JPS61215405A - Temperature control for moisture-content separating heater - Google Patents

Temperature control for moisture-content separating heater

Info

Publication number
JPS61215405A
JPS61215405A JP5415085A JP5415085A JPS61215405A JP S61215405 A JPS61215405 A JP S61215405A JP 5415085 A JP5415085 A JP 5415085A JP 5415085 A JP5415085 A JP 5415085A JP S61215405 A JPS61215405 A JP S61215405A
Authority
JP
Japan
Prior art keywords
temperature
pressure turbine
steam
turbine
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5415085A
Other languages
Japanese (ja)
Other versions
JPH0588362B2 (en
Inventor
Kazuto Maeyama
前山 一登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5415085A priority Critical patent/JPS61215405A/en
Publication of JPS61215405A publication Critical patent/JPS61215405A/en
Publication of JPH0588362B2 publication Critical patent/JPH0588362B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable a nuclear turbine to be started quickly in its warming up by controlling the opening action of a control valve within a heating steam supply system for a moisture-content separating heater in accordance with the results of measuring the metal temperature within a low pressure turbine. CONSTITUTION:In a nuclear turbine, a high pressure turbine 1 is driven by saturated steam supplied through a main steam system 4 from a steam generator, and wet steam after finishing the work is heated in a moisture-content separating heater 8, and then fed to a low pressure turbine 2. In the above, the metal temperature within the low pressure turbine 2 is measured, and when the temperature remains in a range between 204 deg.C and 110 deg.C, a control valve 7 within a heating system 6 related to said heater 8 is opened so that the temperature rises step by step from the set value of steam temperature at the inlet of the low pressure turbine up to 180 deg.C, and then the temperature is controlled to rise at a rate of change within 45 deg.C/hr. In addition, when the metal- temperature is at more than 204 deg.C, the set value is raised step by step up to 204 deg.C, and then the steam temperature is allowed to follow up a set value corresponding to the load.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービンの湿分分離加熱器の温度制御法
であって、従来、全負荷運転後回起動する場合は、まず
冷却されるが、一方蒸気温度は負荷に対応する温度迄昇
温する。この間低圧タービンは冷却されて、しかる後、
加熱されるので、無駄な時間があったが、これを無(す
る技術分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature control method for a moisture separation heater of a steam turbine. On the other hand, the steam temperature increases to a temperature corresponding to the load. During this time, the low pressure turbine is cooled down and then
There was wasted time due to heating, but it is used in the technical field to eliminate this.

従来の技術 第5図に湿分分離分熱器の温度制御方法を示す。Conventional technology FIG. 5 shows a method of controlling the temperature of the moisture separator.

図において、1は高圧タービン、2は低圧タービン、−
3は発電機、4は主蒸気系、5は高圧タービン抽気系、
6は主蒸気による加熱系、7は制御弁、8は湿分分離加
熱器、9は高圧タービン排気系である。
In the figure, 1 is a high pressure turbine, 2 is a low pressure turbine, -
3 is a generator, 4 is a main steam system, 5 is a high pressure turbine extraction system,
6 is a heating system using main steam, 7 is a control valve, 8 is a moisture separation heater, and 9 is a high-pressure turbine exhaust system.

原子力タービンでは飽和蒸気が蒸気発生器から供給され
る。高圧タービンで膨張し仕事をすると、湿り蒸気とな
って高圧タービンを出てくるので、低圧タービン内の浸
蝕防止と効率の低下を防ぐため、湿分分離加熱器8で加
熱して過熱蒸気としている。
In nuclear turbines, saturated steam is supplied from a steam generator. When the high-pressure turbine expands and performs work, it exits the high-pressure turbine as wet steam, so in order to prevent corrosion in the low-pressure turbine and reduce efficiency, it is heated in a moisture separation heater 8 to become superheated steam. .

現在の代表的な例では、1段目の加熱を高圧タービン抽
械系5で、2段目の加熱を主蒸気を分岐した加熱蒸気系
6で行っている。
In a current typical example, the first stage is heated by a high pressure turbine extraction system 5, and the second stage is heated by a heating steam system 6 branched from main steam.

次に、低圧タービン入口温度が低過ぎると、低圧タービ
ン内で蒸気湿り度が上昇し、二ローションの原因となり
、また熱効率が悪(なり、高いと低圧最終段の温度が強
度上の制限温度を超えると内部各部の隙間が異常になる
などの不都合が生じるので、低圧タービンの入口温度は
適正値に制御されねばならない。
Next, if the low-pressure turbine inlet temperature is too low, steam humidity will increase in the low-pressure turbine, causing double lotion and poor thermal efficiency. If it exceeds this, problems such as abnormal gaps between internal parts will occur, so the inlet temperature of the low-pressure turbine must be controlled to an appropriate value.

一方、急激なタービンの温度変化は熱応力発生の原因と
なるので、起動時や負荷変化時には、湿分分離加熱器8
の出口温度変化率は適正に制御せねばならない。
On the other hand, since sudden temperature changes in the turbine cause thermal stress, the moisture separation heater 8
The rate of change of the outlet temperature must be properly controlled.

代表的な原子力発電プラントを例にとると、湿分分離加
熱器802段側加熱が生かされない時(即ち、高圧ター
ビンの抽気に依ってのみ加熱される時)には、低圧ター
ビン2の入口蒸気温度は無負荷で約90℃である。一方
、低圧タービン20入口蒸気温度は制御装置により、第
2図のA、 B。
Taking a typical nuclear power plant as an example, when the second stage side heating of the moisture separation heater 80 is not utilized (that is, when it is heated only by the bleed air of the high pressure turbine), the inlet steam of the low pressure turbine 2 The temperature is approximately 90° C. without load. On the other hand, the low-pressure turbine 20 inlet steam temperature is controlled by the control device as shown in A and B in FIG.

C,D、 Eの折線の設定値の如く制御されるが、暖機
運転時にお〜1ては、9点よりR点まで上昇させて設定
値の温度とする。縦軸は温度、−横軸は負荷である。一
方、低圧タービン2の熱応力の制限から入口蒸気温度変
化率は56℃/時間に制限されている。
The temperature is controlled according to the set values of the broken lines C, D, and E, but during warm-up operation, the temperature is raised from point 9 to point R to reach the set value. The vertical axis is temperature, and the -horizontal axis is load. On the other hand, due to thermal stress limitations of the low pressure turbine 2, the rate of change in inlet steam temperature is limited to 56° C./hour.

上記事項に対応する従来の制御法は、以下のとおりであ
る。
Conventional control methods corresponding to the above matters are as follows.

タービンは定格速度に達し、電力系統に併入されると初
期負荷5チを取る。低圧タービン入口蒸気温度は第2図
の9点から出発して45℃/時間の変化率で昇温される
。そして、R点でAB線(204℃)K交る。以後は5
6℃/時間以内又は蒸気発生器側等から別の制限要素が
ある時にはそれに従って、設定温度上を追従制御する。
The turbine reaches its rated speed and takes an initial load of 5 cm when it is joined to the power system. Starting from point 9 in FIG. 2, the low pressure turbine inlet steam temperature is increased at a rate of change of 45° C./hour. Then, line AB (204°C) intersects K at point R. From then on 5
The set temperature is followed and controlled within 6°C/hour or when there is another limiting factor from the steam generator side or the like.

この制御方法における問題は下記の通りである。The problems with this control method are as follows.

タービンが例えば全負荷を取っている時には入口温度は
E点にある。従って全負荷運転後、再起動する場合には
E点から冷却されて低圧タービン2のメタル温度はEと
Qの間のある値にある。一方、蒸気温度は併入時の11
0℃から204℃迄45℃/時間で、即ち約2時間で負
荷に対応する温度迄昇温する。
When the turbine is taking full load, for example, the inlet temperature is at point E. Therefore, when restarting after full-load operation, the low-pressure turbine 2 is cooled down from point E and the metal temperature of the low-pressure turbine 2 is at a certain value between E and Q. On the other hand, the steam temperature was 11
The temperature is increased from 0°C to 204°C at a rate of 45°C/hour, that is, in about 2 hours, to the temperature corresponding to the load.

この間、低圧タービンは内部が180℃から蒸気に依り
110℃に向い最初冷却され、然る後加熱される事にな
る(メタル温度はEQMIICおいて180℃であると
考えられる)。温度上昇率を制限するのは、低圧タービ
ン2の熱応力軽減のためであり。
During this period, the inside of the low-pressure turbine is first cooled from 180°C to 110°C by steam, and then heated (the metal temperature is considered to be 180°C in EQMIIC). The reason for limiting the temperature increase rate is to reduce thermal stress in the low pressure turbine 2.

この点から考えると、最初の冷却過程は全く無駄な時間
である。
From this point of view, the initial cooling process is a complete waste of time.

発明が解決しようとする問題点 本発明は、上記最初の冷却時間、すなわち、無駄な暖気
運転を無くすことにある。
Problems to be Solved by the Invention The present invention aims to eliminate the above-mentioned initial cooling time, that is, unnecessary warm-up operation.

問題点を解決するための手段 本発明は、上述の問題を解決するために1次のような手
段を採っている。すなわち、 低圧タービン内部のメタル温度を計測し、メタル温度が
204℃と110℃の間にある時は低圧タービン入口蒸
気温度設定値よりステップ状に180’Cになるように
制御弁を開き、しかる後45℃/時間内の変化率で昇温
させる°ようにし、もし上記メタル温度が204℃以上
の場合は、204℃になる迄ステップ状に設定値を上げ
、しかる後所定レートで蒸気温度を負荷に対応する設定
値に追従させ、低圧タービン入口蒸気温度をその温度ま
で瞬時変化させる。
Means for Solving the Problems The present invention employs the following means to solve the above-mentioned problems. In other words, the metal temperature inside the low-pressure turbine is measured, and when the metal temperature is between 204°C and 110°C, the control valve is opened so that the temperature reaches 180°C in steps from the low-pressure turbine inlet steam temperature set value. Then, the temperature should be raised at a rate of change of 45°C/hour. If the metal temperature is above 204°C, increase the set value in steps until it reaches 204°C, and then increase the steam temperature at a predetermined rate. The low-pressure turbine inlet steam temperature is instantaneously changed to follow the set value corresponding to the load.

作用 以上述べた手段によれば、したがって、再起勘違の時間
によって低圧タービンのメタル温度を制御ロジックに挿
入し、急速起動を行い、上記無駄な時間を無(すことが
出来る。
According to the above-described means, the metal temperature of the low-pressure turbine is inserted into the control logic according to the restart erroneous time, rapid startup is performed, and the above-mentioned wasted time can be eliminated.

実施例 次に、本発明の実施例について、第1図より第4図を参
照して詳述する。
Embodiments Next, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4.

第1図に本発明のシーケンスを示す。FIG. 1 shows the sequence of the present invention.

符号lOはタービン負荷信号、 11は負荷・蒸気圧力
関数設定器、12は変化率設定器、13は圧力設定値、
14は制御弁後圧力信号、15はアナログ切換スイッチ
、16はタービンメタル温度信号、17はアナログ切換
スイッチ、18はメタル温度・制御弁後圧力関数設定器
、19は遮断器、20はワンショット・パルス、21は
暖機初期開度指◆である。
Symbol lO is a turbine load signal, 11 is a load/steam pressure function setter, 12 is a rate of change setter, 13 is a pressure setting value,
14 is a control valve rear pressure signal, 15 is an analog changeover switch, 16 is a turbine metal temperature signal, 17 is an analog changeover switch, 18 is a metal temperature/control valve rear pressure function setting device, 19 is a circuit breaker, and 20 is a one-shot switch. Pulse 21 is the warm-up initial opening degree finger ◆.

本発明は、低圧タービン内部のメタル温度な計測し、低
圧タービン入口蒸気温度をその温度迄瞬時変化させ、前
述の無駄時間を無(そ5とするものである。
The present invention measures the metal temperature inside the low-pressure turbine and instantaneously changes the low-pressure turbine inlet steam temperature to that temperature, thereby eliminating the above-mentioned wasted time.

すなわち、第2図に関して述べれば、メタル温度が20
4℃と110℃の間にある時には(例えば9点180℃
)低圧タービン入口蒸気温度設定値を制御することによ
りステップ状に180℃になる様に制御弁7(第5図)
を開(。しかる後45℃/時間の変化率で昇温する機制
御する。
That is, referring to FIG. 2, if the metal temperature is 20
When the temperature is between 4℃ and 110℃ (for example, 9 points 180℃
) Control valve 7 (Figure 5) so that the low-pressure turbine inlet steam temperature is set to 180°C in steps.
After that, the temperature was controlled to increase at a rate of change of 45° C./hour.

若し低圧タービンメタル温度が204℃以上の場合には
、204℃迄ステップ状に設定値を上げ、然る後所定レ
ートで蒸気温度を負荷に対応する設定値に追従させる。
If the low pressure turbine metal temperature is 204°C or higher, the set value is increased stepwise up to 204°C, and then the steam temperature is made to follow the set value corresponding to the load at a predetermined rate.

なお、温度制御を行な5に当り、実際には圧力制御を行
なっているのは、現在原子力タービンで採用されている
程度の圧力(60〜y o ata )の飽和蒸気に於
いて、等エンタルピ変化を行う場合には、圧力と温度は
対応しており、圧力で温度を代表出来るからである。温
度を実際に計測して制御を行なう時には、温度計部分の
加熱に依る時間遅れがあり、圧力制御の方がレスポンス
が良い。
Note that while temperature control is performed in step 5, pressure control is actually performed using isenthalpic This is because when making a change, pressure and temperature correspond, and temperature can be represented by pressure. When temperature is actually measured and controlled, there is a time delay due to the heating of the thermometer part, so pressure control has a better response.

負荷・蒸気圧力関数設定器11の負荷と圧力の関係を第
3図に、タービンメタル温度に対応する圧力を示す制御
弁後圧力関数設定器18の関数を第4図に示す。
FIG. 3 shows the relationship between the load and pressure of the load/steam pressure function setting device 11, and FIG. 4 shows the function of the control valve post-pressure function setting device 18, which indicates the pressure corresponding to the turbine metal temperature.

遮断器19が併入を検出し、ワンショット・パルス20
が信号を発するととkより、タービンメタル温度信号1
6で計測して〜する温度信号は制御弁後圧力関数設定器
1Bにて低圧タービン2のメタル温度対応の信号になる
。暖機初期開度指◆21化率設定器12において蒸気圧
力関数設定器11より送られる上限信号に達する迄鳴制
御弁後圧力関数設定器18より送られた信号を初期値と
して、予め定めた率で圧力増加信号を与える。
The circuit breaker 19 detects the combination, and the one-shot pulse 20
When the signal is emitted, from k, the turbine metal temperature signal 1
The temperature signal measured at 6 becomes a signal corresponding to the metal temperature of the low pressure turbine 2 at the control valve post-pressure function setting device 1B. Initial warm-up opening index Gives a pressure increase signal at a rate.

発明の効果 原子力タービンの暖気運転に際して、前回運転から再起
勧進の時間によって低圧タービンのメタル温度(低圧タ
ービン入口でタービンを代表する個所の温度)を制御ロ
ジックに挿入し、低圧タービンに熱衝撃を与えることな
く急速起動を行い、無駄な暖機運転を排除する。
Effects of the Invention When warming up a nuclear turbine, the metal temperature of the low-pressure turbine (temperature at a representative point of the turbine at the low-pressure turbine inlet) is inserted into the control logic according to the restart recommendation time since the previous operation, and a thermal shock is applied to the low-pressure turbine. It performs rapid startup without any hassle and eliminates wasteful warm-up operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の系統図、第2図は一定の変化率で昇温
する制御の図表、第3図は負荷と圧力の関係を示す図表
、第4図は制御弁後圧力関数設定器の関数を示す図表、
第5図は従来の湿分分離加熱器の温度制御方式を示す系
統図である。 2・・低圧タービン、8・・湿分分離加熱器、lO・・
タービン負荷信号、11・・負荷・蒸気圧力関数設定器
、12・・変化率設定器、13・・圧力設定値、14・
・制御弁後圧力信号、15・・アナログ切換スイッチ、
16・・タービンメタル温度信号、17・・アナログ切
換スイッチ、18・・メタル温度・制御弁後圧力関数設
定器、19−−遮断器、20・・ワンショット・パルス
、21に工か1名) 第2図 憂荷
Figure 1 is a system diagram of the present invention, Figure 2 is a diagram of control that increases temperature at a constant rate of change, Figure 3 is a diagram showing the relationship between load and pressure, and Figure 4 is a pressure function setting device after the control valve. A diagram showing the function of
FIG. 5 is a system diagram showing a temperature control method of a conventional moisture separation heater. 2...Low pressure turbine, 8...Moisture separation heater, lO...
Turbine load signal, 11. Load/steam pressure function setting device, 12. Rate of change setting device, 13. Pressure setting value, 14.
・Pressure signal after control valve, 15...Analog changeover switch,
16...Turbine metal temperature signal, 17...Analog changeover switch, 18...Metal temperature/control valve pressure function setter, 19--breaker, 20...One-shot pulse, 21--Engineer or one person) Figure 2 Burden

Claims (1)

【特許請求の範囲】[Claims] 低圧タービン内部のメタル温度を計測し、メタル温度が
204℃と110℃の間にある時は低圧タービン入口蒸
気温度設定値よりステップ状に180℃になるように制
御弁を開き、しかる後45℃/時間内の変化率で昇温さ
せるようにし、もし上記メタル温度が204℃以上の場
合は、204℃になる迄ステップ状に設定値を上げ、し
かる後所定レートで蒸気温度を負荷に対応する設定値に
追従させ、低圧タービン入口蒸気温度をその温度まで瞬
時変化させる湿分分離加熱器の温度制御法。
The metal temperature inside the low-pressure turbine is measured, and when the metal temperature is between 204℃ and 110℃, the control valve is opened so that the temperature reaches 180℃ in steps from the low-pressure turbine inlet steam temperature set value, and then the temperature is increased to 45℃. / time, and if the metal temperature above is 204℃ or higher, increase the set value in steps until it reaches 204℃, and then adjust the steam temperature to the load at a predetermined rate. A temperature control method for moisture separation heaters that instantly changes the low-pressure turbine inlet steam temperature to a set value by following the set value.
JP5415085A 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater Granted JPS61215405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5415085A JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5415085A JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Publications (2)

Publication Number Publication Date
JPS61215405A true JPS61215405A (en) 1986-09-25
JPH0588362B2 JPH0588362B2 (en) 1993-12-22

Family

ID=12962523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5415085A Granted JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Country Status (1)

Country Link
JP (1) JPS61215405A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362001A (en) * 1976-11-12 1978-06-03 Westinghouse Electric Corp Device for controlling temperature of low pressure turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362001A (en) * 1976-11-12 1978-06-03 Westinghouse Electric Corp Device for controlling temperature of low pressure turbine

Also Published As

Publication number Publication date
JPH0588362B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US20140165565A1 (en) Steam turbine plant and driving method thereof
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
JPS61215405A (en) Temperature control for moisture-content separating heater
JP2633720B2 (en) Pre-warming method for steam turbine
JPS58197408A (en) Starting device for combined plant
JPS5918211A (en) Starting control method of steam turbine
JPH03290006A (en) Gas turbine control unit of combined cycle power plant
JPH03908A (en) Starting method for combined cycle plant
JPH0772491B2 (en) Pre-warming device for steam turbine
JPH07166814A (en) Starting method for uniaxial combined cycle power generation plant
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JPS62294724A (en) Turbine casing cooler for turbocharger
JP2554099B2 (en) Control device for combined cycle power plant
JP2886211B2 (en) Combined cycle power plant
JPH04298602A (en) Steam turbine starting equipment
JPS63179102A (en) Warming method for steam turbine
JPH08260911A (en) Restarting method and controller for uniaxial type combined cycle power plant
JPS61184306A (en) Steam-turbine reheater heating-steam pressure controller
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPS6198908A (en) Steam turbine device
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPH0633705A (en) Steam turbine control device
SU499408A1 (en) Turbine startup method
JPS62159704A (en) Warming up method of steam turbine