JPH0588362B2 - - Google Patents

Info

Publication number
JPH0588362B2
JPH0588362B2 JP60054150A JP5415085A JPH0588362B2 JP H0588362 B2 JPH0588362 B2 JP H0588362B2 JP 60054150 A JP60054150 A JP 60054150A JP 5415085 A JP5415085 A JP 5415085A JP H0588362 B2 JPH0588362 B2 JP H0588362B2
Authority
JP
Japan
Prior art keywords
temperature
pressure turbine
low
steam
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60054150A
Other languages
Japanese (ja)
Other versions
JPS61215405A (en
Inventor
Kazuto Maeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5415085A priority Critical patent/JPS61215405A/en
Publication of JPS61215405A publication Critical patent/JPS61215405A/en
Publication of JPH0588362B2 publication Critical patent/JPH0588362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービンの湿分分離加熱器の温
度制御法に関し、たとえば原子力発電プラントに
利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the temperature of a moisture separation heater for a steam turbine, and is used in, for example, a nuclear power plant.

従来の技術 第5図に従来の原子力発電プラントにおける二
段再熱式の湿分分離加熱器の温度制御方法を示
す。図において、1は高圧タービン、2は低圧タ
ービン、3は発電機、4は主蒸気系、5は高圧タ
ービン抽気系、6は主蒸気による加熱系、7は制
御弁、8は湿分分離加熱器、9は高圧タービン排
気系である。
Prior Art FIG. 5 shows a conventional temperature control method for a two-stage reheat moisture separation heater in a nuclear power plant. In the figure, 1 is a high-pressure turbine, 2 is a low-pressure turbine, 3 is a generator, 4 is a main steam system, 5 is a high-pressure turbine extraction system, 6 is a heating system using main steam, 7 is a control valve, and 8 is moisture separation heating 9 is a high pressure turbine exhaust system.

蒸気発生器から供給される飽和蒸気は高圧ター
ビン1で膨脹し仕事をすると湿り蒸気となつて出
て行くので、これを低圧タービン2に供給するに
先立つて、湿分分離加熱器8で加熱して過熱蒸気
となして低圧タービン内の浸蝕防止と効率の低下
防止を計つている。
Saturated steam supplied from the steam generator expands and performs work in the high-pressure turbine 1 and leaves as moist steam. Therefore, before supplying this to the low-pressure turbine 2, it is heated in the moisture separation heater 8. This is used to create superheated steam to prevent corrosion within the low-pressure turbine and prevent a drop in efficiency.

現在の代表的な湿分分離加熱器では、1段目の
加熱を高圧タービン抽気系5で、2段目の加熱を
主蒸気を分岐した加熱蒸気系6で行つている。
In current typical moisture separation heaters, the first stage is heated by a high pressure turbine extraction system 5, and the second stage is heated by a heating steam system 6 branched from main steam.

低圧タービン入口蒸気温度が低過ぎると、低圧
タービン2内で蒸気湿り度が上昇しエロージヨン
の原因となり、また熱効率が悪くなり、高いと低
圧最終段の温度が強度上の制限温度を超えるか内
部各部の隙間が異常になるなどの不都合が生じ
る。従つて低圧タービンの入口蒸気温度は適正値
に制御されねばならない。
If the low-pressure turbine inlet steam temperature is too low, the steam humidity will increase in the low-pressure turbine 2, causing erosion, and thermal efficiency will deteriorate. Inconveniences may occur, such as abnormal gaps. Therefore, the inlet steam temperature of the low pressure turbine must be controlled to an appropriate value.

一方、急激な低圧タービンの温度変化は熱応力
発生の原因となるので、起動時や負荷変化時に
は、湿分分離加熱器8の出口蒸気温度変化率は適
正に制御せねばならない。
On the other hand, since a sudden temperature change in the low pressure turbine causes thermal stress to occur, the rate of change in temperature of the steam at the outlet of the moisture separation heater 8 must be appropriately controlled at startup or when the load changes.

代表的な原子力発電プラントを例にとると、湿
分分離加熱器8の2段側加熱が生かされない時
(即ち、高圧タービンの抽気によつてのみ加熱さ
れる時)には、低圧タービン2の入口蒸気温度は
初期負荷時に第2図の負荷−温度曲線のQ点にあ
る。一方、低圧タービン2の入口蒸気温度は制御
装置により、第2図のA,B,C,D,Eの折線
で示される負荷追従運転曲線上の設定値の如く制
御されるが、暖機運転時においては、Q点よりR
点まで上昇させて設定値の温度としなければなら
ない。この際低圧タービン2の熱応力の制限から
入口蒸気温度変化率はある上限値でもつて制限さ
れている。
Taking a typical nuclear power plant as an example, when the second-stage side heating of the moisture separation heater 8 is not utilized (that is, when heating is performed only by the bleed air of the high-pressure turbine), the low-pressure turbine 2 The inlet steam temperature is at point Q of the load-temperature curve in FIG. 2 at the initial load. On the other hand, the inlet steam temperature of the low-pressure turbine 2 is controlled by the control device according to the set value on the load following operation curve shown by the broken lines A, B, C, D, and E in FIG. At times, from point Q to R
The temperature must be raised to the set point. At this time, the rate of change in inlet steam temperature is limited to a certain upper limit due to limitations on thermal stress of the low pressure turbine 2.

上記事項に対応する従来の制御法は、以下のと
おりである。
Conventional control methods corresponding to the above matters are as follows.

タービンが定格速度に達し、電力系統に併入さ
れると初期負荷を取る。低圧タービン入口蒸気温
度は第2図のQ点から出発してある定められた温
度変化率で昇温される。そして、R点でAB線に
交る。以後は所定時間以内又は蒸気発生器側等か
ら別の制限要素がある時にはそれに従つて、負荷
追従運転曲線上を追従制限する。
Once the turbine reaches rated speed and is joined to the power system, it takes on the initial load. The low pressure turbine inlet steam temperature is increased at a predetermined temperature change rate starting from point Q in FIG. Then, it intersects line AB at point R. Thereafter, the load follow-up operation curve is followed and restricted within a predetermined time or when there is another limiting factor from the steam generator side or the like.

発明が解決しようとする問題点 上述の従来の制御方法における問題は下記の通
りである。
Problems to be Solved by the Invention Problems in the conventional control method described above are as follows.

タービンが例えば全負荷を取つている時には入
口温度はE点にある。従つて全負荷運転後一旦運
転を休止し、再起動する場合には、低圧タービン
2は冷却され、そのメタル温度はE点からE点と
Q点との間のある値となる。一方、蒸気温度は併
入時の温度(Q点)からある定められた温度変化
率である時間をかけて負荷に対応する温度迄昇温
する。
When the turbine is taking full load, for example, the inlet temperature is at point E. Therefore, when the operation is temporarily stopped after full-load operation and then restarted, the low-pressure turbine 2 is cooled, and its metal temperature becomes a certain value between point E and point Q. On the other hand, the steam temperature increases from the temperature at the time of entry (point Q) to the temperature corresponding to the load over a period of time at a certain rate of temperature change.

この間、低圧タービンは内部が上述のE点とQ
点との中間のメタル温度から、蒸気により併入時
すなわち初期負荷時の低圧タービン入口蒸気温度
(Q点)に向い一旦冷却され、しかる後に加熱さ
れることになる。この最初の冷却過程は全く無駄
であるばかりかこの冷却過程中およびその後再起
動時メタル温度に再び達するまで低圧タービン2
の熱応力軽減のため温度変化率を制限することは
全く無駄な時間のロスを生む。
During this time, the inside of the low-pressure turbine is between the above-mentioned points E and Q.
From the metal temperature intermediate between the point and point, the metal is cooled by steam toward the low-pressure turbine inlet steam temperature (point Q) at the time of co-input, that is, at the initial load, and is then heated. Not only is this initial cooling process completely wasteful, but the low pressure turbine
Limiting the rate of temperature change to reduce thermal stress results in a complete waste of time.

本発明は、上記最初の無駄な冷却過程すなわち
無駄な暖機運転をなくすことにある。
The object of the present invention is to eliminate the first wasteful cooling process, that is, the wasteful warm-up operation.

問題点を解決するための手段 本発明は、上述の問題を解決するために、次の
ような手段を採つている。すなわち、本発明は、
主蒸気と高圧タービン抽気とを加熱用蒸気源とす
る二段再熱式の湿分分離加熱器の再起動時の温度
制御法において、低圧タービン内部のメタル温度
を計測し、この温度が初期負荷に近い領域の低圧
タービンの負荷追従運転曲線上の設定温度に達す
るまでは前記主蒸気による加熱用蒸気源の制御弁
を開きこの温度になるまでステツプ状に低圧ター
ビン入口蒸気温度を急速に昇温させ、しかる後前
記負荷追従運転曲線上の設定温度まである定めら
れた温度変化率で昇温させることを特徴とする。
Means for Solving the Problems The present invention employs the following means to solve the above-mentioned problems. That is, the present invention
In the temperature control method when restarting a two-stage reheat moisture separation heater that uses main steam and high-pressure turbine bleed air as heating steam sources, the metal temperature inside the low-pressure turbine is measured, and this temperature is set at the initial load. The control valve of the heating steam source using the main steam is opened until the set temperature on the load following operation curve of the low pressure turbine in the region close to is reached, and the low pressure turbine inlet steam temperature is rapidly increased in steps until this temperature is reached. Then, the temperature is raised at a predetermined rate of temperature change up to the set temperature on the load following operation curve.

作 用 以上述べた手段によれば、再起動時に上述の無
駄な冷却過程なしに急速起動を行いメタルマツチ
ングすることができる。
Effect: According to the above-described means, it is possible to quickly start up and perform metal matching without the above-mentioned wasteful cooling process when restarting.

実施例 次に、本発明の実施例について、第1図より第
4図を参照して詳述する。
Embodiments Next, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4.

第1図に本発明のシーケンスを示す。 FIG. 1 shows the sequence of the present invention.

符号10はタービン負荷信号、11は関数設定
器、12は変化率設定器、13は設定値、14は
制御弁後圧力信号、15はアナログ切換スイツ
チ、16はタービンメタル温度検出器、17はア
ナログ切換スイツチ、18はメタル関数設定器、
19は遮断器、20はワンシヨツトパルス、21
は暖機初期開度指令である。
10 is a turbine load signal, 11 is a function setter, 12 is a rate of change setter, 13 is a set value, 14 is a pressure signal after the control valve, 15 is an analog changeover switch, 16 is a turbine metal temperature detector, 17 is an analog Selector switch, 18 is metal function setting device,
19 is a circuit breaker, 20 is a one-shot pulse, 21
is the initial warm-up opening command.

本発明は、低圧タービン内部のメタル温度を計
測し、低圧タービン入口蒸気温度をその温度まで
瞬時変化させ、前述の無駄時間を無くそうとする
ものである。
The present invention aims to eliminate the above-mentioned wasted time by measuring the metal temperature inside the low-pressure turbine and instantaneously changing the low-pressure turbine inlet steam temperature to that temperature.

すなわち、第2図に関して述べれば、前回の運
転後低圧タービンが放冷してそのメタル温度がR
点(204℃)とQ点(110℃)との間例えばP点
(180℃)にあるものとする。この時低圧タービン
入口蒸気温度設定値をPI制御により急激にすな
わちステツプ状にP点(180℃)になるように、
第5図の湿分分離加熱器8の2段目加熱を行う主
蒸気を分岐した加熱蒸気系6の制御弁7を開く。
このようにメタルマツチングを行なつた後、入口
蒸気温度は低圧タービン2の熱応力の制限から定
まる温度変化率上限値(56℃/時間)を下廻るあ
る定められた温度変化率(45℃/時間)で昇温す
るよう制御される。
In other words, referring to Fig. 2, after the previous operation, the low-pressure turbine has cooled down and its metal temperature has decreased to R.
For example, it is assumed that there is a point P (180°C) between point (204°C) and point Q (110°C). At this time, the low-pressure turbine inlet steam temperature setting value is set by PI control so that it suddenly reaches point P (180°C) in steps.
The control valve 7 of the heating steam system 6 that branches off the main steam for heating the second stage of the moisture separation heater 8 shown in FIG. 5 is opened.
After performing metal matching in this way, the inlet steam temperature is set at a certain rate of temperature change (45℃/hour) below the upper limit of the rate of temperature change (56℃/hour) determined by the thermal stress limit of the low-pressure turbine 2. /hour).

もし低圧タービンメタル温度がR点(204℃)
以上の場合には、R点(204℃)までステツプ状
に設定値を上げ、しかる後に所定レートで蒸気温
度を負荷に対応する設定値に追従させる。
If the low pressure turbine metal temperature is R point (204℃)
In the above case, the set value is increased stepwise up to point R (204°C), and then the steam temperature is made to follow the set value corresponding to the load at a predetermined rate.

なお、温度制御を行なうに当り、実際には圧力
制御を行なつているのは、現在原子力タービンで
採用されている程度の圧力の飽和蒸気において、
等エンタルピ変化を行なう場合には、圧力と温度
は対応しており、圧力で温度を代表できるからで
ある。温度を実際に計測して制御を行なうときに
は、温度計部分の加熱による時間遅れがあり、圧
力制御の方がレスポンスがよい。
In addition, when performing temperature control, pressure is actually controlled in saturated steam at the pressure currently used in nuclear power turbines.
This is because when performing an isenthalpic change, pressure and temperature correspond, and temperature can be represented by pressure. When controlling the temperature by actually measuring it, there is a time delay due to heating of the thermometer part, so pressure control has a better response.

関数設定器11の負荷と圧力との関係を第3図
に、タービンメタル温度に対応する圧力を示す関
数設定器18の関数を第4図に示す。
FIG. 3 shows the relationship between the load and pressure of the function setting device 11, and FIG. 4 shows the function of the function setting device 18, which indicates the pressure corresponding to the turbine metal temperature.

遮断器19が併入を検出し、ワンシヨツトパル
ス20が信号を発することにより、タービンメタ
ル温度検出器16で計測している温度信号はアナ
ログ切換スイツチ17を通り関数設定器18に入
り低圧タービン2のメタル温度対応の信号にな
る。暖機初期開度指令21の指令によりこの信号
は、アナログ切換スイツチ15を経由して変化率
設定器12に接続される。変化率設定器12にお
いて関数設定器11より送られる上限信号に達す
るまでは関数設定器18より送られた信号を初期
値として、予じめ定めた率で圧力増加信号を与え
るのである。
When the circuit breaker 19 detects the combination and the one shot pulse 20 issues a signal, the temperature signal measured by the turbine metal temperature detector 16 passes through the analog changeover switch 17 and enters the function setting device 18 and is sent to the low pressure turbine 2. The signal corresponds to the metal temperature. This signal is connected to the change rate setting device 12 via the analog changeover switch 15 according to the warm-up initial opening degree command 21 . Until the rate of change setter 12 reaches the upper limit signal sent from the function setter 11, a pressure increase signal is given at a predetermined rate using the signal sent from the function setter 18 as an initial value.

発明の効果 本発明によれば、原子力タービンの暖気運転に
際して、前回運転から再起動までの時間によつて
低圧タービンのメタル温度(低圧タービン入口で
タービンを代表する個所の温度)を制御ロジツク
に挿入し、低圧タービンに熱衝撃を与えることな
く急速起動を行ない、無駄な暖気運転を排除す
る。
Effects of the Invention According to the present invention, when warming up a nuclear turbine, the metal temperature of the low pressure turbine (temperature at a representative point of the turbine at the inlet of the low pressure turbine) is inserted into the control logic based on the time from the previous operation to restart. This enables rapid startup without applying thermal shock to the low-pressure turbine, eliminating wasteful warm-up operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する系統のブロツ
ク図、第2図は低圧タービンにおける負荷−温度
曲線を示す図表、第3図は負荷と圧力との関係を
示す図表、第4図は関数設定器18の関数を示す
図表、第5図は原子力発電プラントの高低圧ター
ビン系を示す系統図である。 1……高圧タービン、2……低圧タービン、8
……湿分分離加熱器、10……タービン負荷信
号、11……関数設定器、12……変化率設定
器、13……設定値、14……制御弁後圧力信
号、15……アナログ切換スイツチ、16……タ
ービンメタル温度検出器、17……アナログ切換
スイツチ、18……関数設定器、19……遮断
器、20……ワンシヨツトパルス、21……暖機
初期開度指令。
Fig. 1 is a block diagram of a system implementing the method of the present invention, Fig. 2 is a chart showing the load-temperature curve in a low-pressure turbine, Fig. 3 is a chart showing the relationship between load and pressure, and Fig. 4 is a function diagram. FIG. 5 is a diagram showing the functions of the setting device 18, and is a system diagram showing the high and low pressure turbine system of a nuclear power plant. 1...High pressure turbine, 2...Low pressure turbine, 8
... Moisture separation heater, 10 ... Turbine load signal, 11 ... Function setting device, 12 ... Rate of change setting device, 13 ... Setting value, 14 ... Control valve rear pressure signal, 15 ... Analog switching Switch, 16... Turbine metal temperature detector, 17... Analog changeover switch, 18... Function setting device, 19... Circuit breaker, 20... One shot pulse, 21... Warm-up initial opening command.

Claims (1)

【特許請求の範囲】[Claims] 1 主蒸気と高圧タービン抽気とを加熱用蒸気源
とする二段再熱式の湿分分離加熱器の再起動時の
温度制御法において、低圧タービン内部のメタル
温度を計測し、この温度が初期負荷に近い領域の
低圧タービンの負荷追従運転曲線上の設定温度に
達するまでは前記主蒸気による加熱用蒸気源の制
御弁を開きこの温度になるまでステツプ状に低圧
タービン入口蒸気温度を急速に昇温させ、しかる
後前記負荷追従運転曲線上の設定温度まである定
められた温度変化率で昇温させることを特徴とす
る、湿分分離加熱器の温度制御法。
1 In the temperature control method when restarting a two-stage reheat moisture separation heater that uses main steam and high-pressure turbine bleed air as heating steam sources, the metal temperature inside the low-pressure turbine is measured, and this temperature is The control valve of the heating steam source using the main steam is opened until the set temperature on the load-following operation curve of the low-pressure turbine in the region close to the load is reached, and the low-pressure turbine inlet steam temperature is rapidly increased in steps until this temperature is reached. 1. A method for controlling the temperature of a moisture separation heater, the method comprising heating it up and then increasing the temperature at a predetermined temperature change rate up to a set temperature on the load following operation curve.
JP5415085A 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater Granted JPS61215405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5415085A JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5415085A JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Publications (2)

Publication Number Publication Date
JPS61215405A JPS61215405A (en) 1986-09-25
JPH0588362B2 true JPH0588362B2 (en) 1993-12-22

Family

ID=12962523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5415085A Granted JPS61215405A (en) 1985-03-20 1985-03-20 Temperature control for moisture-content separating heater

Country Status (1)

Country Link
JP (1) JPS61215405A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362001A (en) * 1976-11-12 1978-06-03 Westinghouse Electric Corp Device for controlling temperature of low pressure turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362001A (en) * 1976-11-12 1978-06-03 Westinghouse Electric Corp Device for controlling temperature of low pressure turbine

Also Published As

Publication number Publication date
JPS61215405A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
US5412936A (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant
US4282708A (en) Method for the shutdown and restarting of combined power plant
CA1193455A (en) Turbine high pressure bypass temperature control system and method
US4873827A (en) Steam turbine plant
US20140165565A1 (en) Steam turbine plant and driving method thereof
EP3450705A1 (en) Gas turbine combined cycle system equipped with control device and its control method
JPS6123366B2 (en)
JPH0454802B2 (en)
KR890001727B1 (en) Turbine high pressure bypass temperature control system and method
US3782113A (en) Electric power plant system and method for operating a steam turbine especially of the nuclear type with electronic reheat control of a cycle steam reheater
JPH0588362B2 (en)
JP2633720B2 (en) Pre-warming method for steam turbine
JP3357723B2 (en) Gas turbine controller
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JPH04298602A (en) Steam turbine starting equipment
JPH03290006A (en) Gas turbine control unit of combined cycle power plant
JPH0772491B2 (en) Pre-warming device for steam turbine
JPS62294724A (en) Turbine casing cooler for turbocharger
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant
JP2886211B2 (en) Combined cycle power plant
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPH07166814A (en) Starting method for uniaxial combined cycle power generation plant
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPH0545841B2 (en)