JPS63179102A - Warming method for steam turbine - Google Patents

Warming method for steam turbine

Info

Publication number
JPS63179102A
JPS63179102A JP988787A JP988787A JPS63179102A JP S63179102 A JPS63179102 A JP S63179102A JP 988787 A JP988787 A JP 988787A JP 988787 A JP988787 A JP 988787A JP S63179102 A JPS63179102 A JP S63179102A
Authority
JP
Japan
Prior art keywords
steam
temperature
turbine
valve
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP988787A
Other languages
Japanese (ja)
Inventor
Takanori Muroboshi
室星 孝徳
Takuji Nishinomiya
西宮 卓司
Toshinori Ito
俊紀 伊藤
Masamitsu Hirono
広野 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP988787A priority Critical patent/JPS63179102A/en
Publication of JPS63179102A publication Critical patent/JPS63179102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To suppress thermal stress occurring in a turbine rotor, by predicting the temperature of steam in the downstream of first stage based on the temperature at the inlet of a steam turbine, and heating a metal in the downstream of the initial stage if the temperature of said metal is lower than said predicted temperature. CONSTITUTION:Steam is fed from a boiler through a steam regulation valve 4 to a high pressure turbine. Here, thermal stress of rotor is most concentrated in the downstream of a first stage. In order to heat said portion near to the temperature at the inlet of steam and to reduce the temperature difference, a steam inlet valve 1 is opened prior to starting so as to lead high temperature steam thus warming the first stage of turbine. Warmed steam is fed through a steam outlet valve 2 to a condenser. Here, a check valve 5 at an exhaust section of the high pressure turbine and a ventilator valve 6 are closed. Control signal for the steam valve in a warming system is set on the basis of a target warming temperature corresponding to a starting pattern which is determined on the basis of measurement of a thermometer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は事業用火力プラントにおける蒸気タービンロー
タの起動時の熱応力の低減に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the reduction of thermal stress during startup of a steam turbine rotor in a commercial thermal power plant.

〔従来の技術〕[Conventional technology]

公知例として「蒸気タービンのウオーミング方法」 (
特公昭58−17329号公報)では高圧タービンのケ
ーシングの下部に滞留したドレンの急激な蒸発により、
周囲の熱が奪われてケーシングに温度差が発生し、熱応
力が出る現象を防止するため、ウオーミング中の圧力を
制御してドレンの滞留をなくすものである。この例では
、ケーシングの適冷を防止するものであり、また、暖機
温度目標を150℃に改定しており、ケーシングを積極
的にタービンの通気温度まで暖機する本発明の目的とは
趣旨が異なる。
A well-known example is ``Steam Turbine Warming Method'' (
In Japanese Patent Publication No. 58-17329), due to rapid evaporation of condensate accumulated in the lower part of the high-pressure turbine casing,
In order to prevent ambient heat being taken away and a temperature difference occurring in the casing, causing thermal stress, the pressure during warming is controlled to prevent condensate from stagnation. In this example, the purpose of the present invention is to prevent the casing from cooling properly, and the warm-up temperature target has been revised to 150°C. are different.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

蒸気タービンにおいて、整定した運転性のものとでは、
主要弁や車室に生じる圧力と熱による組合せ応力、また
、ロータの遠心力と熱応力は比較的低い値に保たれるの
で、これらの部分の疲労による寿命の消耗はほとんど無
視できるが、起動停止負荷変化、または、非常運転のよ
うな過渡的な運転状態では大きな熱応力が車室および弁
については、圧力による応力、ロータについては遠心力
による応°力の上に重なる。このような、過渡的な運転
条件が非常に苛酷な場合、弁数、車室、ロータのような
高温部の降伏現象を生じ、疲労により、寿命が消費され
る。
In steam turbines, those with stable operability are:
The combined stresses caused by pressure and heat in the main valves and the casing, as well as the centrifugal force and thermal stress in the rotor, are kept at relatively low values, so the fatigue life of these parts is almost negligible. During transient operating conditions such as stop load changes or emergency operations, large thermal stresses are superimposed on pressure-induced stress for the casing and valves, and centrifugal force-induced stress for the rotor. If such transient operating conditions are extremely severe, high-temperature parts such as the valve number, the casing, and the rotor will yield, resulting in fatigue, which will reduce the life of the valve.

ロータ表面に亀裂を生じさせる熱応力は、次の三つの過
渡的状態として、 1)冷機起動 2)暖機再起動 3)大きな負荷変化 が揚げられる。
The thermal stress that causes cracks on the rotor surface can be caused by the following three transient states: 1) cold start, 2) warm restart, and 3) large load changes.

しかし、高圧タービに対して行なっていた暖機方法は、
ロータのメタル温度を150℃近辺に。
However, the warm-up method used for high-pressure turbines is
Set the rotor metal temperature to around 150℃.

上昇させる事のみにより、タービン通気時の蒸気温度と
メタル温度の温度差(ミスマツチ)を低減させていた。
By simply raising the temperature, the temperature difference (mismatch) between the steam temperature and metal temperature during turbine ventilation was reduced.

しかるに、近年、火力プラントは、原子カプラントの台
頭により、運用方法がベースロードからミドルロードに
変わりつつある。つまり、毎日起動停止1週末停止等の
運用方法はタービンメタル温度と1.ボイラ側の蒸気温
度の差を生じさせる。これは、ボイラの熱容量とタービ
ンの熱容量の差により、同一時刻にタービンを停止して
も、タービンの方がボイラに比較して早く冷却し1次の
起動時には、タービンメタル温度が、150℃以上あっ
て、暖機の必要が無い場合でもタービンメタル温度はボ
イラからの蒸気温度と比較して低いことによる。つまり
、毎日起動停止及び週末停止後の急速起動時には、必ら
ず、ミスマツチ量を考慮した、起動方法を採らねばなら
ず、起動方法に、時間的な制約をはめなければならない
However, in recent years, with the rise of nuclear couplants, the operating method of thermal power plants has been changing from base-load to middle-load. In other words, the operation method such as starting and stopping every day and stopping on weekends depends on the turbine metal temperature and 1. This creates a difference in steam temperature on the boiler side. This is due to the difference between the heat capacity of the boiler and the turbine, so even if the turbine is stopped at the same time, the turbine cools down faster than the boiler, and at the time of primary startup, the turbine metal temperature will exceed 150℃. This is because the turbine metal temperature is lower than the steam temperature from the boiler even when there is no need for warming up. In other words, when starting up and stopping every day or quickly starting up after stopping on weekends, a starting method must be adopted that takes the amount of mismatch into account, and time constraints must be placed on the starting method.

第2図は典型的な主蒸気、再熱蒸気温度と対応する第一
段後の温度を負荷とを関連して示したものである。特殊
な場合として、タービン負荷が。
FIG. 2 shows typical main steam, reheat steam temperatures and corresponding post-first stage temperatures in relation to load. A special case is the turbine load.

15%から全負荷(100%)まで変化すると。When changing from 15% to full load (100%).

第一段後のケーシングの温度が約150℃変化する。The temperature of the casing after the first stage changes by about 150°C.

第3図は、与えられた負荷変化率に対して、主蒸気温度
、第一段後のタービンロータの温度変化を示すものであ
る。冷摺起動の場合、ロータ表面と、内孔の温度はほぼ
室温であるが、(暖機を行った場合は暖機完1時の温度
となる。)タービンが回転し、また、負荷をとるとロー
タの内孔の温度が遅れて上昇し、このため、ロータ表面
と内孔に顕著な温度差を生じ、熱応力が発生する0通常
FIG. 3 shows the main steam temperature and the temperature change of the turbine rotor after the first stage for a given load change rate. In the case of cold-slide starting, the temperature of the rotor surface and inner hole is approximately room temperature (if warm-up is performed, the temperature will be the same as when warm-up is completed).The turbine rotates and takes on a load. The temperature of the inner bore of the rotor rises with a delay, resulting in a significant temperature difference between the rotor surface and the inner bore, which generates thermal stress.

ロータ表面の応力は当初蒸気温度がロータ表面温度より
高いために、圧縮応力を生じる。すなわち。
The stress on the rotor surface causes compressive stress because the steam temperature is initially higher than the rotor surface temperature. Namely.

ロータ表面の材料は温度の上昇に伴って伸びようとする
が、ロータ内部の材料の温度が低いために。
The material on the surface of the rotor tends to expand as the temperature rises, but the temperature of the material inside the rotor is low.

膨張がさまたげられるためである。起動が非常に激しい
場合ロータ表面の材料は圧縮のため、降伏し、タービン
が全負荷の定常状態に達した時に、残留引張応力を生じ
る。ロータ内孔の材料の降伏を生じない限り、初め引張
を受け、定常状態に達するとともに、零に減じる。繰り
返しの苛酷なサイクルは、材料の寿命を消耗し、最後に
亀裂を生じさせる。そして、ロータ表面の温度の変化の
割合が早ければ早い程、変化の量が大きければ大きい程
、表面と内孔の温度差が大きく、そして熱応力が大きく
なる。また、ロータの直径が大きいほど熱応力が過大と
なり、大きなサイクル寿命が消費される。
This is because expansion is hindered. If the start-up is too severe, the material on the rotor surface will yield due to compression, creating residual tensile stresses when the turbine reaches steady state at full load. Unless yielding of the material in the rotor bore occurs, it will initially be under tension and will reach a steady state and reduce to zero. Repeated harsh cycles exhaust the life of the material and eventually cause it to crack. The faster the rate of change in the rotor surface temperature and the greater the amount of change, the greater the temperature difference between the surface and the inner hole, and the greater the thermal stress. Also, the larger the diameter of the rotor, the greater the thermal stress and the greater the cycle life consumed.

従来、このような、ロータの熱応力を低減させるため、
ターニング運転中にロータ暖機を行なう。
Conventionally, in order to reduce the thermal stress of the rotor,
Warm up the rotor during turning operation.

つまり、主蒸気、または、補助蒸気等の高熱源より蒸気
を高圧タービン内に導き、高圧タービンを構成する、ケ
ーシング、ロータ、ダイアフラム等の部品を暖機する6
通常、ターニング中の暖機は、グランド蒸気が確立し、
復水器真空が上昇するやいなや開始する。高圧ケーシン
グ内圧力が約4kg/Jに達した後、第一段後内壁温度
が150℃に達した後、さらに、工時間程度暖機を実施
していた。
In other words, steam is guided into the high-pressure turbine from a high heat source such as main steam or auxiliary steam to warm up parts such as the casing, rotor, and diaphragm that make up the high-pressure turbine.
Normally, warming up during turning is done by establishing ground steam,
It starts as soon as the condenser vacuum rises. After the internal pressure of the high-pressure casing reached approximately 4 kg/J and the temperature of the inner wall after the first stage reached 150° C., warm-up was further performed for about a working time.

〔問題点を解決するための手段〕[Means for solving problems]

従来のロータ暖機は、メタル温度が150℃を目標とし
た管理方法が採られていたために、毎日  ゛起動停止
1逓末停止後の起動等、メタル温度が、150℃以上あ
る場合で暖機を行なわない場合であっても、蒸気温度と
メタル温度のミスマツチが生じ、起動方式を規定してい
た。
In the conventional rotor warm-up, a control method was adopted that aimed for the metal temperature to be 150°C, so warm-up was performed every day when the metal temperature was 150°C or higher, such as during startup after a final stop. Even when this was not done, a mismatch between the steam temperature and metal temperature occurred, and the startup method was regulated.

第1図に示すように、高圧タービン第一段部分に暖機系
統を設け、起動モードに応じて、ミスマツチを最小とす
べく、目標温度に初段を暖機する事により、ロータの熱
応力低減が可能となる0本発明によ、る暖機方法により
、高圧タービン第一段部分を通気温度付近まで加熱する
As shown in Figure 1, a warm-up system is installed in the first stage of the high-pressure turbine to warm up the first stage to a target temperature depending on the startup mode to minimize mismatch, thereby reducing thermal stress on the rotor. By the warm-up method according to the present invention, which makes it possible to heat the first stage portion of the high-pressure turbine to around the ventilation temperature.

〔作用〕[Effect]

第1図において、暖機系統は、蒸気入口弁1゜蒸気出口
弁2.温度計3により構成される。
In FIG. 1, the warm-up system includes steam inlet valve 1, steam outlet valve 2. It is composed of a thermometer 3.

起動に先立ち、蒸気入口弁1を開けて高温蒸気を導き、
高圧タービンの第一段部分を、蒸気タービン入口温度ま
で加熱する0段機系統の蒸気弁の制御信号は、温度計3
の測定結果を基に、起動のパターンに応じた暖機目標温
度より定める。
Prior to startup, open the steam inlet valve 1 to introduce high-temperature steam,
The control signal for the steam valve of the 0-stage machine system that heats the first stage of the high-pressure turbine to the steam turbine inlet temperature is
Based on the measurement results, the warm-up target temperature is determined according to the startup pattern.

〔実施例〕〔Example〕

高圧タービンにはボイラからの蒸気が蒸気加減弁4を通
して供給される。
Steam from a boiler is supplied to the high pressure turbine through a steam control valve 4.

ロータ熱応力が最も厳しい場所は、第一段後であるから
、この部分を、蒸気入口温度付近まで加′5.、 !熱し、温度差を少なくするため、高温蒸気源よリミ 蒸気入口弁1を通して、タービン第一段部を暖機し、暖
機後の蒸気は、蒸気出口弁より復水器へ流す、この時、
高圧タービン排気部の逆止弁5及びベンチレータ弁6は
閉じておく。
Since the part where the rotor thermal stress is the most severe is after the first stage, this part is heated to around the steam inlet temperature.'5. , ! In order to heat the turbine and reduce the temperature difference, the first stage of the turbine is warmed up from a high-temperature steam source through the limit steam inlet valve 1, and the steam after warming up is passed through the steam outlet valve to the condenser.
The check valve 5 and ventilator valve 6 of the high-pressure turbine exhaust section are kept closed.

第2図に示すように、第1段後の温度はタービンの負荷
によって大幅に変わり、20%負荷では約350℃に対
し、100%負荷では約500℃に変わる。その差は1
50℃ある。従って第一段後、蒸気温度と、第一段後メ
タル温度の通気持直後の温度差による熱応力を少なくす
るため、暖機系統を通気前に動作させて第一段後メタル
温度を350℃付近まで暖機させる。
As shown in FIG. 2, the temperature after the first stage varies significantly depending on the turbine load, varying from about 350° C. at 20% load to about 500° C. at 100% load. The difference is 1
It's 50℃. Therefore, after the first stage, in order to reduce the thermal stress due to the temperature difference between the steam temperature and the temperature of the metal after the first stage immediately after ventilation, the warm-up system is operated before ventilation to raise the metal temperature after the first stage to 350°C. Let it warm up to a certain temperature.

尚、急速起動が必要な場合、第一段後メタル温度を35
0℃以上になる様に暖気系統を動作させる事により、ミ
スマツチ量が正に転じるまで、すなわち、蒸気温度から
メタル温度を引いた値が正になる負荷までは、タービン
の急速起動が可能である0例えば、第一段後メタル温度
を400℃になる様に、暖機すると、負荷35%までは
急速起〔発明の効果〕 本発明゛によれば、蒸気温度とメタル温度の差を小さく
できるので、タービンロータ内部の温度勾配をゆるくす
ることができる。このため、タービンロータに発生する
熱応力を最小に抑える事ができる。
In addition, if rapid startup is required, the metal temperature after the first stage should be set to 35
By operating the warm-up system so that the temperature rises above 0℃, it is possible to rapidly start the turbine until the amount of mismatch turns positive, that is, until the load where the value obtained by subtracting the metal temperature from the steam temperature becomes positive. 0 For example, if the metal temperature after the first stage is warmed up to 400°C, the load will rise rapidly up to 35% [Effects of the Invention] According to the present invention, the difference between the steam temperature and the metal temperature can be reduced. Therefore, the temperature gradient inside the turbine rotor can be made gentler. Therefore, thermal stress generated in the turbine rotor can be minimized.

また、蒸気加減弁からタービン入口に至る。ケーシング
の暖機もすることができる。
It also extends from the steam control valve to the turbine inlet. It is also possible to warm up the casing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図はタービン
負荷に対する温度特性図、第3図は冷機起動時の定性的
なロータ温度と熱応力の関係を示す図である。 1・・・蒸気人口弁、2・・・蒸気出口弁、3・・・温
度計。 4・・・蒸気加減弁、5・・・逆止弁、6・・・ベンチ
レータ弁・
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a temperature characteristic diagram with respect to turbine load, and FIG. 3 is a diagram showing a qualitative relationship between rotor temperature and thermal stress during cold engine startup. 1... Steam population valve, 2... Steam outlet valve, 3... Thermometer. 4... Steam control valve, 5... Check valve, 6... Ventilator valve.

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気タービンの起動時に、前記蒸気タービンの入口
蒸気温度から、タービン第一段後蒸気温度を予測し、初
段後のメタル温度との比較を行ない、前記初段後のメタ
ル温度が低温である場合、前記初段後のメタルの加熱を
行なうことを特徴とする蒸気タービンの暖機方法。
1. When starting the steam turbine, predict the steam temperature after the first stage of the turbine from the inlet steam temperature of the steam turbine, and compare it with the metal temperature after the first stage, and if the metal temperature after the first stage is low; A method for warming up a steam turbine, comprising heating the metal after the first stage.
JP988787A 1987-01-21 1987-01-21 Warming method for steam turbine Pending JPS63179102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP988787A JPS63179102A (en) 1987-01-21 1987-01-21 Warming method for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP988787A JPS63179102A (en) 1987-01-21 1987-01-21 Warming method for steam turbine

Publications (1)

Publication Number Publication Date
JPS63179102A true JPS63179102A (en) 1988-07-23

Family

ID=11732652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP988787A Pending JPS63179102A (en) 1987-01-21 1987-01-21 Warming method for steam turbine

Country Status (1)

Country Link
JP (1) JPS63179102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943696A (en) * 2012-11-19 2013-02-27 辽宁省电力有限公司电力科学研究院 Beizhong 350MW supercritical high-intermediate-pressure combined cylinder steam turbine set cylinder warming process
CN111042875A (en) * 2019-12-13 2020-04-21 上海电气电站设备有限公司 Steam turbine warming-up method and warming-up system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943696A (en) * 2012-11-19 2013-02-27 辽宁省电力有限公司电力科学研究院 Beizhong 350MW supercritical high-intermediate-pressure combined cylinder steam turbine set cylinder warming process
CN111042875A (en) * 2019-12-13 2020-04-21 上海电气电站设备有限公司 Steam turbine warming-up method and warming-up system

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
US20140165565A1 (en) Steam turbine plant and driving method thereof
JPS62182444A (en) Method and device for controlling cooling air for gas turbine
JPS61237802A (en) Warming-up method for steam turbine
US7805941B2 (en) Method for starting a steam turbine installation
JP4229579B2 (en) Combined cycle power plant and method for supplying steam for heating and cooling combined cycle power plant
JPS63179102A (en) Warming method for steam turbine
US11333073B2 (en) Gas turbine and the method of controlling bleed air volume for gas turbine
JPH09177505A (en) A method and apparatus for controlling warming and cooling steam of steam turbine
JP2002106305A (en) Starting controller of combined cycle power generation plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPS6239646B2 (en)
JP2953794B2 (en) Steam control valve chest warming method
JPS5934405A (en) Warming device of steam turbine
JPH06341301A (en) Method for controlling thermal stress of steam turbine
JPH03267509A (en) Control method of reheating steam turbine
JPH08260911A (en) Restarting method and controller for uniaxial type combined cycle power plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS5912105A (en) Starting system of reheat condensing steam turbine
JPH05288007A (en) Steam turbine
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JPH02130202A (en) Combined plant
JPH04298602A (en) Steam turbine starting equipment
JPS5817330B2 (en) High pressure turbine rotating shaft cooling method