JPH06137814A - Minute displacement measuring method and its device - Google Patents

Minute displacement measuring method and its device

Info

Publication number
JPH06137814A
JPH06137814A JP28840092A JP28840092A JPH06137814A JP H06137814 A JPH06137814 A JP H06137814A JP 28840092 A JP28840092 A JP 28840092A JP 28840092 A JP28840092 A JP 28840092A JP H06137814 A JPH06137814 A JP H06137814A
Authority
JP
Japan
Prior art keywords
light
wavelength
reference signal
diffraction grating
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28840092A
Other languages
Japanese (ja)
Inventor
Kenichiro Fukuda
健一郎 福田
Yoshitada Oshida
良忠 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28840092A priority Critical patent/JPH06137814A/en
Publication of JPH06137814A publication Critical patent/JPH06137814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To measure the minute displacement of a body and its height at the same time in a minute displacement measuring method and its device which measure the minute displacement of the body by means of a diffraction grating. CONSTITUTION:In a minute displacement measuring method and its device which measure the minute displacement of a body by means of a diffraction grating, light having wavelength lambda1 and light having wavelength lambda2 are directly heterodyne-interfered to form a secondary reference signal, which is measured by a photodetector 93 to compute a phase difference between the secondary reference signal and a reference signal measured by a photodetector 92 for simultaneously measuring the minute displacement and height of the diffraction grating 7. Thus, in the case of measuring the minute displacement of the diffraction grating, its height can be measured simultaneously and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回折格子を用いて物体
の微小な変位の測定を行う微小変位測定方法およびその
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a minute displacement measuring method and apparatus for measuring minute displacement of an object using a diffraction grating.

【0002】[0002]

【従来の技術】従来、半導体素子の製造には、ウェハを
順次ステップ移動させながら縮小投影露光を行うステッ
パが用いられている。半導体素子は、ウェハ上の回路パ
ターンとマスク上の回路パターンとを順次重ね合わせて
露光することによって製造される。
2. Description of the Related Art Conventionally, a stepper for performing reduction projection exposure while sequentially moving a wafer has been used for manufacturing a semiconductor device. A semiconductor element is manufactured by sequentially superposing and exposing a circuit pattern on a wafer and a circuit pattern on a mask.

【0003】近年、この回路パターンは半導体素子の処
理能力の向上に伴ってますます微細化、高密度化されて
いるので、ウェハとマスクは、より高精度にアライメン
トされる必要があり、このためには、まず、ウェハ上の
回路パターンの位置を高精度に測定する必要がある。こ
のための1つの方法として、例えば特開昭61−215
905号公報、特開昭62−274216号公報に開示
されているようなヘテロダイン干渉を用いる方法が知ら
れている。以下、この方法を用いた微小変位測定装置の
一例を図12により説明する。
In recent years, this circuit pattern has been further miniaturized and highly densified with the improvement of the processing capability of semiconductor elements, so that the wafer and the mask need to be aligned with higher precision. First, it is necessary to measure the position of the circuit pattern on the wafer with high accuracy. One method for this is, for example, JP-A-61-215.
Methods using heterodyne interference as disclosed in Japanese Patent Application Laid-Open No. 905 and Japanese Patent Application Laid-Open No. 62-274216 are known. An example of the minute displacement measuring device using this method will be described below with reference to FIG.

【0004】図において,1は二波長直交偏光レーザ、
2はハーフミラー、3は偏光ビームスプリッタ、4a、
4bはミラー、5はコリメータレンズ、6は縮小レン
ズ、7は回折格子、8a、8bは偏光板、9a、9bは
光検出器、10は検出信号処理部である。
In the figure, 1 is a dual wavelength orthogonal polarization laser,
2 is a half mirror, 3 is a polarization beam splitter, 4a,
4b is a mirror, 5 is a collimator lens, 6 is a reduction lens, 7 is a diffraction grating, 8a and 8b are polarizing plates, 9a and 9b are photodetectors, and 10 is a detection signal processing unit.

【0005】二波長直交偏光レーザ1からは、波長が互
いに僅かに異なり、かつ偏光方向が互いに直交するコヒ
ーレント光が出射される。これらの光はハーフミラー2
を透過し、偏光ビームスプリッタ3によって波長λ1
波長λ2の光に分離される。これら偏光ビームスプリッ
タ3、ミラー4およびコリメータレンズ5は、これらの
光が光路111、112を介し、縮小レンズ6によってそれぞ
れ1次回折角θで、しかも平行ビームでウェハ上の回折
格子7に入射するように構成されている。回折格子7に
よって発生する波長λ1の1次回折光と波長λ2の1次回
折光とは、それぞれ回折格子7の面に垂直な光路121、1
22へ進む。この光路121と122は実質的には同じ光路であ
り、偏光板8aを介して光検出器9aにより、ヘテロダ
イン干渉信号Imが測定される。このヘテロダイン干渉
信号Imは、次の(数1)式で表される。
The two-wavelength orthogonal polarization laser 1 emits coherent light whose wavelengths are slightly different from each other and whose polarization directions are orthogonal to each other. These lights are half mirror 2
And is separated by the polarization beam splitter 3 into light of wavelength λ 1 and wavelength λ 2 . The polarization beam splitter 3, the mirror 4, and the collimator lens 5 allow these lights to enter the diffraction grating 7 on the wafer as parallel beams at the first-order diffraction angle θ by the reduction lens 6 via the optical paths 111 and 112, respectively. Is configured. The first-order diffracted light of wavelength λ 1 and the first-order diffracted light of wavelength λ 2 generated by the diffraction grating 7 are respectively optical paths 121, 1 perpendicular to the plane of the diffraction grating 7.
Proceed to 22. The optical paths 121 and 122 are substantially the same optical path, and the heterodyne interference signal Im is measured by the photodetector 9a via the polarizing plate 8a. This heterodyne interference signal Im is expressed by the following equation (1).

【0006】[0006]

【数1】 [Equation 1]

【0007】ここで、Amはヘテロダイン干渉信号の振
幅、ω1、ω2はそれぞれ波長λ1、λ2の角周波数、tは
時間、Pは回折格子7のピッチ、εは回折格子7の移動
量である。このヘテロダイン干渉信号Imは、回折格子
7の移動量εの情報を含んでいるので、以下測定信号と
呼ぶことにする。回折格子7の移動量εを求めるには、
測定信号Imの位相から時間項(ω1−ω2)tを引いて
やればよい。そして、この時間項は、別途、基準信号と
して測定する。すなわち、ハーフミラー2で反射された
光を偏光板8bを介して光検出器9bによって測定され
るヘテロダイン干渉信号Isは
Where Am is the amplitude of the heterodyne interference signal, ω 1 and ω 2 are the angular frequencies of the wavelengths λ 1 and λ 2 , respectively, t is the time, P is the pitch of the diffraction grating 7, and ε is the movement of the diffraction grating 7. Is the amount. This heterodyne interference signal Im includes information on the amount of movement ε of the diffraction grating 7, and will be hereinafter referred to as a measurement signal. To obtain the movement amount ε of the diffraction grating 7,
It suffices to subtract the time term (ω 1 −ω 2 ) t from the phase of the measurement signal Im. Then, this time term is separately measured as a reference signal. That is, the light reflected by the half mirror 2 is measured by the photodetector 9b through the polarizing plate 8b, and the heterodyne interference signal Is is

【0008】[0008]

【数2】 [Equation 2]

【0009】で表され、これが基準信号となる。ここ
で、Asは基準信号の振幅である。
It is expressed as follows, and this becomes the reference signal. Here, As is the amplitude of the reference signal.

【0010】従って、検出信号処理部10によって、光検
出器9a、9bで検出した2つのヘテロダイン干渉信号
の位相差を求めれば、回折格子7の移動量εが求められ
る。この方法では、光の位相を検出するので、位置合わ
せマーク像の光強度分布を検出する従来の方式と比べ、
照明光の光強度分布や検出光学系の解像度によらず高精
度な位置検出を行うことができる。
Therefore, if the detection signal processing unit 10 obtains the phase difference between the two heterodyne interference signals detected by the photodetectors 9a and 9b, the movement amount ε of the diffraction grating 7 can be obtained. In this method, since the phase of light is detected, compared with the conventional method of detecting the light intensity distribution of the alignment mark image,
It is possible to perform highly accurate position detection regardless of the light intensity distribution of the illumination light and the resolution of the detection optical system.

【0011】[0011]

【発明が解決しようとする課題】従来のヘテロダイン干
渉方式は、ウェハ上の回折格子7の水平方向の微小変位
量は測定できるが、高さの測定はできない。よって回折
格子7の高さを測定するには別の高さ検出系が必要であ
った。
According to the conventional heterodyne interference method, the minute displacement amount of the diffraction grating 7 on the wafer in the horizontal direction can be measured, but the height cannot be measured. Therefore, another height detection system is required to measure the height of the diffraction grating 7.

【0012】本発明の目的は、上記従来技術の持つ課題
を解決し、回折格子7の水平方向の微小変位量の測定に
加えて、回折格子7の高さを測定する微小変位測定方法
およびその装置を提供することにある。
An object of the present invention is to solve the problems of the above-mentioned prior art, to measure a minute displacement amount of the diffraction grating 7 in the horizontal direction, and to measure a height of the diffraction grating 7 and a minute displacement measuring method thereof. To provide a device.

【0013】[0013]

【課題を解決するための手段】回折格子の高さを測定す
るために、本発明の微小変位測定方法およびその装置は
回折格子に、異なる方向から2波長直交偏光レーザの2
光束を照射し、前記2光束の照射によって前記回折格子
から発生した回折光同志をヘテロダイン干渉させ測定信
号を生成し、次に前記2光束の波長の差に応じた基準信
号を生成し、前記基準信号と前記測定信号の位相差より
前記回折格子の微小変位量を測定する微小変位測定方法
において、前記回折格子からの正反射光同志をヘテロダ
イン干渉させて第2の基準信号を生成し、前記第2の基
準信号と前記基準信号をヘテロダイン干渉させて第2の
位相差より前記回折格子の高さを測定するようにしたも
のである。
In order to measure the height of a diffraction grating, a method for measuring a minute displacement of the present invention and an apparatus therefor are provided in a diffraction grating with two wavelength orthogonal polarization lasers from different directions.
Irradiating a light beam, diffracted light beams generated from the diffraction grating by the irradiation of the two light beams are heterodyne-interfered to generate a measurement signal, and then a reference signal corresponding to a wavelength difference between the two light beams is generated, and the reference signal is generated. In a minute displacement measuring method for measuring a minute displacement amount of the diffraction grating from a phase difference between a signal and the measurement signal, specularly reflected light beams from the diffraction grating are heterodyne-interfered to generate a second reference signal, The height of the diffraction grating is measured based on the second phase difference by causing the two reference signals and the reference signal to heterodyne interfere with each other.

【0014】また第2のの方法として、本発明の微小変
位測定方法およびその装置は波長λ1のコヒーレント光
を回折格子に1次回折角の約1/2の角度で入射させ、入
射側の光路を逆向きに戻る1次回折光と波長λ2のコヒ
ーレント光を合成して測定信号を生成し、また入射時に
発生する正反射光と波長λ2のコヒーレント光を合成し
て基準信号を生成し、これらの測定信号と基準信号の位
相差から回折格子の変位量を測定する方法およびその装
置において、波長λ1のコヒーレント光と波長λ2のコヒ
ーレント光を直接合成して第2の基準信号を生成し、前
記基準信号と前記第2の基準信号の位相差から回折格子
の高さを測定するようにしたものである。
As a second method, the micro-displacement measuring method and apparatus according to the present invention allow coherent light of wavelength λ 1 to be incident on the diffraction grating at an angle of about 1/2 of the first-order diffraction angle and the optical path on the incident side. To the reverse direction to combine the first-order diffracted light and the coherent light of wavelength λ 2 to generate a measurement signal, and to combine the regular reflection light generated at the time of incidence and the coherent light of wavelength λ 2 to generate a reference signal, In the method and apparatus for measuring the displacement of the diffraction grating from the phase difference between these measurement signal and reference signal, the coherent light of wavelength λ 1 and the coherent light of wavelength λ 2 are directly combined to generate the second reference signal. However, the height of the diffraction grating is measured from the phase difference between the reference signal and the second reference signal.

【0015】[0015]

【作用】前記第2の方法による微小変位測定方法および
その装置は生成する測定信号I1および基準信号I0が次
の(数3)式、(数4)式のようになる。
In the minute displacement measuring method and the apparatus therefor according to the second method, the generated measurement signal I 1 and reference signal I 0 are expressed by the following equations (3) and (4).

【0016】[0016]

【数3】 [Equation 3]

【0017】[0017]

【数4】 [Equation 4]

【0018】ここで、γはそれぞれ回折格子の高さ方向
の移動によって生じる測定信号および基準信号の位相項
である。
Here, γ is the phase term of the measurement signal and the reference signal, which are caused by the movement of the diffraction grating in the height direction.

【0019】一方、前記第2の基準信号I00は次の(数
5)式のようになる。
On the other hand, the second reference signal I 00 is expressed by the following equation (5).

【0020】[0020]

【数5】 [Equation 5]

【0021】したがって、(数4)式、(数5)式の差
を取れば、回折格子の高さの位相項γが取り出せる。こ
れを変位量に換算することにより、回折格子の高さの基
準位置からの移動量が算出でき、回折格子の正確な高さ
の測定ができる。
Therefore, the phase term γ of the height of the diffraction grating can be extracted by taking the difference between the equations (4) and (5). By converting this into a displacement amount, the amount of movement of the height of the diffraction grating from the reference position can be calculated, and the accurate height of the diffraction grating can be measured.

【0022】[0022]

【実施例】以下に本発明の第1の実施例を図1から図1
0により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to 0.

【0023】図1において、11は直線偏光レーザ、21,
22,23,25,28はハーフミラー、24,26,29,30はミラ
ー、31,32,33,34,35,36はAO(音響光学)変調
器、41,42,43,44は偏光ビームスプリッタ、45はビー
ム間隔変更プリズム、46は1/4波長板、47,48はNDフ
ィルタ、51はコリメータレンズ、52はミラー、6は縮小
レンズ、7は回折格子、81,82は偏光板、85,86,87は
ピンホール、91,92,93は光検出器、101は制御処理回
路である。
In FIG. 1, 11 is a linearly polarized laser, 21,
22, 23, 25, 28 are half mirrors, 24, 26, 29, 30 are mirrors, 31, 32, 33, 34, 35, 36 are AO (acousto-optic) modulators, 41, 42, 43, 44 are polarized light. Beam splitter, 45 beam spacing changing prism, 46 1/4 wavelength plate, 47 and 48 ND filter, 51 collimator lens, 52 mirror, 6 reduction lens, 7 diffraction grating, 81 and 82 polarizing plates , 85, 86 and 87 are pinholes, 91, 92 and 93 are photodetectors, and 101 is a control processing circuit.

【0024】この構成で垂直方向の偏光(S偏光)を持
つ直線偏光レーザ11から出射された光はハーフミラー2
1,22,23,25によって5光束に分割され、このうちの
2光束はAO変調器31,32に入射する。このAO変調器
31,32は入射した光の周波数を制御処理回路101から入
力された駆動周波数f1だけシフトさせる。いま第1の
状態として、AO変調器31をON状態としAO変調器32
をOFF状態とすると、AO変調器31から波長λ1の光
LB1が出射される。この波長λ1の光LB1は偏光ビ
ームスプリッタ41にS偏光で入射するため、ほとんどが
反射されて光路130を進みビーム間隔変更プリズム45を
通って1/4波長板46によって波長λ1の光LB1は円偏光
となり、コリメータレンズ51およびミラー52を介して光
路141を進み、さらに縮小レンズ6を介して光路151を進
んで、ウェハ上の回折格子7に所定の角度すなわち1次
回折角の約1/2の角度で入射する。なお、コリメータレ
ンズ51の焦点位置511と縮小レンズ6の瞳位置61は共役
である。この回折格子7で発生する1次回折光は元の光
路151を戻り、正反射光は光路152へ進み、再び縮小レン
ズ6を介してそれぞれ141,142を戻り、さらにミラー52
およびコリメータレンズ51を介して1/4波長板46へ戻
る。この1/4波長板46によりこれらの光は入射時とは直
交する方向の直線偏光に変換され、偏光ビームスプリッ
タ41にP偏光で入射し、これを通過後に1次回折光は光
路131を進み正反射光は光路132を進んで、偏光ビームス
プリッタ42に入射しこれを通過する。
With this configuration, the light emitted from the linearly polarized laser 11 having vertically polarized light (S polarized light) is reflected by the half mirror 2.
1, 22, 23, and 25 split the light into five light beams, and two of these light beams enter the AO modulators 31 and 32. This AO modulator
Reference numerals 31 and 32 shift the frequency of the incident light by the drive frequency f 1 input from the control processing circuit 101. In the first state, the AO modulator 31 is turned on and the AO modulator 32 is turned on.
When is turned off, the light LB1 having the wavelength λ 1 is emitted from the AO modulator 31. Since the light LB1 having the wavelength λ 1 is incident on the polarization beam splitter 41 as S-polarized light, most of it is reflected and travels along the optical path 130, passes through the beam interval changing prism 45, and is transmitted by the ¼ wavelength plate 46 to the light LB1 having the wavelength λ 1 . Is circularly polarized light, travels along the optical path 141 through the collimator lens 51 and the mirror 52, and further follows the optical path 151 through the reduction lens 6, and forms a predetermined angle on the diffraction grating 7 on the wafer, that is, about 1 / th of the first-order diffraction angle. It is incident at an angle of 2. The focal position 511 of the collimator lens 51 and the pupil position 61 of the reduction lens 6 are conjugate. The first-order diffracted light generated by the diffraction grating 7 returns to the original optical path 151, the specularly reflected light advances to the optical path 152, and returns again to 141 and 142 via the reduction lens 6, and the mirror 52.
And it returns to the 1/4 wavelength plate 46 through the collimator lens 51. The 1/4 wavelength plate 46 converts these lights into linearly polarized light in a direction orthogonal to the time of incidence, and then enters the polarization beam splitter 41 as P-polarized light. After passing through this, the first-order diffracted light travels along the optical path 131 and is positive. The reflected light travels along the optical path 132, enters the polarization beam splitter 42, and passes through it.

【0025】一方で直線偏光レーザ11から出射された光
のうちハーフミラー21を反射した光束はハーフミラー22
で2光束に分割され、AO変調器33,34に入射する。こ
のAO変調器33,34は周波数f2で駆動されるため、前
記波長λ1と僅かに異なる波長λ2の光LB3,LB4を
出射する。波長λ2の光LB3,LB4はNDフィルタ4
7,48で減光され偏光ビームスプリッタ43,44にS偏光
で入射し、それぞれ偏光板81,82へ入射する。なお波長
λ2の光LB3,LB4は互いに接近した光路を進む。
偏光板81,82の透過軸方向を水平方向に対して約45度に
傾けて設置すると、その先の光検出器91では上記の光路
131からの波長λ1の1次回折光とNDフィルタ47からの
波長λ2の光との偏光ビームスプリッタ43を介して生成
されるヘテロダイン干渉信号は迷光カット用のピンホー
ル85を通過して測定信号として検出され、光検出器92で
は上記の光路132からの波長λ1の正反射光とNDフィル
タ48からの波長λ2の光との偏光ビームスプリッタ44を
介して生成されるヘテロダイン干渉信号は迷光カット用
のピンホール86を通過して基準信号として検出される。
これら光検出器91,92の検出したヘテロダイン干渉信号
はそれぞれ測定信号および基準信号として制御処理回路
101に送られる。制御処理回路101はこれらの測定信号と
基準信号の位相差を算出して、回折格子7の微小変位量
を出力する。
On the other hand, of the light emitted from the linearly polarized laser 11, the light flux reflected by the half mirror 21 is the half mirror 22.
Is split into two light fluxes and enters the AO modulators 33 and 34. Since the AO modulators 33 and 34 are driven at the frequency f 2, they emit lights LB3 and LB4 having a wavelength λ 2 slightly different from the wavelength λ 1 . Lights LB3 and LB4 of wavelength λ 2 are ND filters 4
The light is dimmed by 7, 48 and enters the polarization beam splitters 43, 44 as S-polarized light, and then enters the polarizing plates 81, 82, respectively. The lights LB3 and LB4 having the wavelength λ 2 travel on optical paths that are close to each other.
When the transmission axes of the polarizing plates 81 and 82 are installed at an angle of about 45 degrees with respect to the horizontal direction, the photodetector 91 at the tip of the polarizing plate 81 and 82 has the above optical path.
The heterodyne interference signal generated through the polarization beam splitter 43 of the first-order diffracted light of wavelength λ 1 from 131 and the light of wavelength λ 2 from the ND filter 47 passes through the pinhole 85 for stray light cut and is a measurement signal. And the heterodyne interference signal generated by the photodetector 92 through the polarization beam splitter 44 of the specularly reflected light of wavelength λ 1 from the optical path 132 and the light of wavelength λ 2 from the ND filter 48 is stray light. It passes through the pinhole 86 for cutting and is detected as a reference signal.
The heterodyne interference signals detected by these photodetectors 91 and 92 are used as a measurement signal and a reference signal, respectively, as a control processing circuit.
Sent to 101. The control processing circuit 101 calculates the phase difference between these measurement signals and the reference signal and outputs the minute displacement amount of the diffraction grating 7.

【0026】次に、ハーフミラー25を透過した光はハー
フミラー27でさらに2分割され、ハーフミラー27を透過
した光はAO変調器35へ、ハーフミラー27を反射した光
はミラー29を経てAO変調器36へそれぞれ入射する。A
O変調器35,36はそれぞれ周波数f1,f2で駆動される
ため、AO変調器35,36に入射した光はそれぞれ波長
λ1,λ2の光となって出射する。AO変調器35,36より
出射する波長λ1,λ2の光はミラー30を経てハーフミラ
ー28で合成され、迷光カット用のピンホール87を通過し
て光検出器93に入射する。AO変調器35,36から光検出
器93までの波長λ1,λ2の光路長は等しいため、ハーフ
ミラー28で合成される波長λ1,λ2のヘテロダイン干渉
信号は位相項を持たない基準信号として検出される。以
下、このヘテロダイン干渉信号を第2の基準信号と呼ぶ
ことにする。この第2の基準信号は制御処理回路101に
送られる。制御処理回路101はこの第2の基準信号と前
記基準信号の位相差を算出して、回折格子7の高さの基
準位置からの移動量を求める。前記回折格子7の基準位
置からの移動量より、回折格子7の高さが求められる。
Next, the light transmitted through the half mirror 25 is further divided into two by the half mirror 27, the light transmitted through the half mirror 27 goes to the AO modulator 35, and the light reflected by the half mirror 27 passes through the mirror 29 to AO. Each is incident on the modulator 36. A
Since the O modulators 35 and 36 are driven at the frequencies f 1 and f 2 , respectively, the lights incident on the AO modulators 35 and 36 are emitted as lights having wavelengths λ 1 and λ 2 , respectively. Light of wavelengths λ 1 and λ 2 emitted from the AO modulators 35 and 36 is combined by the half mirror 28 via the mirror 30, passes through the pinhole 87 for cutting stray light, and enters the photodetector 93. Since the optical path lengths of the wavelengths λ 1 and λ 2 from the AO modulators 35 and 36 to the photodetector 93 are equal, the heterodyne interference signals of the wavelengths λ 1 and λ 2 combined by the half mirror 28 have no phase term. Detected as a signal. Hereinafter, this heterodyne interference signal will be referred to as a second reference signal. This second reference signal is sent to the control processing circuit 101. The control processing circuit 101 calculates the phase difference between the second reference signal and the reference signal to obtain the amount of movement of the height of the diffraction grating 7 from the reference position. The height of the diffraction grating 7 can be obtained from the amount of movement of the diffraction grating 7 from the reference position.

【0027】次に図2〜図4により回折格子7の高さを
求める方法について説明する。図2は回折格子7の高さ
が基準位置にあるときの基準信号と第2の基準信号の位
相の関係を示す図である。図2のように回折格子7の高
さが基準位置にある場合は、基準信号と第2の基準信号
の位相差Δφは0になる。
Next, a method for obtaining the height of the diffraction grating 7 will be described with reference to FIGS. FIG. 2 is a diagram showing the relationship between the phases of the reference signal and the second reference signal when the height of the diffraction grating 7 is at the reference position. When the height of the diffraction grating 7 is at the reference position as shown in FIG. 2, the phase difference Δφ between the reference signal and the second reference signal becomes zero.

【0028】図3は回折格子7の高さが基準位置より移
動しているときの基準信号と第2の基準信号の位相の関
係を示す図である。図3のように回折格子7が高さが基
準位置より移動している場合は第2の基準信号の位相は
変化しないが基準信号を生成する正反射光の光路長が変
化するため、基準信号の位相が変化する。基準信号と第
2の基準信号の位相差は(数6)式のようになる。
FIG. 3 is a diagram showing the relationship between the phase of the reference signal and the phase of the second reference signal when the height of the diffraction grating 7 moves from the reference position. As shown in FIG. 3, when the height of the diffraction grating 7 moves from the reference position, the phase of the second reference signal does not change, but the optical path length of the specularly reflected light that generates the reference signal changes, so the reference signal The phase of changes. The phase difference between the reference signal and the second reference signal is given by the equation (6).

【0029】[0029]

【数6】 [Equation 6]

【0030】ただし、γは基準信号を生成する正反射光
の光路長が変化に対応する基準信号の位相変化分であ
る。
Here, γ is the phase change amount of the reference signal corresponding to the change of the optical path length of the specular reflection light which generates the reference signal.

【0031】図4は回折格子7の高さが基準位置より移
動したときの正反射光の光路長の変化を表わす図であ
る。αは正反射光の入射角および出射角である。正反射
光の光路151a,152aは回折格子7の高さが基準位置よ
りhだけ移動したときは、光路151u,152uにシフトす
る。このときの光路長変化はFE+EGとなり、次式
(数7)式のようになる。
FIG. 4 is a diagram showing changes in the optical path length of specularly reflected light when the height of the diffraction grating 7 moves from the reference position. α is the incident angle and the outgoing angle of the specularly reflected light. The optical paths 151a and 152a of the regular reflection light are shifted to the optical paths 151u and 152u when the height of the diffraction grating 7 is moved by h from the reference position. The change in the optical path length at this time is FE + EG, and is represented by the following equation (Equation 7).

【0032】[0032]

【数7】 [Equation 7]

【0033】いま、入射角αを3°、回折格子7のピッ
チを6μm、回折格子7の高さの移動量を1μmとする
と、正反射光の光路長変化は(数7)式より1.997μmと
計算できる。これは位相差約120°に相当し、制御処理
回路101で十分に測定可能な値である。したがって、基
準信号と第2の基準信号の位相差をモニタすれば、回折
格子7の高さの基準位置からの移動量が算出でき、回折
格子7の高さを求めることができる。
Now, assuming that the incident angle α is 3 °, the pitch of the diffraction grating 7 is 6 μm, and the movement amount of the height of the diffraction grating 7 is 1 μm, the change in the optical path length of the specular reflection light is 1.997 μm from the formula (7). Can be calculated. This corresponds to a phase difference of about 120 ° and is a value that can be measured sufficiently by the control processing circuit 101. Therefore, by monitoring the phase difference between the reference signal and the second reference signal, the amount of movement of the height of the diffraction grating 7 from the reference position can be calculated, and the height of the diffraction grating 7 can be obtained.

【0034】図5は図1の回折格子7の変位および光路
151,152を示す詳細図である。ここで、図5(a),(b)に
より図1の回設格子7の変位量εと光検出器91,92の測
定信号と基準信号の位相差Δφとの関係を説明する。ま
ず図5(a)により光検出器91の測定信号の位相変化につ
いて説明する。波長λ1のコヒーレント光が光路151aを
進み回折格子7に対して角度θ´で入射すると、1次回
折光は元の光路151aを戻る。ただし、θ´は次式を満
たすものとする。
FIG. 5 shows the displacement and optical path of the diffraction grating 7 of FIG.
It is a detailed view showing 151 and 152. Here, the relationship between the displacement amount ε of the rotating grating 7 in FIG. 1 and the phase difference Δφ between the measurement signals of the photodetectors 91 and 92 and the reference signal will be described with reference to FIGS. 5A and 5B. First, the phase change of the measurement signal of the photodetector 91 will be described with reference to FIG. When the coherent light of wavelength λ 1 travels along the optical path 151a and is incident on the diffraction grating 7 at an angle θ ′, the first-order diffracted light returns to the original optical path 151a. However, θ ′ satisfies the following equation.

【0035】[0035]

【数8】 [Equation 8]

【0036】[0036]

【数9】 [Equation 9]

【0037】ここにPは回折格子7のピッチ、θは1次
回折角である。ここで回折格子7が変位量εだけ移動し
た時の回折格子7の位置を破線で示す。この時の入射光
および1次回折光の光路151bと元の光路151aとの光路
長差は2DCとなる。ただし、
Here, P is the pitch of the diffraction grating 7, and θ is the first-order diffraction angle. Here, the position of the diffraction grating 7 when the diffraction grating 7 moves by the displacement amount ε is shown by a broken line. At this time, the optical path length difference between the optical path 151b of the incident light and the first-order diffracted light and the original optical path 151a is 2DC. However,

【0038】[0038]

【数10】 [Equation 10]

【0039】と表すことができ、回折格子7が変位量ε
移動したときの測定信号の位相変化φ1は、(数11)
式で表せる。
And the diffraction grating 7 has a displacement amount ε.
The phase change φ 1 of the measurement signal when moving is (Equation 11)
It can be expressed by a formula.

【0040】[0040]

【数11】 [Equation 11]

【0041】次に図5(b)により光検出器92の基準信号
の位相変化について説明する。波長λ1のコヒーレント
光が光路151aを進み回折格子7に対して角度θ´で入
射すると、正反射光は反射角θ´で光路152aを進む。
ここで上記と同様に回折格子7が変位量εだけ移動した
時の回折格子7の位置を破線で示す。この時の入射光路
は光路151bとなり、反射光路は光路152bとなって、回
折格子7の移動前後の光路長差はGE−FE´となる。
ところが入射角θ´と反射角θ´は等しいのでGE−F
E´=0となる。したがって回折格子7が変位量ε移動
した時の基準信号の位相変化φ0も0になる。この結果
から上記の測定信号と基準信号の位相差Δφは、
Next, the phase change of the reference signal of the photodetector 92 will be described with reference to FIG. When the coherent light of wavelength λ 1 travels along the optical path 151a and enters the diffraction grating 7 at an angle θ ′, the specularly reflected light travels along the optical path 152a at a reflection angle θ ′.
Here, similarly to the above, the position of the diffraction grating 7 when the diffraction grating 7 moves by the displacement amount ε is shown by a broken line. At this time, the incident optical path becomes the optical path 151b, the reflected optical path becomes the optical path 152b, and the optical path length difference before and after the movement of the diffraction grating 7 becomes GE-FE '.
However, since the incident angle θ ′ and the reflection angle θ ′ are equal, GE-F
E '= 0. Therefore, the phase change φ 0 of the reference signal when the diffraction grating 7 moves by the displacement amount ε also becomes zero. From this result, the phase difference Δφ between the measurement signal and the reference signal is

【0042】[0042]

【数12】 [Equation 12]

【0043】となる。It becomes

【0044】図6は図1の回折格子7上の対称なレジス
ト分布を示す詳細図である。次に合わせマークである回
折格子7の上にレジストが存在する場合の変位量εの測
定方法について説明する。まず図6に示すように合わせ
マークである回折格子7の上に対称な分布をもつレジス
ト71が存在する場合について説明する。この場合に光検
出器91,92の測定信号と基準信号の位相差Δφaは、
FIG. 6 is a detailed view showing a symmetrical resist distribution on the diffraction grating 7 of FIG. Next, a method of measuring the displacement amount ε when the resist is present on the diffraction grating 7 which is the alignment mark will be described. First, a case where a resist 71 having a symmetrical distribution is present on the diffraction grating 7 which is an alignment mark as shown in FIG. 6 will be described. In this case, the phase difference Δφa between the measurement signals of the photodetectors 91 and 92 and the reference signal is

【0045】[0045]

【数13】 [Equation 13]

【0046】となる。ただし、a,cはレジスト71によ
る多重反射によって生じる測定信号と基準信号の位相で
ある。すなわち回折格子7上にレジスト71が存在する場
合には位相差にa−cのオフセットが加算される。この
オフセットを除く方法について次に述べる。
It becomes However, a and c are the phases of the measurement signal and the reference signal generated by the multiple reflection by the resist 71. That is, when the resist 71 is present on the diffraction grating 7, the offset of ac is added to the phase difference. A method of removing this offset will be described below.

【0047】上記では図1において、第1の状態として
AO変調器31をON状態とし、AO変調器32をOFF状
態とした。今度は逆に第2の状態としてAO変調器31を
OFF状態とし、AO変調器32をON状態とした場合を
考察する。AO変調器32から出射した波長λ1の光LB
2は図1の光学系の光軸に関して上記のAO変調器31よ
り出射した波長λ1の光LB1と対称な光路を進む。す
なわち入射光は光路152から回折格子7に入射し、1次
回折光は光路152を逆向きに戻り、正反射光は光路151を
進む。従って上記の場合とは逆に光検出器91が基準信号
である波長λ1の正反射光と波長λ2の光のヘテロダイン
干渉信号を検出し、光検出器92が測定信号である波長λ
1の1次回折光と波長λ2の光のヘテロダイン干渉信号を
検出する。この場合の測定信号と基準信号の位相差Δφ
bは、
In the above, in FIG. 1, the AO modulator 31 is turned on and the AO modulator 32 is turned off as the first state. On the contrary, consider the case where the AO modulator 31 is turned off and the AO modulator 32 is turned on as the second state. Light LB of wavelength λ 1 emitted from the AO modulator 32
2 travels along an optical path symmetrical to the light LB1 of wavelength λ 1 emitted from the AO modulator 31 with respect to the optical axis of the optical system of FIG. That is, the incident light enters the diffraction grating 7 from the optical path 152, the first-order diffracted light returns to the optical path 152 in the opposite direction, and the specularly reflected light travels to the optical path 151. Therefore, contrary to the above case, the photodetector 91 detects the heterodyne interference signal of the specularly reflected light of the wavelength λ 1 and the light of the wavelength λ 2 which is the reference signal, and the photodetector 92 has the wavelength λ which is the measurement signal.
Detecting one of a heterodyne interference signal order diffracted light and the wavelength lambda 2 of light. Phase difference Δφ between the measured signal and the reference signal in this case
b is

【0048】[0048]

【数14】 [Equation 14]

【0049】となる。したがって(数13)式と(数1
4)式の差をとれば、
It becomes Therefore, the formula (13) and the formula (1)
Taking the difference of 4),

【0050】[0050]

【数15】 [Equation 15]

【0051】となり、オフセットa−cをキャンセルす
ることができる。このようにAO変調器31,32の状態を
第1の状態から第2の状態へ時間的に切り替えてそれぞ
れの測定信号と基準信号の位相差を求め、さらにこれら
の位相差の差を取れば対称のレジスト71が存在する場合
もオフセット誤差のない変位量εの測定が実現できる。
Therefore, the offsets ac can be canceled. In this way, the states of the AO modulators 31 and 32 are temporally switched from the first state to the second state, the phase difference between each measurement signal and the reference signal is obtained, and the difference between these phase differences is calculated. Even when the symmetrical resist 71 is present, the displacement amount ε can be measured without an offset error.

【0052】図7は図1の回折格子7上の非対称なレジ
スト分布を示す詳細図である。次に図7のように回折格
子7の上のレジスト72が非対称な場合について説明す
る。レジスト72は回転塗布されるので、回折格子7に対
してレジスト72の分布は非対称になりやすい。例えば、
回折格子7の凹部の中心線に対して、レジスト72の凹部
の中心線がシフト量δだけシフトした状態となる。この
ような場合にAO変調器31,32の状態が第1の状態の光
検出器91,92による測定信号と基準信号の位相差Δφ
e、および第2の状態の測定信号と基準信号の位相差Δ
φfは、
FIG. 7 is a detailed view showing an asymmetric resist distribution on the diffraction grating 7 of FIG. Next, a case where the resist 72 on the diffraction grating 7 is asymmetrical as shown in FIG. 7 will be described. Since the resist 72 is spin-coated, the distribution of the resist 72 tends to be asymmetric with respect to the diffraction grating 7. For example,
The center line of the concave portion of the resist 72 is shifted by the shift amount δ with respect to the center line of the concave portion of the diffraction grating 7. In such a case, the phase difference Δφ between the measurement signal and the reference signal by the photodetectors 91 and 92 whose AO modulators 31 and 32 are in the first state.
e, and the phase difference Δ between the measurement signal and the reference signal in the second state
φf is

【0053】[0053]

【数16】 [Equation 16]

【0054】[0054]

【数17】 [Equation 17]

【0055】となる。ただしe,f,gはそれぞれ第1
の状態の測定信号の位相、第2の状態の測定信号の位
相、第1および第2の状態の基準信号の位相である。こ
こで上記と同様に(数16)式と(数17)式の差をと
れば、
It becomes However, e, f, and g are the first
And the phase of the measurement signal in the second state, and the phase of the reference signal in the first and second states. Here, in the same way as above, if the difference between the equations (16) and (17) is taken,

【0056】[0056]

【数18】 [Equation 18]

【0057】となる。しかし図7のようにレジスト72の
分布が非対称な場合にはe≠fなので、オフセット誤差
e−fは残ってしまう。
It becomes However, as shown in FIG. 7, when the distribution of the resist 72 is asymmetric, since e ≠ f, the offset error e−f remains.

【0058】次に図8から図10により上記のオフセッ
ト誤差e−fを間接的に測定して、(数18)式に代入
することにより正確な変位量εの値を求める方法につい
て説明する。図7のようにレジスト72の非対称性が回折
格子7の中心線に対するレジスト72の凹部の中心線のシ
フト量δで表せるとする。
Next, a method for indirectly measuring the offset error e-f and substituting it into the equation (18) to obtain an accurate value of the displacement amount ε will be described with reference to FIGS. 8 to 10. As shown in FIG. 7, the asymmetry of the resist 72 can be represented by the shift amount δ of the center line of the concave portion of the resist 72 with respect to the center line of the diffraction grating 7.

【0059】このシフト量δに対する上記の第1の状
態、第2の状態の測定信号の位相e,fの値は、例えば
ジャーナル・オブ・ザ・オプティカル・ソサエティ・オ
ブ・アメリカ、A、第5巻、第8号(1988年)、第1270
頁から第1280頁(J.Opt.Soc.Am,A.Vol.
5,No.8(1988),pp1270−1280)に記載されている方
法によって計算することができる。
The values of the phases e and f of the measurement signals in the first state and the second state with respect to the shift amount δ are, for example, Journal of the Optical Society of America, A, 5th. Volume, Issue 8 (1988), 1270
Pp. 1280 (J. Opt. Soc. Am, A. Vol.
5, No. 8 (1988), pp1270-1280).

【0060】図8は図7のレジスト72のシフト量δと第
1の状態および第2の状態の測定信号の位相e,fの関
係を示す計算例図である。ここに上記の文献の方法によ
る計算結果の一例を示し、横軸はシフト量δで縦軸は測
定信号の位相e,fを示す。レジスト72のシフト量δが
大きくなると、測定信号の位相e,fの差は大きくな
る。
FIG. 8 is a calculation example diagram showing the relationship between the shift amount δ of the resist 72 of FIG. 7 and the phases e and f of the measurement signal in the first state and the second state. Here, an example of the calculation result by the method of the above literature is shown, the horizontal axis shows the shift amount δ, and the vertical axis shows the phases e and f of the measurement signal. When the shift amount δ of the resist 72 increases, the difference between the phases e and f of the measurement signal increases.

【0061】図9は図7のレジスト72のシフト量δと第
1の状態および第2の状態の1次回折光の強度の関係を
示す計算例図である。ここにシフト量δに対する第1の
状態の1次回折光と第2の状態の1次回折光の強度の関
係を図8と同様に計算した一例を示す。この関係でもシ
フト量δが大きくなると、第1の状態の1次回折光と第
2の状態の1次回折光の強度差は大きくなる。したがっ
て測定信号の位相eと位相fの差と2つの状態の1次回
折光の強度の差には相関があるので、2つの1次回折光
の強度の差を測定することにより上記のオフセット量e
−fを間接的に測定することができる。
FIG. 9 is a calculation example diagram showing the relationship between the shift amount δ of the resist 72 of FIG. 7 and the intensities of the first-order diffracted light in the first state and the second state. Here, an example is shown in which the relationship between the shift amount δ and the intensities of the first-order diffracted light in the first state and the first-order diffracted light in the second state is calculated in the same manner as in FIG. Also in this relationship, if the shift amount δ increases, the intensity difference between the first-order diffracted light in the first state and the first-order diffracted light in the second state increases. Therefore, there is a correlation between the difference between the phase e and the phase f of the measurement signal and the difference between the intensities of the first-order diffracted light in the two states. Therefore, the above-mentioned offset e
-F can be measured indirectly.

【0062】図10は図9および図8の第1の状態およ
び第2の状態の1次回折光の強度差Sと2つの状態の測
定信号の位相差であるオフセット誤差e−fの関係を示
す計算例図である。ここに2つの状態の1次回折光の強
度の差Sと上記のオフセット誤差e−fの関係を示し、
縦軸はオフセット誤差e−fで横軸は次式(数19)式
で表される2つの状態の1次回折光の強度差Sを示す。
FIG. 10 shows the relationship between the intensity difference S of the first-order diffracted light in the first state and the second state of FIGS. 9 and 8 and the offset error ef which is the phase difference between the measurement signals in the two states. It is a calculation example figure. Here, the relationship between the difference S in the intensity of the first-order diffracted light in the two states and the offset error ef is shown.
The vertical axis represents the offset error ef, and the horizontal axis represents the intensity difference S of the first-order diffracted light in the two states represented by the following equation (Equation 19).

【0063】[0063]

【数19】 [Formula 19]

【0064】ただし、Iaは第1の状態の1次回折光の
強度で、Ibは第2の状態の1次回折光の強度である。
1次回折光の強度Iaには図1において第1の状態の時
に光検出器91で検出されるヘテロダイン干渉信号の振幅
を代入し、1次回折光の強度Ibには第2の状態の時に
光検出器92で検出されるヘテロダイン干渉信号の振幅を
代入すればよい。制御処理回路101は1次回折光の強度
Ia,Ibから(数19)式により1次回折光の強度差S
を計算し、予め求めた強度差Sとオフセット誤差e−f
の関係から、オフセット誤差e−fを計算し、これを
(数19)式に代入することにより正確な変位量εを算
出する。
However, Ia is the intensity of the first-order diffracted light in the first state, and Ib is the intensity of the first-order diffracted light in the second state.
The intensity Ia of the first-order diffracted light is substituted with the amplitude of the heterodyne interference signal detected by the photodetector 91 in the first state in FIG. 1, and the intensity Ib of the first-order diffracted light is detected in the second state. The amplitude of the heterodyne interference signal detected by the device 92 may be substituted. The control processing circuit 101 calculates the intensity difference S of the first-order diffracted light from the intensities Ia and Ib of the first-order diffracted light according to the equation (19).
Is calculated, and the intensity difference S and the offset error e−f obtained in advance are calculated.
The offset error e−f is calculated from the relationship of ## EQU1 ## and this is substituted into the equation (19) to calculate the accurate displacement amount ε.

【0065】上記の手順によれば図7のレジスト72の分
布が合わせマークである回折格子7に対して非対称にな
る場合も正確な変位量εを測定することができる。また
2つの1次回折光の強度差からレジストの非対称性によ
る誤差を補正する方法に関しては、特開平1−2429
04号公報にも開示されている。しかし本発明の実施例
によればヘテロダイン干渉信号の検出と1次回折光の強
度の検出を同一の光検出器で行うことができるため、上
記開示されている方法に比べて信号処理系が簡略化でき
るという効果がある。
According to the above procedure, the accurate displacement amount ε can be measured even when the distribution of the resist 72 in FIG. 7 is asymmetric with respect to the diffraction grating 7 which is the alignment mark. Regarding a method of correcting an error due to asymmetry of a resist from the intensity difference between two first-order diffracted lights, Japanese Patent Laid-Open No. 1-2429
It is also disclosed in Japanese Patent Publication No. 04. However, according to the embodiment of the present invention, the detection of the heterodyne interference signal and the detection of the intensity of the first-order diffracted light can be performed by the same photodetector, so that the signal processing system is simplified as compared with the above-described method. The effect is that you can do it.

【0066】図11は本発明による微小変位測定方法お
よびその装置の第2の実施例を示す図である。
FIG. 11 is a diagram showing a second embodiment of the minute displacement measuring method and apparatus according to the present invention.

【0067】図において、1は二波長直交偏光レーザ、
2a,2b,2c,2dはハーフミラー、3は偏光ビー
ムスプリッタ、4a,4b,4c,4d,4eはミラ
ー、5はコリメータレンズ、6は縮小レンズ、7は回折
格子、8a,8b,8cは偏光板、9a,9b,9cは
光検出器、10は検出信号処理部である。
In the figure, 1 is a dual wavelength orthogonal polarization laser,
2a, 2b, 2c and 2d are half mirrors, 3 is a polarization beam splitter, 4a, 4b, 4c, 4d and 4e are mirrors, 5 is a collimator lens, 6 is a reduction lens, 7 is a diffraction grating, and 8a, 8b and 8c are Polarizing plates, 9a, 9b and 9c are photodetectors, and 10 is a detection signal processing unit.

【0068】二波長直交偏光レーザ1からは、波長が僅
かに異なり、かつ偏光方向が互いに直交するコヒーレン
ト光が出射する。これらの光はハーフミラー2aを透過
し、偏光ビームスプリッタ3によって波長λ1と波長λ2
の光に分離される。これら偏光ビームスプリッタ3、ミ
ラー4aおよびコリメータレンズ5は、これらの光が光
路111、112を介し、縮小レンズ6によってそれぞれ1次
回折角θで、しかも平行ビームでウェハ上の回折格子7
に入射するように構成されている。なお波長λ1と波長
λ2の光はハーフミラー2b,2cを透過する。回折格
子7によって発生する波長λ1の1次回折光と波長λ2
1次回折光とは、それぞれ回折格子7の面に垂直な光路
121,122へ進む。この光路121と122は実質的には同じ光
路であり、偏光板8aを介して光検出器9aにより、ヘ
テロダイン干渉信号Imが測定される。このヘテロダイ
ン干渉信号Imは、(数1)式で表される。
The two-wavelength orthogonal polarization laser 1 emits coherent light whose wavelengths are slightly different and whose polarization directions are orthogonal to each other. These lights are transmitted through the half mirror 2a and are transmitted by the polarization beam splitter 3 to the wavelengths λ 1 and λ 2.
Is separated into light. In the polarization beam splitter 3, the mirror 4a and the collimator lens 5, these lights pass through the optical paths 111 and 112, and the reduction lens 6 forms the first-order diffraction angle θ, respectively, and the parallel beams form the diffraction grating 7 on the wafer.
Is configured to be incident on. The light having the wavelength λ 1 and the light having the wavelength λ 2 passes through the half mirrors 2b and 2c. The first-order diffracted light of the wavelength λ 1 and the first-order diffracted light of the wavelength λ 2 generated by the diffraction grating 7 are respectively optical paths perpendicular to the plane of the diffraction grating 7.
Proceed to 121 and 122. The optical paths 121 and 122 are substantially the same optical path, and the heterodyne interference signal Im is measured by the photodetector 9a via the polarizing plate 8a. This heterodyne interference signal Im is expressed by the equation (1).

【0069】ここで、Amはヘテロダイン干渉信号の振
幅、ω1,ω2はそれぞれ波長λ1,λ2の角周波数、tは
時間、Pは回折格子7のピッチ、εは回折格子7の移動
量である。このヘテロダイン干渉信号Imは、回折格子
7の移動量εの情報を含んでいるので、以下測定信号と
呼ぶことにする。回折格子7の移動量εを求めるには、
測定信号Imの位相から時間項(ω1−ω2)tを引いて
やればよい。そして、この時間項は、別途、基準信号と
して測定する。すなわち、ハーフミラー2aで反射され
た光を偏光板8bを介して光検出器9bによって測定さ
れるヘテロダイン干渉信号Isは(数2)式で表され、
これが基準信号となる。ここで、Asは基準信号の振幅
である。
Here, Am is the amplitude of the heterodyne interference signal, ω 1 and ω 2 are the angular frequencies of the wavelengths λ 1 and λ 2 , respectively, t is time, P is the pitch of the diffraction grating 7, and ε is the movement of the diffraction grating 7. Is the amount. This heterodyne interference signal Im includes information on the amount of movement ε of the diffraction grating 7, and will be hereinafter referred to as a measurement signal. To obtain the movement amount ε of the diffraction grating 7,
It suffices to subtract the time term (ω 1 −ω 2 ) t from the phase of the measurement signal Im. Then, this time term is separately measured as a reference signal. That is, the heterodyne interference signal Is measured by the photodetector 9b through the polarizing plate 8b for the light reflected by the half mirror 2a is expressed by the equation (2),
This becomes the reference signal. Here, As is the amplitude of the reference signal.

【0070】したがって、検出信号処理部10によって、
光検出器9a,9bで検出した2つのヘテロダイン干渉
信号の位相差を求めれば、回折格子7の移動量εが求め
られる。
Therefore, by the detection signal processing unit 10,
If the phase difference between the two heterodyne interference signals detected by the photodetectors 9a and 9b is obtained, the movement amount ε of the diffraction grating 7 can be obtained.

【0071】一方、ハーフミラー2cで反射した光はミ
ラー4eを通りハーフミラー2dに入射する。ハーフミ
ラー2bを一度通過し、回折格子7で反射した光はハー
フミラー2bで反射し、ミラー4c,4dを通って同じ
くハーフミラー2dに入射する。ハーフミラー2dに入
射した2本の光束は偏光板8cを介して光検出器9cに
より、ヘテロダイン干渉信号Is2が測定される。ヘテロ
ダイン干渉信号Is2は次式(数20)式で表される。
On the other hand, the light reflected by the half mirror 2c passes through the mirror 4e and enters the half mirror 2d. The light that has passed through the half mirror 2b once and is reflected by the diffraction grating 7 is reflected by the half mirror 2b and then enters the half mirror 2d through the mirrors 4c and 4d. The two light fluxes incident on the half mirror 2d are measured by the photodetector 9c through the polarizing plate 8c to determine the heterodyne interference signal Is 2 . The heterodyne interference signal Is 2 is represented by the following equation (Equation 20).

【0072】[0072]

【数20】 [Equation 20]

【0073】ここで、As2はヘテロダイン干渉信号の振
幅、γ´は回折格子7の高さ方向の移動に伴う位相項で
ある。このヘテロダイン干渉信号を以下第2の基準信号
と呼ぶことにする。したがって、検出信号処理部10によ
って前記基準信号と前記第2の基準信号の位相差を取れ
ば、図2〜図4で説明した原理により回折格子7の高さ
を微小変位量と同時に測定できる。
Here, As 2 is the amplitude of the heterodyne interference signal, and γ ′ is the phase term associated with the movement of the diffraction grating 7 in the height direction. Hereinafter, this heterodyne interference signal will be referred to as a second reference signal. Therefore, if the detection signal processing unit 10 calculates the phase difference between the reference signal and the second reference signal, the height of the diffraction grating 7 can be measured at the same time as the minute displacement amount according to the principle described with reference to FIGS.

【0074】なお本発明は図1において縮小レンズ6を
介さずにコリメ−タレンズ51から直接回折格子7に波長
λ1の光を入射させることにより、プロキシミティ露光
装置や電子ビーム描画装置の微小変位測定方法およびそ
の装置に適用することもできる。
According to the present invention, in FIG. 1, light having a wavelength λ 1 is directly incident on the diffraction grating 7 from the collimator lens 51 without passing through the reduction lens 6, so that a small displacement of the proximity exposure apparatus or the electron beam drawing apparatus is obtained. It can also be applied to a measuring method and its device.

【0075】[0075]

【発明の効果】本発明によれば、前記第1の波長の光と
第2の波長の光を直接ヘテロダイン干渉させて生成する
前記第2の基準信号と前記基準信号の位相差より回折格
子の高さを測定できるので、回折格子の微小変位量と高
さを同時にかつ正確に測定できるという効果がある。
According to the present invention, the phase difference between the second reference signal and the reference signal generated by directly heterodyne-interfering the light of the first wavelength and the light of the second wavelength causes the diffraction grating Since the height can be measured, there is an effect that the minute displacement amount and the height of the diffraction grating can be measured simultaneously and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微小変位測定方法およびその装置
の第1の実施例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a minute displacement measuring method and an apparatus therefor according to the present invention.

【図2】回折格子の高さが基準位置にあるときの基準信
号と第2の基準信号の位相の関係を示す図である。
FIG. 2 is a diagram showing a relationship between phases of a reference signal and a second reference signal when the height of the diffraction grating is at the reference position.

【図3】回折格子の高さが基準位置より移動していると
きの基準信号と第2の基準信号の位相の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between phases of a reference signal and a second reference signal when the height of the diffraction grating is moving from the reference position.

【図4】回折格子の高さが基準位置より移動していると
きの正反射光の光路長の変化を示す図である。
FIG. 4 is a diagram showing a change in optical path length of specularly reflected light when the height of the diffraction grating is moving from a reference position.

【図5】図1の回折格子の変位および光路を示す詳細図
である。
5 is a detailed view showing a displacement and an optical path of the diffraction grating of FIG.

【図6】図1の回折格子上の対称なレジスト分布を示す
詳細図である。
6 is a detailed view showing a symmetrical resist distribution on the diffraction grating of FIG.

【図7】図1の回折格子上の非対称なレジスト分布を示
す詳細図である。
7 is a detailed view showing an asymmetric resist distribution on the diffraction grating of FIG.

【図8】図7のレジストシフト量と第1の状態および第
2の状態の測定信号の位相の関係を示す計算例図であ
る。
8 is a calculation example diagram showing the relationship between the resist shift amount and the phase of the measurement signal in the first state and the second state in FIG.

【図9】図7のレジストシフト量と第1の状態および第
2の状態の1次回折光の強度の関係を示す計算例図であ
る。
9 is a calculation example diagram showing the relationship between the resist shift amount and the intensity of first-order diffracted light in the first state and the second state in FIG. 7. FIG.

【図10】図9および図8の第1の状態および第2の状
態の1次回折光の強度差と2つの状態の測定信号の位相
差の関係を示す計算例図である。
FIG. 10 is a calculation example diagram showing the relationship between the intensity difference of the first-order diffracted light in the first state and the second state of FIGS. 9 and 8 and the phase difference of the measurement signal in the two states.

【図11】本発明による微小変位測定方法およびその装
置の第2の実施例を示す概略構成図である。
FIG. 11 is a schematic configuration diagram showing a second embodiment of the method for measuring a minute displacement and the apparatus therefor according to the present invention.

【図12】従来の微小変位測定方法およびその装置の一
例を示す概略構成図である。
FIG. 12 is a schematic configuration diagram showing an example of a conventional minute displacement measuring method and its apparatus.

【符号の説明】[Explanation of symbols]

11…直線偏光レーザ、 21,22,23,25…ハーフミラー、 24,26,29,30…ミラー、 31,32,33,34,35,36…AO変調器、 41,42,43,44…偏光ビームスプリッタ、 45…ビーム間隔変更プリズム、 46…1/4波長板、 47,48…NDフィルタ、 51…コリメータレンズ、 52…ミラー、 6…縮小レンズ、 7…回折格子、 71,72…レジスト、 81,82…偏光板、 85,86,87…ピンホール、 91,92,93…光検出器、 101…制御処理回路。 11 ... Linearly polarized laser, 21, 22, 23, 25 ... Half mirror, 24, 26, 29, 30 ... Mirror, 31, 32, 33, 34, 35, 36 ... AO modulator, 41, 42, 43, 44 … Polarizing beam splitter, 45… Beam interval changing prism, 46… 1/4 wavelength plate, 47,48… ND filter, 51… Collimator lens, 52… Mirror, 6… Reduction lens, 7… Diffraction grating, 71,72… Resist, 81, 82 ... Polarizing plate, 85, 86, 87 ... Pinhole, 91, 92, 93 ... Photodetector, 101 ... Control processing circuit.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】位置検出すべき物体の上に形成された回折
格子に、異なる方向から2波長直交偏光レーザの2光束
を照射し、前記2光束の照射によって前記回折格子から
発生した回折光同志をヘテロダイン干渉させ測定信号を
生成し、次に前記2光束の波長の差に応じた基準信号を
生成し、前記基準信号と前記測定信号の位相差より前記
回折格子の微小変位量を測定する微小変位測定方法にお
いて、前記回折格子からの正反射光同志をヘテロダイン
干渉させて第2の基準信号を生成し、前記第2の基準信
号と前記基準信号をヘテロダイン干渉させて第2の位相
差より前記回折格子の高さを同時に測定することを特徴
とする微小変位測定方法。
1. A diffraction grating formed on an object whose position is to be detected is irradiated with two light beams of a two-wavelength orthogonal polarization laser from different directions, and the diffracted light beams generated from the diffraction grating by the irradiation of the two light beams. A heterodyne interference to generate a measurement signal, then generate a reference signal corresponding to the difference in wavelength of the two light beams, and measure a minute displacement of the diffraction grating from the phase difference between the reference signal and the measurement signal. In the displacement measuring method, the specularly reflected lights from the diffraction grating are heterodyne-interfered to generate a second reference signal, and the second reference signal and the reference signal are heterodyne-interfered to each other from the second phase difference. A small displacement measuring method characterized by simultaneously measuring the height of a diffraction grating.
【請求項2】位置検出すべき物体の上に形成された回折
格子に、所定の角度で、第1の波長の光を入射したとき
に発生する正反射光と、このとき発生する回折光とをそ
れぞれ波長が僅かに異なる第2の波長の光とヘテロダイ
ン干渉させて、基準信号および測定信号を生成し、前記
基準信号と前記測定信号より求められる位相差から前記
物体の微小変位を測定する微小変位測定方法において、
前記第1の波長の光を直接第2の波長の光とヘテロダイ
ン干渉させて第2の基準信号を生成し、前記基準信号と
前記第2の基準信号より求められる第2の位相差より前
記物体の高さを同時に測定することを特徴とする微小変
位測定方法。
2. Specular reflection light generated when light of a first wavelength is incident on a diffraction grating formed on an object whose position is to be detected at a predetermined angle, and diffracted light generated at this time. Is subjected to heterodyne interference with light having a second wavelength slightly different from each other to generate a reference signal and a measurement signal, and a minute displacement of the object is measured from a phase difference obtained from the reference signal and the measurement signal. In the displacement measurement method,
The first wavelength light is directly heterodyne-interfered with the second wavelength light to generate a second reference signal, and the object is calculated from a second phase difference obtained from the reference signal and the second reference signal. A method for measuring minute displacement, characterized in that the height of each of them is measured at the same time.
【請求項3】請求項2記載の微小変位測定方法におい
て、前記所定の角度が、1次回折角の約半分であること
を特徴とする微小変位測定方法。
3. The minute displacement measuring method according to claim 2, wherein the predetermined angle is about half of a first-order diffraction angle.
【請求項4】請求項2または3記載の微小変位測定方法
において、前記第1の波長の光の入射方向をこのとき発
生する正反射光の反射方向と逆向きに切り替えが可能で
あり、入射方向切り替え前の微小変位測定量と入射方向
切り替え後の微小変位測定量の両方が測定可能であるこ
とを特徴とする微小変位測定方法。
4. The minute displacement measuring method according to claim 2 or 3, wherein the incident direction of the light of the first wavelength can be switched to the opposite direction of the reflection direction of the specular reflection light generated at this time, A minute displacement measuring method characterized in that both the minute displacement measuring amount before the direction switching and the minute displacement measuring amount after the incident direction switching can be measured.
【請求項5】請求項4記載の微小変位測定方法におい
て、前記入射方向切り替え前の微小変位測定量と前記入
射方向切り替え後の微小変位測定量の測定は時間的に異
なることを特徴とする微小変位測定方法。
5. The micro-displacement measuring method according to claim 4, wherein the measurement of the micro-displacement measurement amount before switching the incident direction and the measurement of the micro-displacement measurement amount after switching the incident direction are temporally different. Displacement measurement method.
【請求項6】請求項4または5記載の微小変位測定方法
において、前記入射方向切り替え前の測定信号と前記入
射方向切り替え後の測定信号の振幅の差から物体の微小
変位測定量を補正することを特徴とする微小変位測定方
法。
6. The small displacement measuring method according to claim 4, wherein the small displacement measurement amount of the object is corrected from the difference in amplitude between the measurement signal before switching the incident direction and the measurement signal after switching the incident direction. Displacement measuring method characterized by.
【請求項7】物体上に固設された回折格子と、波長が互
いに僅かに異なる第1の波長の光と第2の波長の光を発
生する光源と、前記第1の波長の光を前記回折格子に所
定の角度で入射させる手段と、前記回折格子から発生す
る前記第1の波長の正反射光と前記第2の波長の光とを
ヘテロダイン干渉させて基準信号を生成する手段と、前
記第1の波長の回折光と前記第2の波長の光とをヘテロ
ダイン干渉させて測定信号を生成する手段と、前記基準
信号の時間変化を測定する第1の光検出手段と、前記測
定信号の時間変化を測定する第2の光検出手段と、前記
第1および第2の光検出手段によって検出された前記基
準信号と前記測定信号の位相差を算出、処理して前記物
体の変位に換算する信号処理回路を具備する微小変位測
定装置において、前記第1の波長と前記第2の波長を直
接干渉させて第2の基準信号を生成する手段と、前記第
2の基準信号の時間変化を測定する第3の光検出手段
と、前記第1および第3の光検出手段によって検出され
た前記基準信号と前記第2の基準信号の位相差を算出、
処理して前記物体の高さに換算する信号処理回路を具備
することを特徴とする微小変位測定装置。
7. A diffraction grating fixed on an object, a light source for generating light of a first wavelength and light of a second wavelength whose wavelengths are slightly different from each other, and the light of the first wavelength. Means for making the light incident on the diffraction grating at a predetermined angle; means for heterodyne interference between the specularly reflected light of the first wavelength and the light of the second wavelength generated from the diffraction grating to generate a reference signal; Means for heterodyne interfering diffracted light of a first wavelength and light of the second wavelength to generate a measurement signal; first light detection means for measuring the time change of the reference signal; Second photo-detecting means for measuring a time change, and a phase difference between the reference signal and the measurement signal detected by the first and second photo-detecting means is calculated and processed to be converted into the displacement of the object. In a small displacement measuring device equipped with a signal processing circuit, Note: means for directly interfering the first wavelength with the second wavelength to generate a second reference signal; third light detecting means for measuring a time change of the second reference signal; And calculating a phase difference between the second reference signal and the reference signal detected by the third light detecting means,
A small displacement measuring device comprising a signal processing circuit for processing and converting the height into the height of the object.
【請求項8】請求項7記載の微小変位測定装置におい
て、前記所定の角度が1次回折角の約半分であることを
特徴とする微小変位測定装置。
8. The micro-displacement measuring device according to claim 7, wherein the predetermined angle is about half the first-order diffraction angle.
【請求項9】請求項7または8記載の微小変位測定装置
において、前記第1の波長の光の入射方向をこのとき発
生する正反射光と逆向きに切り替えを行う手段と、入射
方向の切り替えを制御する制御回路を具備することを特
徴とする微小変位測定装置。
9. The micro-displacement measuring device according to claim 7, wherein the incident direction of the light of the first wavelength is switched to the opposite direction to the specularly reflected light generated at this time, and the incident direction is switched. A minute displacement measuring device comprising a control circuit for controlling
【請求項10】請求項9記載の微小変位測定装置におい
て、入射方向切り替え前の第1の波長の回折光と第2の
波長の光および入射方向切り替え後の第1の波長の回折
光と第2の波長の光をそれぞれヘテロダイン干渉させ
て、入射方向切り替え前の第1の測定信号と入射方向切
り替え後の第2の測定信号を生成する手段と、前記第1
の測定信号と前記第2の測定信号の振幅の差から微小変
位測定量を補正する手段を具備することを特徴とする微
小変位測定装置。
10. The micro-displacement measuring device according to claim 9, wherein the diffracted light of the first wavelength and the light of the second wavelength before the switching of the incident direction and the diffracted light of the first wavelength after the switching of the incident direction and the diffracted light of the first wavelength are selected. Means for interfering light of two wavelengths with each other by heterodyne to generate a first measurement signal before switching the incident direction and a second measurement signal after switching the incident direction;
A microdisplacement measuring device, comprising means for correcting the microdisplacement measurement amount from the difference in amplitude between the measurement signal and the second measurement signal.
JP28840092A 1992-10-27 1992-10-27 Minute displacement measuring method and its device Pending JPH06137814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28840092A JPH06137814A (en) 1992-10-27 1992-10-27 Minute displacement measuring method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28840092A JPH06137814A (en) 1992-10-27 1992-10-27 Minute displacement measuring method and its device

Publications (1)

Publication Number Publication Date
JPH06137814A true JPH06137814A (en) 1994-05-20

Family

ID=17729724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28840092A Pending JPH06137814A (en) 1992-10-27 1992-10-27 Minute displacement measuring method and its device

Country Status (1)

Country Link
JP (1) JPH06137814A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034353A (en) * 1998-11-30 2000-06-15 윤종용 Device for detecting minute displacement
KR20010097143A (en) * 2000-04-20 2001-11-08 권영섭 Apparatus and its method for displacement measurement by optical process
WO2007099769A1 (en) * 2006-02-24 2007-09-07 Daicel Chemical Industries, Ltd. Modified glucan derivative and molded object thereof
KR20110044784A (en) * 2008-08-15 2011-04-29 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Sheet thickness control
JP2017215429A (en) * 2016-05-31 2017-12-07 株式会社ニコン Position detection device and position detection method, exposure device and exposing method, and production method of device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034353A (en) * 1998-11-30 2000-06-15 윤종용 Device for detecting minute displacement
KR20010097143A (en) * 2000-04-20 2001-11-08 권영섭 Apparatus and its method for displacement measurement by optical process
WO2007099769A1 (en) * 2006-02-24 2007-09-07 Daicel Chemical Industries, Ltd. Modified glucan derivative and molded object thereof
KR20110044784A (en) * 2008-08-15 2011-04-29 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Sheet thickness control
JP2017215429A (en) * 2016-05-31 2017-12-07 株式会社ニコン Position detection device and position detection method, exposure device and exposing method, and production method of device

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
CA2039257C (en) Measuring method and apparatus
JP3352249B2 (en) Position shift detector
JPH03272406A (en) Alignment apparatus
US5682239A (en) Apparatus for detecting positional deviation of diffraction gratings on a substrate by utilizing optical heterodyne interference of light beams incident on the gratings from first and second light emitters
JPH02192114A (en) Aligner
JPH032504A (en) Aligning device
JP3077149B2 (en) Measuring apparatus, measuring method, exposure apparatus, exposure method, and circuit pattern chip
JP2001267211A (en) Method and device for detecting position and method and device for exposure using the method for detecting position
JPH06137814A (en) Minute displacement measuring method and its device
JPH0575044B2 (en)
JP3275273B2 (en) Alignment device and exposure device
US5164789A (en) Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
JPH0997758A (en) Aligning method
JPH02133913A (en) Alignment apparatus
JPH02272305A (en) Aligning device for exposing device
JP2931082B2 (en) Method and apparatus for measuring small displacement
JP2837532B2 (en) Method and apparatus for measuring small displacement
JP3506156B2 (en) Position detecting device, exposure device, and exposure method
JP2888233B2 (en) Position detecting apparatus, exposure apparatus and method
JPH1012530A (en) Apparatus for alignment
JPH05226224A (en) Alignment device of aligner
JP3339591B2 (en) Position detection device
JP3085248B2 (en) Position detecting device and position detecting method
JPH09293663A (en) Position detecting device and aligner provided with this device