JP2514699B2 - Position shift detection method and position shift detection device using diffraction grating - Google Patents

Position shift detection method and position shift detection device using diffraction grating

Info

Publication number
JP2514699B2
JP2514699B2 JP24282888A JP24282888A JP2514699B2 JP 2514699 B2 JP2514699 B2 JP 2514699B2 JP 24282888 A JP24282888 A JP 24282888A JP 24282888 A JP24282888 A JP 24282888A JP 2514699 B2 JP2514699 B2 JP 2514699B2
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction
diffraction gratings
positional deviation
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24282888A
Other languages
Japanese (ja)
Other versions
JPH0290006A (en
Inventor
雅則 鈴木
篤▲のぶ▼ 宇根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24282888A priority Critical patent/JP2514699B2/en
Publication of JPH0290006A publication Critical patent/JPH0290006A/en
Application granted granted Critical
Publication of JP2514699B2 publication Critical patent/JP2514699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、測長基準尺を回折格子とし、回折光を光ヘ
テロダイン干渉させて得られたビート信号の位相によ
り、回折格子間の相対的な位置ずれ量を検出する、例え
ば、半導体ICやLSIを製造するための露光装置等におい
て形成されたパタン間の重ね合わせ精度を測定する場合
に用いる位置ずれ検出方法、および位置ずれ検出装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention uses a diffraction grating as a length measuring standard, and a relative phase between the diffraction gratings by the phase of a beat signal obtained by interfering diffracted light with optical heterodyne. Related to a positional deviation detecting method and a positional deviation detecting device used for measuring the overlay accuracy between patterns formed in an exposure apparatus or the like for manufacturing a semiconductor IC or LSI Is.

〔従来の技術・発明が解決しようとする課題〕[Problems to be solved by conventional techniques and inventions]

従来、この種の位置ずれを測定する方法としては、第
一に測定のパタンを焼付けてパタン線幅測定装置でパタ
ンの相互間のずれを測定するものがあり、第二にピッチ
の異なる格子を集積回路上に焼付けて丁度重なる格子の
部分を読み取るバーニア方式のもの、また第三に集積回
路上に細長い抵抗体と電極と重ね合わせて形成し、その
抵抗体の各値を比較する方法、さらに第四に回析格子を
集積回路上に焼付けて回折光の位相差によりパタンのず
れ量を測定する方法などがある。
Conventionally, as a method for measuring this kind of positional deviation, there is a method of first baking the measurement pattern and measuring the mutual deviation of the patterns with a pattern line width measuring device, and secondly, using a grid having a different pitch. Vernier method of reading the portion of the grid that exactly burns on the integrated circuit, and thirdly, a method of forming a long and narrow resistor and electrode on the integrated circuit and comparing each value of the resistor, Fourth, there is a method in which a diffraction grating is printed on an integrated circuit and the amount of pattern deviation is measured by the phase difference of diffracted light.

ところが、第一のパタン線幅測定装置を用いた方法に
よると、通常その種の装置の精度としては、高々0.01μ
m程度の精度しか得られず、また、第二のバーニア方式
によっても、0.04μm程度の精度しか得られない問題が
ある。さらに、第三の抵抗測定法は、精度が得られる反
面、測定をするためにかなり複雑な処理工程を必要とす
る問題がある。
However, according to the method using the first pattern line width measuring device, the accuracy of such a device is usually 0.01 μ at most.
There is a problem that only an accuracy of about m can be obtained, and even the second vernier method can only obtain an accuracy of about 0.04 μm. Further, the third resistance measuring method has accuracy, but has a problem that a considerably complicated processing step is required for the measurement.

これに対し、第四の方法は、上記第一〜第三の問題を
考慮し、簡易且つ安価な方法として提案された方法であ
る。第4図に、このような位相差信号を用いて位置ずれ
量を測定する装置の一例を示す(公開特許 昭和62−56
818)。
On the other hand, the fourth method is a method proposed as a simple and inexpensive method in consideration of the above first to third problems. FIG. 4 shows an example of an apparatus for measuring the amount of positional deviation using such a phase difference signal (Japanese Patent Laid-Open No. 62-56).
818).

図において、ステージ1上に検出対象となるウエハ2
が載置されている。ウエハ2は、露光装置によって2回
焼付け、現像処理がなされており、かくして露光装置の
マスク又はレクチル上に形成された露光パタンがウエハ
2の表面に重ね焼きされている。ウエハ2には2枚の露
光パタンが焼付けられる際に、当該露光パタンの焼付け
位置を表す第5図に示すような2組の回折格子でなる回
折格子MPが形成される。第1の回折格子MA1及びMA2は第
1回目の露光処理時に露光パタンと一緒に焼付けられ、
y軸方向に互いに距離dだけ離れた位置に形成され且つ
x軸方向に延長する格子エレメントでなり、x方向に所
定間隔を保って形成されている。
In the figure, a wafer 2 to be detected is placed on a stage 1.
Is placed. The wafer 2 has been baked and developed twice by the exposure device, and the exposure pattern thus formed on the mask or reticle of the exposure device is overprinted on the surface of the wafer 2. When two exposure patterns are printed on the wafer 2, a diffraction grating MP composed of two sets of diffraction gratings as shown in FIG. 5 showing the printing positions of the exposure patterns is formed. The first diffraction gratings MA1 and MA2 are baked together with the exposure pattern during the first exposure process,
The grid elements are formed at positions separated from each other by a distance d in the y-axis direction and extend in the x-axis direction, and are formed at predetermined intervals in the x-direction.

これに対して、第2の回折格子MB1及びMB2は、第2回
目の重ね合わせ露光処理によって同様にしてy軸方向に
互いに距離dだけ離れた位置に形成され且つx軸方向に
延長する格子エレメントでなり、y軸方向に第1の回折
格子MA1及びMA2の間に互い違いに挿入されるように焼付
けられる。
On the other hand, the second diffraction gratings MB1 and MB2 are similarly formed by the second overlay exposure process at positions separated from each other by a distance d in the y-axis direction and extend in the x-axis direction. And is baked so as to be inserted alternately between the first diffraction gratings MA1 and MA2 in the y-axis direction.

ここで、y軸方向に第1の回折格子MA1、MA2、及び第
2の回折格子MB1、MB2間に位置ずれがなければ、第1の
回折格子MA1、MA2の各格子エレメントと、第2の回折格
子MB1、MB2の各格子エレメントとがx軸方向の同一直線
上に並ぶように形成され、このとき第1及び第2の露光
パタンに位置ずれがないと判定し得る。これに対し、第
1及び第2の露光パタンの位置がy軸方向にΔyだけ互
いにずれれば、この位置ずれが回折格子MA1、MA2及びMB
1、MB2の対応する格子エレメント間の位置ずれΔyとし
て現れるようになされている。
Here, if there is no misalignment between the first diffraction gratings MA1 and MA2 and the second diffraction gratings MB1 and MB2 in the y-axis direction, each grating element of the first diffraction gratings MA1 and MA2 and the second diffraction gratings MA1 and MA2 The diffraction gratings MB1 and MB2 are formed so as to be aligned with the respective grating elements on the same straight line in the x-axis direction. At this time, it can be determined that the first and second exposure patterns are not displaced. On the other hand, if the positions of the first and second exposure patterns deviate from each other by Δy in the y-axis direction, this misregistration causes the diffraction gratings MA1, MA2, and MB.
1 and MB2 appear as positional deviation Δy between corresponding lattice elements.

そこで第5図に示すような構成の回折格子MPに対して
互いに周波数の異なる2つのコヒーレント光束、LL1及
びLL2を照射し、回折格子MPによって発生された第1の
コヒーレント光LL1の1次回折光LF1の反射方向と第2の
コヒーレント光LL2の1次回折光LF2の反射方向とが一致
するように選定され、その方向はウエハ2の表面に対し
てほぼ垂直方向になるように選定されている。
Therefore, the first-order diffracted light LF1 of the first coherent light LL1 generated by the diffraction grating MP is emitted by irradiating the diffraction grating MP having the configuration shown in FIG. 5 with two coherent light beams LL1 and LL2 having different frequencies. Of the first coherent light LL2 and the reflection direction of the first-order diffracted light LF2 of the second coherent light LL2 are selected to coincide with each other, and the direction is substantially vertical to the surface of the wafer 2.

ここで互いに周波数の異なる2つのコヒーレント光
束、LL1及びLL2は、2つの超音波変調器14、18によって
生成される。即ち、レーザー11において発生されたレー
ザー光は、コリメータレンズ系12A、12Bを通って分路器
(ビームスプリッタ)13に入射される。分路器13は、レ
ーザを2つに分けて第1のレーザ光を超音波変調器14に
よって変調信号S1(第6図参照。変調信号S1は発信器3
4、37及び周波数変換回路38によって電気的に生成され
る。)によってその周波数f1だけ周波数をシフト変調さ
せた後、ミラー15、16によって折り曲げながらウエハ2
の回折格子MP上に第1のコヒーレント光束LL1として照
射させる。
Here, the two coherent light fluxes LL1 and LL2 having different frequencies are generated by the two ultrasonic modulators 14 and 18. That is, the laser light generated by the laser 11 is incident on the shunt (beam splitter) 13 through the collimator lens systems 12A and 12B. The shunt 13 divides the laser into two and modulates the first laser light by the ultrasonic modulator 14 with a modulation signal S1 (see FIG. 6. The modulation signal S1 is the oscillator 3).
Electrically generated by 4, 37 and the frequency conversion circuit 38. ), The frequency is shifted and modulated by the frequency f1, and then the wafer 2 is bent by the mirrors 15 and 16.
The diffraction grating MP is irradiated with the first coherent light beam LL1.

また、分路器13は、第2のレーザー光をミラー17を介
して超音波変調器18に入射し、変調信号S2(第6図参
照。変調信号S2は発信器37によって得られる信号。)に
よってその周波数f2だけ周波数をシフト変調させた後、
ミラー19、20によって折り曲げながらウエハ2の回折格
子MP上に第2のコヒーレント光束LL2として照射させ
る。
Further, the shunt device 13 causes the second laser light to enter the ultrasonic modulator 18 via the mirror 17, and a modulation signal S2 (see FIG. 6; the modulation signal S2 is a signal obtained by the oscillator 37). After shift-modulating the frequency by the frequency f2 by
While being bent by the mirrors 19 and 20, the diffraction grating MP of the wafer 2 is irradiated with the second coherent light beam LL2.

かくして回折格子MPによって発生された回折光LF1及
びLF2は互いに干渉し、対物レンズ3、絞り4を通り、
さらにハーフミラー5を通って光電変換素子列6に入射
する。ハーフミラー5は、絞り4を通った回折光を接眼
鏡7に折り返して干渉縞を観察し得るようになされてい
る。光電変換素子列6は、回折格子MPの各エレメントMA
1、MA2、MB1、MB2に対応して回折光の干渉光をそれぞれ
光電変換素子DA1、DA2、DB1、DB2で検出し、周波数Δf
(=f1−f2)の4つのビート信号SA1、SA2、SB1、SB2を
生成し、これら4つのビート信号は、位置ずれ検出制御
回路25に送られる。
Thus, the diffracted lights LF1 and LF2 generated by the diffraction grating MP interfere with each other and pass through the objective lens 3 and the diaphragm 4,
Further, the light enters the photoelectric conversion element array 6 through the half mirror 5. The half mirror 5 is configured to be able to return the diffracted light that has passed through the diaphragm 4 to the eyepiece 7 and observe interference fringes. The photoelectric conversion element array 6 includes each element MA of the diffraction grating MP.
Corresponding to 1, MA2, MB1 and MB2, the interference light of the diffracted light is detected by photoelectric conversion elements DA1, DA2, DB1 and DB2 respectively, and the frequency Δf
Four beat signals SA1, SA2, SB1 and SB2 of (= f1−f2) are generated, and these four beat signals are sent to the positional deviation detection control circuit 25.

第6図に位置ずれ検出制御回路25の詳細構成図を示
す。位置ずれ検出制御回路25では、ビート信号SA1、SA
2、SB1、SB2の位相をPLL回路32A、32B、32C、32Dでそれ
ぞれ位相ロックし、ノイズを除去した周波数Δf(=f
0)の位相出力SFA、SFB、SFC、SFDを得る。この位相出
力SFA、SFB、SFC、SFDの位相と、発信器34から得られる
基準周波数出力S0の位相とを位相差検出回路33A、33B、
33C、33Dで比較し、それぞれ位相差α、β、γ、δに基
づいて、位置ずれ算定回路35により位置ずれ量Δyを次
式 Δy=(d/(4π))・((3β−3γ−α+δ)/4)
(1) によって演算し、位置ずれ量を表示装置36により表示す
る。ここで、dは回折格子MPのピッチを表す。
FIG. 6 shows a detailed configuration diagram of the positional deviation detection control circuit 25. In the position shift detection control circuit 25, the beat signals SA1 and SA
The frequency Δf (= f where noise is eliminated by phase-locking the phases of 2, SB1 and SB2 with PLL circuits 32A, 32B, 32C and 32D, respectively.
0) Phase outputs SFA, SFB, SFC, SFD are obtained. This phase output SFA, SFB, SFC, the phase of the SFD and the phase of the reference frequency output S0 obtained from the oscillator 34 phase difference detection circuit 33A, 33B,
33C and 33D, and based on the phase differences α, β, γ, and δ, the positional deviation calculation circuit 35 calculates the positional deviation amount Δy by the following expression Δy = (d / (4π)) · ((3β−3γ− α + δ) / 4)
The calculation is performed according to (1), and the amount of positional deviation is displayed on the display device 36. Here, d represents the pitch of the diffraction grating MP.

ところが、前記第4の方法では、電子回路により生成
させた基準信号を用いて位相差を求めているため、検出
光学系の微小揺らぎ、光路系の空気雰囲の温度、気圧等
の変動の影響を受けやすく、位相差信号が変動し位置ず
れ量の誤差要因となる。また、光学系と回折格子との傾
きの影響を前記(1)式により消去する方法では、位相
差を検出する4つの電子回路系の不安定性の他に相互の
回路特性の違いによる演算誤差を含みやすく、高精度の
位置ずれ検出が難しいという問題がある。
However, in the fourth method, since the phase difference is obtained by using the reference signal generated by the electronic circuit, the influence of the minute fluctuation of the detection optical system, the temperature of the air atmosphere of the optical path system, the fluctuation of the atmospheric pressure and the like. Therefore, the phase difference signal fluctuates, which causes an error in the position shift amount. Further, in the method of eliminating the influence of the tilt between the optical system and the diffraction grating by the above formula (1), in addition to the instability of the four electronic circuit systems for detecting the phase difference, the calculation error due to the difference in the mutual circuit characteristics is caused. There is a problem in that it is easy to include and it is difficult to detect the positional deviation with high accuracy.

本発明の目的は、上述の欠点を除去するため、第一、
および第二の回折格子を測定基準尺として用い、該回折
格子に対して位置ずれ量測定用の第三の回折格子を形成
し、前記第一、第二、および第三の回折格子に、周波数
が互いにわずかに異なる2波長の単色光を入射させ、該
回折格子から生じる回折光を光ヘテロダイン干渉させ、
前記第一、第二、および第三の回折格子からそれそれ第
一、第二、および第三の光ヘテロダイン干渉ビート信号
を生成し、これら第一、第二、および第三の光ヘテロダ
イン干渉ビート信号間の位相差変化を検出することによ
って、前記第一、第二、および第三の回折格子間の位置
ずれ量を測定することにより、従来のものよりも、高安
定、高精度である回折格子による位置ずれ検出方法およ
び位置ずれ検出装置を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, firstly,
And the second diffraction grating is used as a measurement standard, and a third diffraction grating for measuring the amount of positional deviation is formed with respect to the diffraction grating, and the first, second, and third diffraction gratings have a frequency Enter monochromatic light of two wavelengths slightly different from each other, and diffracted light generated from the diffraction grating causes optical heterodyne interference,
Generating first, second, and third optical heterodyne interference beat signals from the first, second, and third diffraction gratings, respectively, and generating first, second, and third optical heterodyne interference beat signals. By measuring the amount of positional deviation between the first, second, and third diffraction gratings by detecting the change in the phase difference between the signals, the diffraction that is more stable and more accurate than the conventional one. It is an object of the present invention to provide a positional deviation detection method and a positional deviation detection device using a grid.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の位置ずれ検出方法は、第一、および第二の回
折格子を測定基準尺として用い、該回折格子に対して位
置ずれ量測定用の第三の回折格子を形成し、該回折格子
からそれぞれ生じる第一、第二、および第三の光ヘテロ
ダイン干渉ビート信号間の位相差変化を検出することに
よって、前記第一、第二、および第三の回折格子間の位
置ずれ量を測定することを特徴とし、第一と第二の光ヘ
テロダイン干渉ビート信号間の位相差を基準値とし、第
二と第三の光ヘテロダイン干渉ビート信号間の位相差と
の差により、回折格子間の相対的位置ずれ量を検出でき
る特徴がある。
The position deviation detecting method of the present invention uses the first and second diffraction gratings as a measurement reference scale, forms a third diffraction grating for measuring the position deviation amount with respect to the diffraction grating, and Measuring the amount of misalignment between the first, second, and third diffraction gratings by detecting the resulting phase difference changes between the first, second, and third optical heterodyne interference beat signals. The phase difference between the first and second optical heterodyne interference beat signals is used as a reference value, and the relative difference between the diffraction gratings is determined by the difference between the phase difference between the second and third optical heterodyne interference beat signals. There is a feature that the amount of displacement can be detected.

また、本発明の位置ずれ検出装置は、物体上に固定、
或は形成した第一、および第二の回折格子と、該回折格
子に対して位置合わせをして固定、或は形成した第三の
回折格子を設けることを特徴とし、周波数が互いにわず
かに異なる2波長の単色光を発生する光源と、2波長の
単色光を前記第一、第二、および第三の回折格子に入射
させる入射手段と、前記第一、第二、および第三の回折
格子から生じる2波長の回折光を合成し、該回折格子か
らそれぞれ第一、第二、および第三の光ヘテロダイン干
渉ビート信号を生成する光合成検出手段と、光合成検出
手段によって生成された前記第一、第二、および第三の
光ヘテロダイン干渉ビーム信号間の位相差信号を算出処
理する信号処理装置との装置構成から、前記第一、第
二、および第三の回折格子間の位置ずれ量を測定できる
特徴がある。
Further, the position shift detection device of the present invention is fixed on an object,
Alternatively, the first and second diffraction gratings formed and the third diffraction grating that is aligned with and fixed to the diffraction grating, or the third diffraction grating that is formed are provided, and the frequencies are slightly different from each other. A light source for generating monochromatic light of two wavelengths, an incidence means for injecting monochromatic light of two wavelengths into the first, second and third diffraction gratings, and the first, second and third diffraction gratings From the diffraction grating to generate first, second, and third optical heterodyne interference beat signals, respectively, and the first generated by the optical synthesis detection means. From the device configuration of the signal processing device that calculates and processes the phase difference signal between the second and third optical heterodyne interference beam signals, measure the amount of positional deviation between the first, second, and third diffraction gratings. There is a feature that can be done.

本発明は基準回折格子間の位相差と測定用回折格子間
の位相差との差により、基準回折格子と測定用回折格子
間の相対的位置ずれ量、即ち、半導体ICやLSIを製造す
るための露光装置等において形成されたパタン間の重ね
合わせ精度を測定するものである。従って、本発明では
測定基準となるビート信号が相対的位置ずれ量を測定す
るビーム信号と同一の光学系により生成されるため、検
出光学系の微小揺らぎ、光路系の空気の温度、気圧等の
変動の影響を除去することができ、高安定、高精度で相
対的位置ずれ量を検出できる。
The present invention is intended to manufacture a semiconductor IC or LSI, which is a relative positional deviation amount between the reference diffraction grating and the measurement diffraction grating due to the difference between the phase difference between the reference diffraction grating and the measurement diffraction grating. The overlay accuracy between the patterns formed in the exposure apparatus or the like is measured. Therefore, in the present invention, since the beat signal serving as the measurement reference is generated by the same optical system as the beam signal for measuring the relative positional deviation amount, a small fluctuation of the detection optical system, the temperature of the air in the optical path system, the atmospheric pressure, etc. The influence of fluctuation can be eliminated, and the relative displacement amount can be detected with high stability and high accuracy.

〔実施例〕〔Example〕

以下、第1図ないし第3図を参照して、本発明の実施
例を説明する。なお、第4図ないし第6図と同一の符号
は同一の部材を示すものとする。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. The same reference numerals as those in FIGS. 4 to 6 denote the same members.

第1図は本発明に係わる位置ずれ検出装置の実施例を
示すものである。第1図において、2波長直交偏光レー
ザー光源40から発したレーザー光は、ミラー41を介し
て、偏光ビームスプリッター42により、それぞれ水平成
分(p偏光成分)、または垂直成分(s偏光成分)のみ
を有する直線偏光でしかも周波数がわずかに異なる2波
長の光に分離される。このうちp偏光成分は、ミラー43
を介し、円筒レンズ44と対物レンズ45とからなる光学系
により楕円状ビーム46となり、xyステージ51上に設置し
たウエハ47上に形成された回折格子48に回折格子面に垂
直な法線方向(z方向)に対し一次回折角の方向から入
射する。一方、s偏光成分は、同様に、円筒レンズ49と
対物レンズ45とからなる光学系により楕円状ビーム50と
なり、回折格子面に垂直な法線方向(Z方向)に対し楕
円状ビーム46と対称の一次回折角の方向から回折格子48
に入射する。
FIG. 1 shows an embodiment of the positional deviation detecting device according to the present invention. In FIG. 1, the laser light emitted from the two-wavelength orthogonal polarization laser light source 40 passes through a mirror 41 and a polarization beam splitter 42 to generate only a horizontal component (p-polarized component) or a vertical component (s-polarized component). It is split into two linearly polarized lights having two different wavelengths. Of these, the p-polarized component is the mirror 43
An elliptical beam 46 is formed by an optical system composed of a cylindrical lens 44 and an objective lens 45 via, and a normal direction perpendicular to the diffraction grating surface (a direction normal to a diffraction grating surface 48 is formed on a diffraction grating 48 formed on a wafer 47 placed on an xy stage 51. It is incident from the direction of the first-order diffraction angle with respect to the z direction). On the other hand, similarly, the s-polarized component becomes an elliptical beam 50 by the optical system including the cylindrical lens 49 and the objective lens 45, and is symmetrical with the elliptical beam 46 with respect to the normal direction (Z direction) perpendicular to the diffraction grating surface. From the direction of the first-order diffraction angle of the diffraction grating 48
Incident on.

回折格子48は、第2図に示すように露光装置による2
回の焼付け、現像処理により形成されたパタンである。
即ち、ウエハ47には、2枚の露光装置のマスク又はレチ
クル上に形成された2種類の露光パタンが重ね焼きされ
ている。2種類の露光パタンが焼付けられる際に、当該
露光パタンの焼付け位置を表す第2図に示すような3組
の回折格子でなる回折格子が形成される。第1の回折格
子HD1及びHD2は第1回目の露光処理時に露光パタンと一
緒に焼付けられ、y軸方向に互いに距離dだけ離れた位
置に形成され且つx軸方向に延長する格子エレメントで
なり、x方向に所定間隔を保って形成されている。
As shown in FIG. 2, the diffraction grating 48 is provided by the exposure device.
It is a pattern formed by a single baking and development process.
That is, the wafer 47 is overlaid with two types of exposure patterns formed on the masks or reticles of two exposure apparatuses. When two types of exposure patterns are printed, a diffraction grating composed of three sets of diffraction gratings as shown in FIG. 2 showing the printing positions of the exposure patterns is formed. The first diffraction gratings HD1 and HD2 are grating elements that are baked together with the exposure pattern during the first exposure process, are formed at positions separated from each other by a distance d in the y-axis direction, and extend in the x-axis direction, It is formed at a predetermined interval in the x direction.

これに対して、第3の回折格子HD3は、第2回目の重
ね合わせ露光処理によって同様にしてy軸方向に互いに
距離dだけ離れた位置に形成され、y軸方向に第1の回
折格子HD1及び第2の回折格子HD2に対し、x方向に所定
間隔を保って形成されている。
On the other hand, the third diffraction grating HD3 is similarly formed at the positions separated from each other by the distance d in the y-axis direction by the second overlay exposure processing, and the first diffraction grating HD1 is formed in the y-axis direction. And the second diffraction grating HD2 are formed at a predetermined interval in the x direction.

ここで、y軸方向について、第1の回折格子HD1、及
び第2の回折格子HD2と、第3の回折格子HD3との間に位
置ずれがなければ、第1、および第2の回折格子HD1、H
D2の各格子エレメントと、第3の回折格子HD3の格子エ
レメントとがx軸方向の同一直線上に並ぶように形成さ
れ、このとき第1回目及び第2回目の露光パタンに位置
ずれがないと判定し得る。これに対し、第1回目及び第
2回目の露光パタンの位置がy軸方向にΔyだけ互いに
ずれれば、この位置ずれが回折格子HD1、HD2とHD3の対
応する格子エレメント間の位置ずれΔyとして現れるよ
うになされている。
Here, in the y-axis direction, if there is no displacement between the first diffraction grating HD1 and the second diffraction grating HD2 and the third diffraction grating HD3, the first and second diffraction gratings HD1 , H
Each grating element of D2 and the grating element of the third diffraction grating HD3 are formed so as to be aligned on the same straight line in the x-axis direction. At this time, if the first and second exposure patterns are not misaligned. You can judge. On the other hand, if the positions of the first and second exposure patterns deviate from each other by Δy in the y-axis direction, this positional deviation is regarded as the positional deviation Δy between the corresponding grating elements of the diffraction gratings HD1, HD2 and HD3. It is designed to appear.

3つの回折格子HD1、HD2、HD3は、2波長の各入射光4
6、50の同一楕円ビームスポット52内に配置されてい
る。また、回折格子ピッチdは互いに等しく設定されて
いる。
The three diffraction gratings HD1, HD2, and HD3 have two wavelengths for each incident light 4
6 and 50 are arranged in the same elliptical beam spot 52. The diffraction grating pitch d is set to be equal to each other.

入射光46、50により、3つの回析格子HD1、HD2、HD3
からそれぞれZ方向に3つの2波長の一次回折光の合成
回折光、つまり第1の回折格子HD1による入射光46の−
1次回折光と、入射光50の−1次回折光との光ヘテロダ
イン干渉合成回折光53と、第2り回折格子HD2から同様
にZ方向に得られる光ヘテロダイン干渉合成回析光54
と、第3の回折格子HD3から同様にZ方向に得られる光
ヘテロダインか干渉成回折光55とが得られる。3つの合
成光53、54、55は、ハーフミラー56により2方向に分割
さられた後、一方は、プリズム状ミラー57、58、59によ
り分離され、それぞれ集光レンズ60、61、62、偏光板6
3、64、65介して光検出66、68で検出され、光ヘテロダ
イン干渉ビート信号HY1、HY2、HY3として信号処理制御
部69に入力される。ハーフミラー56により分割された他
の一方は、接眼鏡70により回折光を観察し得るようにな
されている。
Three diffraction gratings HD1, HD2, HD3 due to incident light 46, 50
From each of the three diffracted lights of the first-order diffracted lights of two wavelengths in the Z direction, that is, the incident light 46 by the first diffraction grating HD1
Optical heterodyne interference combined diffracted light 53 of the first-order diffracted light and the minus first-order diffracted light of the incident light 50, and optical heterodyne interference combined diffracted light 54 similarly obtained in the Z direction from the second diffraction grating HD2.
And optical heterodyne or interference-formed diffracted light 55 which is also obtained in the Z direction from the third diffraction grating HD3. The three combined lights 53, 54, 55 are divided and exposed in two directions by the half mirror 56, and one of them is separated by the prism-shaped mirrors 57, 58, 59, and the condensing lenses 60, 61, 62, and the polarized light, respectively. Board 6
It is detected by the photodetectors 66 and 68 via 3, 64 and 65, and is input to the signal processing control unit 69 as optical heterodyne interference beat signals HY1, HY2 and HY3. The other one divided by the half mirror 56 is configured so that the diffracted light can be observed by the eyepiece 70.

信号処理制御部69では、第1、第2の回折格子HD1、H
D2から得られる光ヘテロダイン干渉ビート信号HY1、HY2
についてHY1に対するHY2の位相差ΔφOと、第3の回折
格子HD3から得られる光ヘテロダイン干渉ビート信号HY3
とHY2について、HY2に対するHY3の位相差ΔφYとから
回折格子HD1、HD2とHD3との位置ずれ量Δyに対応した
位相差Δφを次式より求める。
In the signal processing control unit 69, the first and second diffraction gratings HD1 and H
Optical heterodyne interference beat signals HY1 and HY2 obtained from D2
About HY1, the phase difference ΔφO of HY2 and the optical heterodyne interference beat signal HY3 obtained from the third diffraction grating HD3
And HY2, the phase difference Δφ corresponding to the positional deviation amount Δy between the diffraction gratings HD1, HD2 and HD3 is calculated from the phase difference ΔφY of HY3 with respect to HY2 by the following formula.

Δφ=ΔφY−ΔφO =2π・2・Δy/d (2) ここで、Δφ0は位置ずれ検出光学系と回折格子HD
1、HD2、及びHD3とのxy平面の回転ずれにより生ずる位
相差である。即ち、本来位置ずれ検出光学系は、第3図
(a)に示すような各格子エレメントが同一直線上に並
ぶように形成された基準回折格子71、72、73をxyステー
ジ上に格子エレメントの方向をx軸に平行になるように
設定して調整し、光学系の重なり合った2つの入射楕円
ビームの長径方向を光学系の基準線とした時に、光学系
の基準線と回折格子の格子エレメントの中心線とが一致
するに設定されているものとする。従って、回折格子の
格子エレメントの方向がx軸に平行に設定されているな
らば、上記(2)式でΔφO=0となる。また、第3図
(b)に示すように、回折格子の格子エレメントの方向
がx軸の方向に対してずれている場合は、回折格子の格
子エレメントの方向が完全に一致し、一直線上に並んで
いる第1の回折格子HD1と第2の回折格子HD2との間に
も、HY1とHY2とに位相差ΔφOを生じる。従って、光ヘ
テロダイン干渉ビート信号HY3とHY2について、HY2に対
するHY3の位相差ΔφYから回転ずれから生じた誤差分
ΔφOを減じる必要がある。信号処理制御部69では、上
記(2)式よりΔyを求め、その値の表示等することは
容易に可能である。
Δφ = ΔφY−ΔφO = 2π · 2 · Δy / d (2) where Δφ0 is the displacement detection optical system and the diffraction grating HD
It is the phase difference caused by the rotational shift of the xy plane from 1, HD2, and HD3. That is, the misregistration detection optical system originally has the reference diffraction gratings 71, 72, 73 formed so that the respective grating elements are arranged on the same straight line as shown in FIG. Adjusting the direction so that it is parallel to the x-axis, and the major axis direction of the two overlapping elliptical beams of the optical system being the reference line of the optical system, the reference line of the optical system and the grating element of the diffraction grating The center line of is set to match. Therefore, if the direction of the grating element of the diffraction grating is set parallel to the x-axis, then ΔφO = 0 in the above equation (2). Further, as shown in FIG. 3B, when the direction of the grating element of the diffraction grating is deviated from the direction of the x-axis, the directions of the grating element of the diffraction grating are completely coincident with each other and are aligned on a straight line. A phase difference ΔφO is also generated between HY1 and HY2 between the first diffraction grating HD1 and the second diffraction grating HD2 which are lined up. Therefore, for the optical heterodyne interference beat signals HY3 and HY2, it is necessary to subtract the error ΔφO caused by the rotation deviation from the phase difference ΔφY of HY3 with respect to HY2. The signal processing control unit 69 can easily find Δy from the above equation (2) and display the value.

なお、上記の実施例においては、2波長の単色光光源
として2波長直交偏光レーザー光源を用いたが、2波長
の単色光としてブラッグセルなどの音響光学素子を用い
て生成した光を用いても同様の効果を得ることができ
る。この場合、音響光学素子と半導体レーザーとを組合
せることにより、2波長単色光光源のコンパクト化が可
能である。さらに、2波長レーザー光の入射光学系に偏
波面保存光ファイバー等の光ファイバーを用いて、移動
量検出光学系本体と2波長単色光光源とを分離させ、両
者を光ファイバーで結合させる等の技術を適用させるこ
とにより、位置検出光学系をさらにコンパクト化させる
ことが可能である。
In the above embodiment, the two-wavelength orthogonal polarization laser light source is used as the two-wavelength monochromatic light source, but the same is true even if light generated using an acousto-optic device such as a Bragg cell is used as the two-wavelength monochromatic light. The effect of can be obtained. In this case, the dual wavelength monochromatic light source can be made compact by combining the acoustooptic device and the semiconductor laser. Furthermore, by using an optical fiber such as a polarization-preserving optical fiber for the incident optical system of the two-wavelength laser light, the movement amount detection optical system main body and the two-wavelength monochromatic light source are separated, and the technology of connecting both with an optical fiber is applied. By doing so, the position detection optical system can be made more compact.

また、回折格子への入射光の方向、及び回折格子から
の回折光の方向が回折格子面に垂直なyz平面に含まれる
例について説明したが、回折格子への入射光の方向、及
び回折格子からの回折光の方向として、回折格子面に垂
直なyz平面に含まれない斜め入射、及び斜め出射の2波
長の回折光を光学的に合成して光ヘテロダイン干渉ビー
ト信号を検出するようにしても同様の効果を得ることが
できる。
Also, an example has been described in which the direction of the incident light to the diffraction grating and the direction of the diffracted light from the diffraction grating are included in the yz plane that is perpendicular to the diffraction grating surface, but the direction of the incident light to the diffraction grating and the diffraction grating As for the direction of the diffracted light from, the optical heterodyne interference beat signal is detected by optically combining the diffracted light of two wavelengths, that is, the oblique incidence and the oblique emission, which are not included in the yz plane perpendicular to the diffraction grating surface. Can also obtain the same effect.

さらになお、本発明における回折格子としては、吸収
型回折格子、位相型回折格子のいずれを用いてもよく、
またバイナリー回折格子に限らず正弦波状回折格子、フ
レーズ回折格子等、種々の回折格子を用いることが可能
であるし、回折格子として透過型の他に反射型回折格子
を用いることも可能である。
Furthermore, as the diffraction grating in the present invention, either an absorption type diffraction grating or a phase type diffraction grating may be used,
In addition to the binary diffraction grating, various diffraction gratings such as a sinusoidal diffraction grating and a phrase diffraction grating can be used, and a reflection type diffraction grating can be used as the diffraction grating in addition to the transmission type.

さらにまた、上記の実施例においては、回折格子とし
て格子エレメントがx軸の方向に平行に並んだものを用
いているが、x軸に垂直なy軸の方向にも同様の回折格
子を形成し、x、yの2方向の位置ずれ量Δx、Δyを
検出できるように光学系をx、yの2方向に設定するこ
とも可能である。この場合、回折格子として前記実施例
のようなものの他に市松模様の回折格子によりx、yの
2方向兼用にしても可能である。
Furthermore, in the above-described embodiment, the diffraction grating having the grating elements arranged in parallel to the x-axis direction is used, but a similar diffraction grating is formed in the y-axis direction perpendicular to the x-axis. , X, y, the optical system can be set in the two directions of x and y so that the positional deviation amounts Δx and Δy in the two directions of x, y can be detected. In this case, in addition to the diffraction grating of the above-mentioned embodiment, a checkered diffraction grating can be used for both the x and y directions.

〔発明の効果〕〔The invention's effect〕

以上で詳細に説明したように、本発明によれば、基準
となる第一、第二の回折格子対を設け、さらに位置ずれ
量測定の第三の回折格子設定し、これら回折格子に周波
数がわずかに異なる2波長の単色光を入射し、これら回
析格子から生じる3つの光ヘテロダイン干渉光から基準
となる第一、第二の回折格子対から得られた光ヘテロダ
イン干渉ビーム信号間の位相差を基準値とし、第二と第
三の光ヘテロダイン干渉ビート信号間の位相差との差に
より、回折格子間の相対的位置ずれ量検出することによ
り、検出光学系の微小揺らぎ、光路系の空気の温度、気
圧等の変動の影響を除去することができ、高安定、高精
度で相対的位置ずれ量を検出できる。
As described in detail above, according to the present invention, the first and second diffraction grating pairs serving as the reference are provided, and the third diffraction grating for measuring the positional deviation amount is set, and the frequency is set to these diffraction gratings. The phase difference between the optical heterodyne interference beam signals obtained from the first and second diffraction grating pairs, which are the reference from the three optical heterodyne interference lights generated from these diffraction gratings by injecting monochromatic lights of slightly different two wavelengths. Is used as a reference value, and by detecting the relative positional deviation amount between the diffraction gratings based on the difference between the phase difference between the second and third optical heterodyne interference beat signals, minute fluctuations in the detection optical system and air in the optical path system are detected. The influence of fluctuations in temperature, atmospheric pressure, etc. can be eliminated, and the relative positional deviation amount can be detected with high stability and high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例として示した位置ずれ検出装
置の構成図、第2図は第1図の回折格子48の詳細構成を
示す図、第3図(a),(b)は第1図の回折格子48の
詳細構成を示す別の図、第4図は従来の位置ずれ検出装
置の構成図、第5図は第4図の回折格子MPの詳細構成を
示す図、第6図は第4図の位置ずれ検出制御回路25の詳
細構成を示すブロック図である。 40……2波長直交偏光レーザー光源、41,43……ミラ
ー、42……偏光ビームスプリッター、44,49……円筒レ
ンズ、45……対物レンズ、46,50……楕円状入射ビー
ム、47……ウェハ、48……回折格子、51……xyステー
ジ、52……楕円ビームスポット、53,54,55……光ヘテロ
ダイン干渉合成回折光、56……ハーフミラー、57,58,59
……プリズム状ミラー、60,61,62……集光レンズ、63,6
4,65……偏光板、66,67,68……光検出器、69……信号処
理制御部、70……接眼鏡、71,72,73……基準回折格子。
FIG. 1 is a block diagram of a positional deviation detecting device shown as an embodiment of the present invention, FIG. 2 is a diagram showing a detailed structure of the diffraction grating 48 of FIG. 1, and FIGS. 3 (a) and 3 (b) are Another diagram showing the detailed configuration of the diffraction grating 48 of FIG. 1, FIG. 4 is a configuration diagram of a conventional positional deviation detecting device, FIG. 5 is a diagram showing the detailed configuration of the diffraction grating MP of FIG. 4, and FIG. The figure is a block diagram showing a detailed configuration of the positional deviation detection control circuit 25 of FIG. 40 …… 2-wavelength orthogonal polarization laser light source, 41,43 …… Mirror, 42 …… Polarization beam splitter, 44,49 …… Cylinder lens, 45 …… Objective lens, 46,50 …… Elliptical incident beam, 47… … Wafer, 48 …… Diffraction grating, 51 …… xy stage, 52 …… Elliptical beam spot, 53,54,55 …… Optical heterodyne interference synthetic diffracted light, 56 …… Half mirror, 57,58,59
...... Prism mirror, 60,61,62 …… Condensing lens, 63,6
4,65 …… Polarizer, 66,67,68 …… Photodetector, 69 …… Signal processing control unit, 70 …… Ocular, 71,72,73 …… Reference diffraction grating.

フロントページの続き (56)参考文献 特開 昭63−172904(JP,A) 特開 昭61−215905(JP,A) 特開 昭62−58628(JP,A) 特公 平3−17212(JP,B2) 特公 昭62−27730(JP,B2) 特公 平2−63288(JP,B2) 特公 平7−49926(JP,B2) 特公 平6−60808(JP,B2) 特公 平7−99325(JP,B2) 特公 平6−63739(JP,B2) 特公 平7−104131(JP,B2)Continuation of the front page (56) Reference JP-A-63-172904 (JP, A) JP-A-61-215905 (JP, A) JP-A-62-58628 (JP, A) JP-B-3-17212 (JP , B2) JP 62-27730 (JP, B2) JP Hei 2-63288 (JP, B2) JP Hei 7-49926 (JP, B2) JP Hei 6-60808 (JP, B2) JP 7-99325 (JP, B2) JP 6-63739 (JP, B2) JP 7-104131 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体上に固定、或は形成した第一、および
第二の回折格子を測定基準尺として用い、該回折格子に
対して位置合わせをして第三の回折格子を形成し、前記
第一、第二、および第三の回折格子に、周波数が互いに
わずかに異なる2波長の単色光を入射させ、該回折格子
から生じる回折光を光ヘテロダイン干渉させ、前記第
一、第二、および第三の回折格子からそれぞれ第一、第
二、および第三のヘテロダイン干渉ビート信号を生成
し、これら第一、第二、および第三の光ヘテロダイン干
渉ビート信号間の位相差変化を検出することによって、
前記第一、第二、および第三の回折格子間の位置ずれ量
を測定することを特徴とする回析格子による位置ずれ検
出方法。
1. A first diffraction grating and a second diffraction grating fixed or formed on an object are used as a measuring standard, and a third diffraction grating is formed by aligning with the diffraction grating. The first, second, and third diffraction gratings are made to enter monochromatic light of two wavelengths whose frequencies are slightly different from each other, and diffracted light generated from the diffraction gratings is caused to undergo optical heterodyne interference. First, second, and third heterodyne interference beat signals are generated from the third and third diffraction gratings, respectively, and a phase difference change between these first, second, and third optical heterodyne interference beat signals is detected. By
A positional deviation detection method using a diffraction grating, wherein the positional deviation amount between the first, second and third diffraction gratings is measured.
【請求項2】物体上に固定、或は形成した第一、および
第二の回折格子と、該回折格子に対して位置合わせをし
て固定、或は形成した第三の回折格子と、周波数が互い
にわずかに異なる2波長の単色光を発生する光源と、そ
の光源から発せられた2波長の単色光を前記第一、第
二、および第三の回折格子に入射させる入射手段と、前
記第一、第二、および第三の回折格子から生じる2波長
の回析光を合成し、該回折格子からそれぞれ第一、第
二、および第三の光ヘテロダイン干渉ビート信号を生成
する光合成検出手段と、光合成検出手段によって生成さ
れた前記第一、第二、および第三の光ヘテロダイン干渉
ビート信号間の位相差信号を算出処理して前記第一、第
二、および第三の回折格子間の位置ずれ量を測定する信
号処理装置とを具備してなることを特徴とする回析格子
による位置ずれ検出装置。
2. A first diffraction grating and a second diffraction grating fixed or formed on an object, and a third diffraction grating fixed or formed by aligning with the diffraction grating, and a frequency. Light sources for generating monochromatic light of two wavelengths slightly different from each other, an incidence means for causing monochromatic light of two wavelengths emitted from the light source to enter the first, second, and third diffraction gratings, and And a photosynthesis detecting means for synthesizing two wavelengths of diffracted lights generated from the first, second, and third diffraction gratings, and generating first, second, and third optical heterodyne interference beat signals from the diffraction gratings, respectively. , A position between the first, second, and third diffraction gratings by performing a calculation process of a phase difference signal between the first, second, and third optical heterodyne interference beat signals generated by the photosynthesis detection means. And a signal processing device for measuring the amount of deviation Positional deviation detecting apparatus according grating characterized by comprising.
JP24282888A 1988-09-28 1988-09-28 Position shift detection method and position shift detection device using diffraction grating Expired - Fee Related JP2514699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24282888A JP2514699B2 (en) 1988-09-28 1988-09-28 Position shift detection method and position shift detection device using diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24282888A JP2514699B2 (en) 1988-09-28 1988-09-28 Position shift detection method and position shift detection device using diffraction grating

Publications (2)

Publication Number Publication Date
JPH0290006A JPH0290006A (en) 1990-03-29
JP2514699B2 true JP2514699B2 (en) 1996-07-10

Family

ID=17094898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24282888A Expired - Fee Related JP2514699B2 (en) 1988-09-28 1988-09-28 Position shift detection method and position shift detection device using diffraction grating

Country Status (1)

Country Link
JP (1) JP2514699B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893823B2 (en) * 1990-03-20 1999-05-24 株式会社ニコン Positioning method and apparatus
US5072126A (en) * 1990-10-31 1991-12-10 International Business Machines Corporation Promixity alignment using polarized illumination and double conjugate projection lens
US5625453A (en) * 1993-10-26 1997-04-29 Canon Kabushiki Kaisha System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating
JPH085314A (en) 1994-06-20 1996-01-12 Canon Inc Method and apparatus for measuring displacement
NL2003347A (en) 2008-09-11 2010-03-16 Asml Netherlands Bv Imprint lithography.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715368B2 (en) * 1985-09-05 1995-02-22 株式会社ニコン Position shift detector

Also Published As

Publication number Publication date
JPH0290006A (en) 1990-03-29

Similar Documents

Publication Publication Date Title
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
JP5350285B2 (en) Multi-degree-of-freedom interferometer
US4710026A (en) Position detection apparatus
JP3352249B2 (en) Position shift detector
US5610718A (en) Apparatus and method for detecting a relative displacement between first and second diffraction gratings arranged close to each other wherein said gratings have different pitch sizes
JPH085314A (en) Method and apparatus for measuring displacement
JP3244769B2 (en) Measuring method and measuring device
JP2004144581A (en) Displacement detecting apparatus
US5448357A (en) Position detecting system for detecting a position of an object by detecting beat signals produced through interference of diffraction light
JP2514699B2 (en) Position shift detection method and position shift detection device using diffraction grating
JP3029133B2 (en) Measurement method and device
JPH0794969B2 (en) Positioning method and device thereof
USRE34010E (en) Position detection apparatus
JPH0575044B2 (en)
JPS6256818A (en) Position shift detecting device
JP3624984B2 (en) Projection exposure equipment
JP2931082B2 (en) Method and apparatus for measuring small displacement
US5164789A (en) Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JP2514699C (en)
JP2837532B2 (en) Method and apparatus for measuring small displacement
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JPH06288710A (en) Dislocation distance measuring method by means of diffraction grating and its device
JP2928834B2 (en) Position detecting method and position detecting device using diffraction grating
JPH0587530A (en) Interference measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees