JPS5938521A - Incinerating disposal method for gas containing nitrogenated chemical compound - Google Patents

Incinerating disposal method for gas containing nitrogenated chemical compound

Info

Publication number
JPS5938521A
JPS5938521A JP14618982A JP14618982A JPS5938521A JP S5938521 A JPS5938521 A JP S5938521A JP 14618982 A JP14618982 A JP 14618982A JP 14618982 A JP14618982 A JP 14618982A JP S5938521 A JPS5938521 A JP S5938521A
Authority
JP
Japan
Prior art keywords
gas
temperature
nox
combustion
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14618982A
Other languages
Japanese (ja)
Inventor
Katsunori Takahashi
克典 高橋
Masao Koyama
小山 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14618982A priority Critical patent/JPS5938521A/en
Publication of JPS5938521A publication Critical patent/JPS5938521A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To minimize the total amount of NOX produced, by a method wherein, through control of the temperature of a primary combustion part to 900-1,050 deg.C, the amount of NOX initially produced is sharply reduced, and the temperature of a secondary combustion part is also controlled within said temperature range. CONSTITUTION:A combustion furnace is devided into a primary combustion part for front half and a secondary combustion part for rear half, and the primary combustion part is controlled to 900-1,050 deg.C through the use of an auxiliary burner and/or introduction of combustion exhaust gas with temperature of 100-500 deg.C. It is desirable that the air to the primary cmbustion part is introduced through the auxiliary burner or parallel to gas containing nitrogenated chemical compound. The air ratio of the primary combustion part is controlled to lower than 1 through control of the amount of the introduced air and combustion exhaust gas. Said operation causes the gas at the outlet of the primary combustion part to produce NOX of tensmm. and the gas with temperature of 900-1,050 deg.C having the remaining gas containing nitrogenated chemical compound or pyrolysis gas thereof, the gas flowing in the following secondary combustion part. Also in the secondary combustion part, combustion of remaining unburnt gas is effected in a way that combustion exhaust gas with temperature of 100-500 deg.C is introduced to control it to 900-1,050 deg.C, and this enables reduction of the production of NOX at the furnace outlet.

Description

【発明の詳細な説明】 本発明は、含窒素化合物含有ガスの焼却処理方法に関し
、さらに詳しくは、窒素酸化物の生成を抑制する含窒素
化合物含有ガスの焼却処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for incinerating a gas containing a nitrogen-containing compound, and more particularly to a method for incinerating a gas containing a nitrogen-containing compound to suppress the production of nitrogen oxides.

含窒素化合物含有ガスは、公害対策上、そのまま大気中
に放出することができないので、一般に焼却処理が行わ
れている。その際、窒素酸化物(以下、 NOxと記す
)の発生が問題にたり(特に最近のNOx総量規制では
従来の焼却炉排ガス規制のNOx25opを更に下まわ
る3、 50 pc以下の値が要求される場合もある)
、NOxの生成量の可及的に/↓・ない焼却処理が望ま
れている。
Gases containing nitrogen-containing compounds cannot be released directly into the atmosphere for pollution control reasons, so they are generally incinerated. At that time, the generation of nitrogen oxides (hereinafter referred to as NOx) becomes a problem (in particular, the recent total NOx regulation requires a value of 3.50 pc or less, which is even lower than the NOx 25op of the conventional incinerator exhaust gas regulation). In some cases)
, an incineration process that produces as little NOx as possible is desired.

従来の含窒素化合物(アミン類、二1リル類、シアン化
水素類など)を含むガスの低NOx燃焼方法としては、
該含窒素化合物含有ガスを空気比1以下で1次燃焼させ
、次に2次空気を加り、て2欧燃焼させる2段燃焼法が
ある。
Conventional low NOx combustion methods for gases containing nitrogen-containing compounds (amines, dilyls, hydrogen cyanides, etc.) include:
There is a two-stage combustion method in which the nitrogen-containing compound-containing gas is firstly combusted at an air ratio of 1 or less, and then secondary air is added and the gas is combusted twice.

しかし、この方法においては、−火燃焼部で空気比1以
下で含窒素化合物含有ガスを燃焼させたとしても1,7
1・−ム部分が高温になlr ’/i:め、初期NOx
の生成が多いという問題がある。
However, in this method, even if the nitrogen-containing compound-containing gas is combusted in the -fire combustion section at an air ratio of 1 or less, the
1. - The temperature of the part becomes high lr'/i: Initial NOx
There is a problem that a large number of .

本発明の目的は、上記に鑑み、NOxの初期生成量が少
なく、かつ全体としてもNOx生成量を最小限にするこ
とができる含窒素化合物含有ガスの燃焼処理方法を提供
することにある。
In view of the above, an object of the present invention is to provide a method for combustion treatment of nitrogen-containing compound-containing gas, which can reduce the initial amount of NOx produced and minimize the overall amount of NOx produced.

本発明者は、上記の1次燃焼部におけるNOx生成の原
因を調べたところ、(1)1次燃焼部の平均空気比は1
以下であっても実際には空気比1以上の部分が局部的に
存在すること、および(2)1次燃焼部のフレーム部分
が1200℃以上の高温になること、の2点に起因する
ことが分った。すなわち、第1図および第2図は、それ
ぞれアクリロニ) IJル(C)(2CHCN)とブチ
ルアミン(C4HW NHz)について、それぞれ5v
02%のN2バランスガスに対し理論空気肴の1.1倍
および1.2倍の空気を供給し、約800〜1400℃
の温度および0.5秒の反応時間で酸化した場合のNO
x濃度の変化を示したものである。図中、lは空気比人
が1.1の場合、2は空気比が1.2の場合をそれぞれ
示す。図からNOx生成の温度依存性は極めて大きく、
特に温度が約1200℃以上に々ると、NOxが5oo
p以上の値になることが分ったつ寸た第3図は、シアン
化水素濃度2%、酸素濃度がそれぞれ5%および2.8
%(各各号%)、残N、の合線ガスを電気炉内てそれぞ
れ約800〜1500℃の温度および0.5秒の反応時
間で酸化した場合のNOX 9度の変化を示しだもので
あるが、この場合もNOX生成の温度依存性id:極め
て大きく、特に温度が約1200’l):以上になると
、 NOxが5001−以上の値1′て力みことが分っ
た。
The inventor investigated the cause of NOx generation in the above primary combustion section and found that (1) the average air ratio of the primary combustion section is 1
This is due to the following two points: (2) there are localized areas where the air ratio is higher than 1 even if the air ratio is below 1, and (2) the flame part of the primary combustion section reaches a high temperature of 1200°C or higher. I understand. That is, FIGS. 1 and 2 show 5 v
02% N2 balance gas is supplied with air 1.1 times and 1.2 times the theoretical air volume, and the temperature is approximately 800 to 1400℃.
NO when oxidized at a temperature of 0.5 seconds and a reaction time of 0.5 seconds.
It shows the change in x concentration. In the figure, l indicates the case where the air ratio is 1.1, and 2 indicates the case where the air ratio is 1.2. The figure shows that the temperature dependence of NOx production is extremely large.
Especially when the temperature rises above about 1200℃, NOx increases by 500℃.
Figure 3 shows that the hydrogen cyanide concentration is 2%, and the oxygen concentration is 5% and 2.8, respectively.
% (each item %) and residual N are oxidized in an electric furnace at a temperature of about 800 to 1500°C and a reaction time of 0.5 seconds, showing a change in NOX of 9 degrees. However, in this case as well, the temperature dependence of NOx production is extremely large, especially when the temperature exceeds about 1200'l), it was found that NOx becomes strained to a value 1' of 5001- or more.

さらに第1図ない[7@3図の結果から、含空素化合物
含有ガスの酸化におけるNOx生成は、約QQ○〜10
50℃の範囲で激減するという竹泥な現象が見出さり、
た。そ1.て酸素濃度が数%以下であり、げ、たとえ酸
素が存在してもNOxは1(、)Up以下になることが
分った。従って、1次燃焼部の温度を900〜1050
℃に制御し、かつ平均空気比を1以下とすれば、局部的
に空気比1以上の部分があっても初期NOx ff:1
0〜20pp+に抑制し得ることが分った。
Furthermore, from the results shown in Figure 1 (not shown in Figure 7) and Figure 3, NOx generation in the oxidation of a gas containing an air-containing compound is approximately QQ○ ~ 10
A peculiar phenomenon was discovered in which the temperature decreases sharply in the range of 50℃.
Ta. Part 1. It was found that the oxygen concentration is less than a few percent, and even if oxygen is present, NOx will be less than 1(,) Up. Therefore, the temperature of the primary combustion section should be set at 900 to 1050.
℃ and the average air ratio is 1 or less, the initial NOx ff:1 even if there are local areas where the air ratio is 1 or more.
It was found that it could be suppressed to 0 to 20 pp+.

本発明は、含窒素化合物含有ガスの低空気比燃焼におけ
る上記知見に基いてなされたもので、]。
The present invention has been made based on the above findings regarding low air ratio combustion of nitrogen-containing compound-containing gas.

次燃位部に象窒素化合物含有ガスを導入して酸化反応を
行わせた後、2次燃焼部に導き、残余の未燃物を燃焼処
理する方法において、1次燃焼部内の空気比を1以下と
し、かつ温度を補助燃料の使用および/まだは燃焼排ガ
スの導入Wより900〜]、 050℃に制御すること
を特徴とするものであるう 本発明の処理対象である含窒素化合物含有ガスは、アミ
ン類、ニトリル類およびシアン化水素から選ばれた少く
とも一種の化合物を含むガスである。
In this method, a gas containing nitrogenous compounds is introduced into the secondary combustion zone to perform an oxidation reaction, and then introduced into the secondary combustion zone to combust the remaining unburned materials. The nitrogen-containing compound-containing gas to be treated by the present invention is characterized in that the temperature is controlled at 900°C to 050°C with the use of auxiliary fuel and/or the introduction of combustion exhaust gas. is a gas containing at least one compound selected from amines, nitriles, and hydrogen cyanide.

本発明において、燃焼炉は前半の1次燃焼部と、後半の
2次燃焼部に分けられるが、こ−)1.を別の炉として
構成!、7ても、lこいことは勿論で′ある0 1次燃
焼部tよ、補助バーナの使用および/または100〜5
00℃の燃焼排ガスの導入により、900〜1050℃
に制御される。なお、補助バーナはパイロットバーナ以
上の能力があればよい。含窒素化合物含有ガスは、通常
、空気とは別のノズルから1次燃焼部に導入されるが、
その導入方法は、補助バーナの形成するフレーム内に含
窒素化合物含有ガスが貫入しないように、補助バーナと
平行、またはフレームの外側にタンジェンシャルに含窒
素化合物含有ガスを導入することが好ましい。1次燃焼
部への空気は、補助バーナを経由させるか、または含窒
素化合物含有ガスと平行して導入することが好ましい。
In the present invention, the combustion furnace is divided into a primary combustion section in the first half and a secondary combustion section in the latter half. Configure as a separate furnace! , 7, it goes without saying that the primary combustion section t, the use of an auxiliary burner and/or the use of 100~5
900-1050℃ by introducing combustion exhaust gas at 00℃
controlled by. Note that the auxiliary burner only needs to have a capacity greater than that of the pilot burner. The nitrogen-containing compound-containing gas is usually introduced into the primary combustion section from a separate nozzle from that of the air.
As for the introduction method, it is preferable to introduce the nitrogen-containing compound-containing gas parallel to the auxiliary burner or tangentially outside the frame so that the nitrogen-containing compound-containing gas does not penetrate into the frame formed by the auxiliary burner. The air to the primary combustion section is preferably introduced through an auxiliary burner or in parallel with the nitrogen-containing compound-containing gas.

1次燃焼部の空気比は、導入空気および燃焼排ガスの量
を調節することにより、1以下に制御される。
The air ratio in the primary combustion section is controlled to 1 or less by adjusting the amounts of introduced air and combustion exhaust gas.

以上の操作により、1次燃焼部出ロガスは数十−のNO
xと残余の未燃の含窒素化合物含有ガスまたはその熱分
解ガスを有する900〜1050℃のガスになり、後流
の2次燃焼部に流入される。
With the above operations, the log gas coming out of the primary combustion section will be several tens of NO.
x and the remaining unburned nitrogen-containing compound-containing gas or its thermal decomposition gas at a temperature of 900 to 1050°C, which flows into the downstream secondary combustion section.

次に2次燃焼部においでも、残余の未燃ガスの燃焼は、
100〜500℃の燃焼排ガスを導入してqoo〜10
50℃に制御して行われ、炉出口NOxの低減が図られ
る。
Next, in the secondary combustion section, the combustion of the remaining unburned gas is
Introducing combustion exhaust gas of 100-500℃
The temperature is controlled at 50°C to reduce NOx at the furnace outlet.

なお、本発明において、炉内の温度調節とじては、燃焼
排ガスを導入する方法以外にも、他の方法、例えば水噴
霧なども考えられるが、炉内の酸素P度を均一化すると
いう点でけ燃舒排ガスが最も好オしい。
In addition, in the present invention, in addition to the method of introducing combustion exhaust gas, other methods such as water spraying can be considered to adjust the temperature inside the furnace, but the point is to equalize the oxygen P degree in the furnace. Flue gas is most preferred.

本発明によれば、含9素化合物含有ガスの低空気比の二
段燃焼において、1次燃焼部の温度を900〜1050
.℃の温度に制御することにより、初期のNOx牛成奔
を激減させ、さらに好ましくけ2次惨焼部の温度も上記
温度範囲内に制御するととにより、全体のNOx生成殴
を最低限にすることができる。
According to the present invention, in the low air ratio two-stage combustion of a gas containing nine element-containing compounds, the temperature of the primary combustion part is set to 900 to 1050.
.. By controlling the temperature to ℃, the initial NOx production is drastically reduced, and even more preferably, the temperature of the secondary burn area is also controlled within the above temperature range, thereby minimizing the overall NOx production. be able to.

以下、本発明の比較例セよび実施例を述べるが、本発明
けこれらKより制限されろもので1寸3.い。
Hereinafter, comparative examples and examples of the present invention will be described, but they are not limited to the present invention. stomach.

比較例コ プロパンガスを用いたパイロットバーナ卦よびA重油焚
ロータリバーナにより、1000℃に、Fl、温した1
次炉に、含窒赤化合物含有ガス(アセトニトリル(CH
3CN ) 10 Vojl  ’10ジエチルアミン
((C4H5)1 N■■) 5 VolLX、、ソt
v 他N、J420、炭化水[ガス)をパイロットバー
ナと平行に導入[7、空佃4比0.80で1次燃焼させ
たところ、ロータリツク−すを停止しても1次炉内は1
200℃でなり、1次炉出[1のNOxは2]、OPで
あった。1だ上記ガスを2次炉に導き、2次空気を追加
して空気比を1.2にしだところ、2次炉温度は140
0℃となり、 NOxは450「であった。
Comparative Example 1 was heated to 1000°C by a pilot burner using copropane gas and a rotary burner burning A heavy oil.
Next, a nitrogen-containing red compound-containing gas (acetonitrile (CH
3CN) 10 Vojl '10 Diethylamine ((C4H5)1 N ■■) 5 VolLX,, Sot
v Other N, J420, hydrocarbon water [gas] was introduced in parallel with the pilot burner [7, When primary combustion was performed at Soratsukuda 4 ratio 0.80, even if the rotary cooker was stopped, the inside of the primary furnace remained 1
The temperature was 200°C, the NOx of 1 was 2], and the temperature was OP. When the above gas was introduced into the secondary furnace and secondary air was added to make the air ratio 1.2, the secondary furnace temperature was 140.
The temperature was 0℃, and the NOx level was 450.

実施例] 上記3次炉の繰作において、:SOO℃の燃焼排ガスを
含窒素化合物含有ガスと平行に導入し、1火炉内温度を
1000℃、空気比をO,Bに制御したところ、1次炉
出口NOxは50−であった。まだとのガスを2次炉に
導き、2次空気を追加して空気比を1,2にしたところ
、2次炉は1150℃となり、2次炉出口N0xi 1
401411であった。しかし、」−舵操作において3
00℃の燃焼排ガスを導入し、2次炉の空気比1.2、
温度を1000℃に制御したとどろ、2次炉出口NOx
は55−であった。
Example] In the operation of the above-mentioned tertiary furnace, combustion exhaust gas at :SOO°C was introduced in parallel with nitrogen-containing compound-containing gas, and the temperature inside the furnace was controlled to 1000°C and the air ratio to O, B. The NOx at the outlet of the next furnace was 50-. When the same gas was led to the secondary furnace and secondary air was added to make the air ratio 1.2, the temperature in the secondary furnace was 1150°C, and the secondary furnace outlet N0xi 1
It was 401,411. However, "-3 in rudder operation
00℃ combustion exhaust gas was introduced, and the air ratio of the secondary furnace was 1.2.
When the temperature is controlled at 1000℃, NOx at the secondary furnace outlet
was 55-.

比較例2 プロパンガスを用いたパイロットバーナおよびA重油焚
ロータリバーナによ抄、1−000℃に外淵しだ1次炉
に、シアン化水素含有ガス(HCN25容量%、その他
N、、、)(,0、炭化水素ガス)をパイロットバーナ
と平行に導入し、空気比0.85で1次燃焼させたとこ
ろ、ロータリバーナを停止しても1次炉内は1250℃
となり、1次炉出口のNOxは250pであった。まだ
上記ガスを2次炉に導き、2次空気を追加して空気比を
1,2にしだところ、2次炉温度は1350℃となり、
NOxは400Pであった。なお、排ガス中のHCN濃
度は1.2−であった。
Comparative Example 2 A pilot burner using propane gas and a rotary burner burning heavy oil A were used to heat the paper, and hydrogen cyanide-containing gas (HCN 25% by volume, other N, etc.) (, 0.0, hydrocarbon gas) was introduced in parallel with the pilot burner and primary combustion was performed at an air ratio of 0.85. Even when the rotary burner was stopped, the temperature inside the primary furnace remained at 1250°C.
Therefore, NOx at the primary furnace outlet was 250p. When the above gas was still introduced into the secondary furnace and secondary air was added to make the air ratio 1.2, the secondary furnace temperature became 1350°C.
NOx was 400P. Note that the HCN concentration in the exhaust gas was 1.2-.

実施例2 上記1次炉の操作において、300℃の燃焼セトガスを
シアン化水素含有ガスと平行に導入し、1火炉内温度を
1000℃、空気比を0.85に制御したところ、1次
炉出口NOxは30pであった。またこのガスを2次炉
に導き、2次空気を追加して空気比を1.2にしたとと
る、2次炉はコ100℃となり、2次炉出口NOxは1
40Fであった。しかし、上記操作において300℃の
燃焼排ガスを導入し、2次炉の空気比1.2、温度を1
000℃に制御したところ、2次炉出口NOxは80F
であった。なお、排ガス中のHCN濃度は1.7 Fで
あった。
Example 2 In the operation of the above primary furnace, combustion set gas at 300°C was introduced in parallel with hydrogen cyanide-containing gas, and the temperature inside the 1st furnace was controlled to 1000°C and the air ratio to 0.85. As a result, NOx at the primary furnace outlet was was 30p. Also, assume that this gas is led to the secondary furnace and secondary air is added to make the air ratio 1.2.The temperature in the secondary furnace is 100℃, and the NOx at the outlet of the secondary furnace is 1.
It was 40F. However, in the above operation, 300℃ flue gas was introduced, the air ratio of the secondary furnace was 1.2, and the temperature was 1.
When controlled at 000℃, the NOx at the outlet of the secondary furnace was 80F.
Met. Note that the HCN concentration in the exhaust gas was 1.7F.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、そJしぞハ7本発明に
おける電気炉の実験結果を示すもので、含窒素化合物含
有ガスの酸化反応温度と反応後のNOx濃度との関係を
示す図である。 代理人 弁理士 川 北 武 長
Figures 1, 2, and 3 show the experimental results of the electric furnace according to the present invention, and show the relationship between the oxidation reaction temperature of nitrogen-containing compound-containing gas and the NOx concentration after the reaction. FIG. Agent Patent Attorney Takenaga Kawakita

Claims (3)

【特許請求の範囲】[Claims] (1)1次燃焼部に含窒素化合物含有ガスを導入して酸
化反応を行わせた後、2次燃焼部に導き、残余の未燃物
を焼却処理する方法において、1次燃焼部内の空気比を
1以下とし、かつ温度を補助燃料の使用およびまたは燃
焼排ガスの導入により900〜]050℃に制御するこ
とを特徴とする含窒素化合物含有ガスの焼却処理方法。
(1) In a method in which a nitrogen-containing compound-containing gas is introduced into the primary combustion section to perform an oxidation reaction, the gas is introduced into the secondary combustion section, and the remaining unburned materials are incinerated. 1. A method for incinerating a nitrogen-containing compound-containing gas, which comprises controlling the ratio to 1 or less and controlling the temperature to 900 to 050°C by using auxiliary fuel and/or introducing combustion exhaust gas.
(2)燃焼排ガスを2次燃焼部に導入することにより、
2次燃焼部温度を900〜1050℃に制御することを
特徴とする特許請求の範囲第1項記載の含窒素化合物含
有ガスの焼却処理方法。
(2) By introducing combustion exhaust gas into the secondary combustion section,
2. The method for incineration of nitrogen-containing compound-containing gas according to claim 1, characterized in that the temperature of the secondary combustion section is controlled to 900 to 1050°C.
(3)含窒素化合物が、アミン類、ニトリル類、および
シアン化水素から選ばれた少くとも一種である特許請求
の範囲第1項または第2項の含窒素化合物含有ガスの焼
却処理方法。
(3) The method for incinerating a nitrogen-containing compound-containing gas according to claim 1 or 2, wherein the nitrogen-containing compound is at least one selected from amines, nitriles, and hydrogen cyanide.
JP14618982A 1982-08-25 1982-08-25 Incinerating disposal method for gas containing nitrogenated chemical compound Pending JPS5938521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14618982A JPS5938521A (en) 1982-08-25 1982-08-25 Incinerating disposal method for gas containing nitrogenated chemical compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14618982A JPS5938521A (en) 1982-08-25 1982-08-25 Incinerating disposal method for gas containing nitrogenated chemical compound

Publications (1)

Publication Number Publication Date
JPS5938521A true JPS5938521A (en) 1984-03-02

Family

ID=15402144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14618982A Pending JPS5938521A (en) 1982-08-25 1982-08-25 Incinerating disposal method for gas containing nitrogenated chemical compound

Country Status (1)

Country Link
JP (1) JPS5938521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215905A (en) * 1985-03-22 1986-09-25 Nippon Kogaku Kk <Nikon> Position detecting device
JPS62172203A (en) * 1986-01-27 1987-07-29 Agency Of Ind Science & Technol Method for measuring relative displacement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215905A (en) * 1985-03-22 1986-09-25 Nippon Kogaku Kk <Nikon> Position detecting device
JPH0575044B2 (en) * 1985-03-22 1993-10-19 Nippon Kogaku Kk
JPS62172203A (en) * 1986-01-27 1987-07-29 Agency Of Ind Science & Technol Method for measuring relative displacement
JPH0466295B2 (en) * 1986-01-27 1992-10-22 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
US4496306A (en) Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4422391A (en) Method of combustion of pulverized coal by pulverized coal burner
US5510092A (en) Integrated catalytic/non-catalytic process for selective reduction of nitrogen oxides
CN105937766A (en) Low nitrogen oxide incinerating device used for treatment of nitrogen containing waste gas and nitrogen containing waste liquid and low nitrogen oxide incinerating method used for treatment of nitrogen containing waste gas and nitrogen containing waste liquid
US5681158A (en) Single-stage process for disposal of chemically bound nitrogen in industrial waste streams
JPS5938521A (en) Incinerating disposal method for gas containing nitrogenated chemical compound
JPH026961B2 (en)
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
JP2705990B2 (en) Method for reducing PCDD / PCDF emission from waste gas section of waste combustion equipment
JP3078513B2 (en) Method for reducing NOx and dioxin in combustion exhaust gas
CN205842694U (en) A kind of low NOx incinerator processing nitrogenous waste gas, waste liquid
JPH0627561B2 (en) Pulverized coal combustion equipment
JPS6138961B2 (en)
JP2870675B2 (en) How to operate the pyrolytic combustion zone
JP2001090920A (en) Method for heat-treating solid article
JP2565620B2 (en) Combustion method of pulverized coal
GB2094969A (en) Method of combustion of pulverized coal by pulverized coal burner
JP2667607B2 (en) Structure of low NOx boiler
JP3014953B2 (en) Incinerator
RU2293254C2 (en) Method of removing toxic agents from combustion products of gas fuel
JPS6260607B2 (en)
JPH0262768B2 (en)
JPH0259361B2 (en)
JPS62288420A (en) Catalytic burner
JPS58120004A (en) Two-staged combustion