例を示す図である。
FIG. 5 is a view showing still another embodiment of the method and apparatus for measuring complex reflectance according to the present invention.

【図6】本発明による本発明による複素反射率測定方法
を用いた膜厚測定装置の一具体例を示すブロック図であ
る。
FIG. 6 is a block diagram showing a specific example of a film thickness measuring apparatus using the complex reflectance measuring method according to the present invention according to the present invention.

【図7】本発明による複素反射率測定方法を用いた薄膜
生成・処理装置の制御システムの一具体例を示すブロッ
ク図である。
FIG. 7 is a block diagram showing a specific example of a control system of a thin film forming / processing apparatus using the complex reflectance measuring method according to the present invention.

【図8】本発明による複素反射率測定方法を用いたステ
ッパ露光量制御システムの一具体例を示すブロック図で
ある。
FIG. 8 is a block diagram showing a specific example of a stepper exposure amount control system using the complex reflectance measuring method according to the present invention.

【図9】レジスト及び光透過性の下地層形成膜内の多重
反射の影響を示す図である。
FIG. 9 is a view showing the influence of multiple reflection in a resist and a light-transmitting underlayer forming film.

【図10】図9におけるレジスト膜内での光強度の変化
を示す図である。
10 is a diagram showing a change in light intensity in the resist film in FIG.

【図11】形成されたレジスト膜の凹凸によるレジスト
膜の幅の定在波効果を示す図である。
FIG. 11 is a view showing a standing wave effect of the width of the resist film due to the unevenness of the formed resist film.

【図12】偏光解析法の原理図である。FIG. 12 is a principle diagram of an ellipsometry.

【図13】複素反射率の式を示す図である。FIG. 13 is a diagram showing an expression of a complex reflectance.

【符号の説明】[Explanation of symbols]

1、1´ 回折光マスク 2、3、3´ 回折格子 4 λ/4波長板 5 オートフォーカス系 6 ウエハ 7 プリズム 8、9、9´、10 偏光ビームスプリッタ 12、12a、12b λ/2波長板 13、14、15 ビームスプリッタ 18、19、20、21 センサ 22、23、24 ビームスプリッタ 30 λ/2波長板 31 ビームスプリッタ 32 プリズム 33 λ/2波長板 34 レーザ出力ユニット 35 AOMユニット 36 導光ユニット 37 測定ユニット 56 ウエハ複素反射率測定部 57 位相検出部 58 膜厚測定部 59 データ部 60 薄膜生成・処理装置 61 複素反射率測定装置 62 プロセス制御系 63 データ部 64 レジスト塗布装置 65 ステッパ 66 プロセス制御系 1, 1 'Diffractive light mask 2, 3, 3' Diffraction grating 4 λ / 4 wavelength plate 5 Autofocus system 6 Wafer 7 Prism 8, 9, 9 ', 10 Polarization beam splitter 12, 12a, 12b λ / 2 wavelength plate 13, 14, 15 Beam splitter 18, 19, 20, 21 Sensor 22, 23, 24 Beam splitter 30 λ / 2 wavelength plate 31 Beam splitter 32 Prism 33 λ / 2 wavelength plate 34 Laser output unit 35 AOM unit 36 Light guide unit 37 Measurement Unit 56 Wafer Complex Reflectance Measurement Unit 57 Phase Detection Unit 58 Film Thickness Measurement Unit 59 Data Unit 60 Thin Film Generation / Processing Device 61 Complex Reflectance Measurement Device 62 Process Control System 63 Data Unit 64 Resist Coating Device 65 Stepper 66 Process Control system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相場 良彦 神奈川県横浜市戸塚区吉田町292番地 株式会社 日立製作所 生産技術研究所 内 (72)発明者 小森谷 進 東京都小平市上水本町五丁目22番1号 株式会社 日立製作所 武蔵工場内 (56)参考文献 特開 平4−269643(JP,A) 特開 平5−346309(JP,A) 特開 平2−96640(JP,A) 特表 平2−503115(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01B 11/00 - 11/30 ESPACENET──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiko Aiba 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Within the Production Engineering Laboratory, Hitachi, Ltd. No. 1 Hitachi, Ltd. Musashi Factory (56) References JP-A-4-269643 (JP, A) JP-A-5-346309 (JP, A) JP-A-2-96640 (JP, A) Hei 2-503115 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01B 11/00-11/30 ESPACENET

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可干渉性かつ高指向性の平行光を、基準
高さ位置に設定された被測定物の表面に、垂直及びほぼ
水平に近い斜方から照射し、該被測定物の表面からの垂
直照射光の反射光と参照光との干渉光と、該被測定物の
表面にほぼ水平に近い斜方からの照射光の反射光と参照
光との干渉光との位相差から該被測定物の複素反射率の
位相項を検出し、垂直照射光の反射光の強度から被測定
物の複素反射率の振幅を検出することを特徴とする複素
反射率測定方法。
1. A method of irradiating a coherent and highly directional parallel light onto a surface of an object to be measured set at a reference height position from a vertical and almost horizontal oblique direction, and irradiating the surface of the object to be measured. The interference light between the reflected light of the vertical irradiation light and the reference light, and the phase difference between the reflected light of the irradiation light and the interference light between the reference light and the irradiation light from an oblique direction nearly horizontal to the surface of the device under test. A complex reflectance measurement method comprising: detecting a phase term of a complex reflectance of an object to be measured; and detecting an amplitude of the complex reflectance of the object to be measured from an intensity of reflected light of the vertical irradiation light.
【請求項2】 請求項1において、 前記被測定物が多層物体で形成したことを特徴とする複
素反射率測定方法。
2. The method according to claim 1, wherein the object to be measured is formed of a multilayer object.
【請求項3】 被測定物の屈折率と、該被測定物の薄膜
生成、処理前での第1の複素反射率と、該被測定物の薄
膜生成、処理後での第2の複素反射率とから該薄膜の膜
厚を検出するようにした膜厚測定方法において、 可干渉性かつ高指向性の平行光を、基準高さ位置に設定
された被測定物の表面に、垂直及びほぼ水平に近い斜方
から照射し、該被測定物の表面からの垂直照射光の反射
光と参照光との干渉光と、該被測定物の表面にほぼ水平
に近い斜方からの照射光の反射光と参照光との干渉光と
の位相差から該被測定物の複素反射率の位相項を検出
し、垂直照射光の反射光の強度から被測定物の複素反射
率の振幅を検出して、該第1、第2の複素反射率を得る
ことを特徴とする複素反射率測定方法。
3. The refractive index of the object to be measured, the first complex reflectance before the thin film formation and processing of the object to be measured, and the second complex reflection after the thin film formation and processing of the object to be measured. In the film thickness measuring method for detecting the film thickness of the thin film from the ratio, the parallel light having coherence and high directivity is perpendicularly and substantially perpendicularly to the surface of the measured object set at the reference height position. Irradiation is performed from a nearly horizontal oblique direction, interference light between the reflected light of the vertical irradiation light from the surface of the object to be measured and the reference light, and irradiation light from the oblique line nearly horizontal to the surface of the object to be measured. The phase term of the complex reflectance of the DUT is detected from the phase difference between the reflected light and the interference light between the reference light, and the amplitude of the complex reflectance of the DUT is detected from the intensity of the reflected light of the vertical irradiation light. And obtaining said first and second complex reflectances.
【請求項4】 被測定物の屈折率などの光学特性の情報
と、該被測定物の複素反射率とにより、該被測定物での
薄膜生成、処理装置のプロセス条件を制御するようにし
た薄膜生成、処理システムにおいて、 可干渉性かつ高指向性の平行光を、基準高さ位置に設定
された被測定物の表面に、垂直及びほぼ水平に近い斜方
から照射し、該被測定物の表面からの垂直照射光の反射
光と参照光との干渉光と、該被測定物の表面にほぼ水平
に近い斜方からの照射光の反射光と参照光との干渉光と
の位相差から該被測定物の複素反射率の位相項を検出
し、垂直照射光の反射光の強度から被測定物の複素反射
率の振幅を検出して、該複素反射率を得ることを特徴と
する複素反射率測定方法。
4. A process for forming a thin film on an object to be measured and a process condition of a processing apparatus based on information on optical characteristics such as a refractive index of the object to be measured and a complex reflectance of the object to be measured. In a thin film generation and processing system, a coherent and highly directional parallel light is irradiated on a surface of an object to be measured set at a reference height position from a vertical and almost horizontal oblique direction, and the object to be measured is The phase difference between the interference light between the reflected light of the vertical irradiation light from the surface of the object and the reference light, and the interference light between the reflected light of the irradiation light from an oblique direction almost horizontal to the surface of the device to be measured and the reference light. Detecting the phase term of the complex reflectance of the device under test, detecting the amplitude of the complex reflectance of the device under test from the intensity of the reflected light of the vertical irradiation light, and obtaining the complex reflectance. Complex reflectance measurement method.
【請求項5】 被測定物を基準高さ位置に設定する手段
と、 可干渉性かつ高指向性の平行光を、該被測定物の表面
に、垂直及びほぼ水平に近い斜方から照射する手段と、 該被測定物の表面からの垂直照射光の反射光と参照光と
の干渉光と、該被測定物の表面にほぼ水平に近い斜方か
ら照射した該平行光の反射光と参照光との干渉光との位
相差から該被測定物の複素反射率の位相項を検出する手
段と、 該被測定物の表面からの該垂直照射光の反射光の強度か
ら該被測定物の複素反射率の振幅を検出する手段とを備
え、 検出された該位相項と該振幅とから該被測定物の複素反
射率を得ることを特徴とする複素反射率測定装置。
5. A means for setting an object to be measured at a reference height position, and irradiating a coherent and highly directional parallel light to a surface of the object to be measured from an oblique direction which is nearly vertical and almost horizontal. Means, interference light between the reflected light of the vertical irradiation light from the surface of the object to be measured and the reference light, and the reflected light of the parallel light irradiated to the surface of the object to be measured from a nearly horizontal oblique direction. Means for detecting the phase term of the complex reflectance of the device under test from the phase difference between the light and the interference light; and the intensity of the reflected light of the vertical irradiation light from the surface of the device under test. Means for detecting the amplitude of the complex reflectance, and obtaining the complex reflectance of the device under test from the detected phase term and the amplitude.
【請求項6】 請求項5において、 前記被測定物が多層物体で形成したことを特徴とする複
素反射率測定装置。
6. The complex reflectance measuring apparatus according to claim 5, wherein the object to be measured is formed of a multilayer object.
JP774792A 1992-01-20 1992-01-20 Complex reflectance measurement method and apparatus Expired - Fee Related JP3195018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP774792A JP3195018B2 (en) 1992-01-20 1992-01-20 Complex reflectance measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP774792A JP3195018B2 (en) 1992-01-20 1992-01-20 Complex reflectance measurement method and apparatus

Publications (2)

Publication Number Publication Date
JPH05196567A JPH05196567A (en) 1993-08-06
JP3195018B2 true JP3195018B2 (en) 2001-08-06

Family

ID=11674296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP774792A Expired - Fee Related JP3195018B2 (en) 1992-01-20 1992-01-20 Complex reflectance measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3195018B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829343A (en) * 1994-07-12 1996-02-02 Takuwa:Kk Method and apparatus for measuring road surface state
US20060012788A1 (en) 2004-07-19 2006-01-19 Asml Netherlands B.V. Ellipsometer, measurement device and method, and lithographic apparatus and method
JP2006258739A (en) * 2005-03-18 2006-09-28 Fujinon Corp Output device of branched light flux and measuring devices of a plurality of light flux output type

Also Published As

Publication number Publication date
JPH05196567A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
TWI360653B (en) Inspection method and apparatus, lithographic appa
JP4691594B2 (en) Passive reticle tool, lithographic apparatus and method for patterning devices in a lithographic tool
US5818588A (en) Displacement measuring method and apparatus using plural light beam beat frequency signals
EP0634702B1 (en) Measuring method and apparatus
JP4953932B2 (en) Method and apparatus for characterization of angle resolved spectrograph lithography
US20110032500A1 (en) Inspection apparatus for lithography
JPH0712535A (en) Interferometer
US5610718A (en) Apparatus and method for detecting a relative displacement between first and second diffraction gratings arranged close to each other wherein said gratings have different pitch sizes
JPH03272406A (en) Alignment apparatus
JPH0752088B2 (en) Alignment method
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
US5053628A (en) Position signal producing apparatus for water alignment
US5448357A (en) Position detecting system for detecting a position of an object by detecting beat signals produced through interference of diffraction light
US6963408B2 (en) Method and apparatus for point diffraction interferometry
JP3195018B2 (en) Complex reflectance measurement method and apparatus
JP3275273B2 (en) Alignment device and exposure device
JPH04361103A (en) Method and apparatus for detecting relative position
JPH07161611A (en) Position detecting apparatus
US5164789A (en) Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
JP3270206B2 (en) Position shift and gap detection method
JP2931082B2 (en) Method and apparatus for measuring small displacement
JP2694045B2 (en) Positioning device using diffraction grating
JPH06137814A (en) Minute displacement measuring method and its device
JP2837532B2 (en) Method and apparatus for measuring small displacement
JPH0340417A (en) Projection aligner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees