JPS61213206A - Production of polymer having high water-absorptivity - Google Patents

Production of polymer having high water-absorptivity

Info

Publication number
JPS61213206A
JPS61213206A JP60056620A JP5662085A JPS61213206A JP S61213206 A JPS61213206 A JP S61213206A JP 60056620 A JP60056620 A JP 60056620A JP 5662085 A JP5662085 A JP 5662085A JP S61213206 A JPS61213206 A JP S61213206A
Authority
JP
Japan
Prior art keywords
polymer
water
ether
water absorption
diglycidyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056620A
Other languages
Japanese (ja)
Inventor
Takeshi Shibano
芝野 毅
Kiichi Ito
喜一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP60056620A priority Critical patent/JPS61213206A/en
Publication of JPS61213206A publication Critical patent/JPS61213206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

PURPOSE:To obtain a polymer having remarkably excellent rate of water- absorption and gel strength, and useful as a water-absorbing material for paper diaper, etc., by crosslinking the surface of a highly water-absorbing polymer with a specific crosslinking agent in the presence of water, and at the same time, introducing OH group to the surface of the polymer. CONSTITUTION:The surface of a highly water-absorbing polymer containing carboxyl group and/or carboxylate group as a constituent component of the (co)polymer (e.g. acrylic acid, alkali metal methacrylate, etc.) is treated with one or more crosslinking agents selected from trimethylolpropane diglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl ether, and sorbitol di(or tri or tetra)glycidyl ether, in the presence of water. The surface is crosslinked and at the same time, OH group is introduced to the surface of the polymer by this process.

Description

【発明の詳細な説明】 本発明は、吸水速度及びゲル強度が著しく優れた高吸水
性ポリマーの製造方法に関するものでらる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superabsorbent polymer having extremely excellent water absorption rate and gel strength.

(産業上の利用分野) 本発明の製造方法によって得られるポリマーは、多量の
水を短時間にて吸水して膨潤するが、水に不溶性であり
、かつ膨潤ポリマーのゲル強度に優れていることから各
種の吸水材料または吸水して膨潤し良状態で使用する各
種の材料の製造に有利Kll!用することが出来る。
(Industrial Application Field) The polymer obtained by the production method of the present invention absorbs a large amount of water in a short period of time and swells, but is insoluble in water and has excellent gel strength as a swollen polymer. It is advantageous for manufacturing various water-absorbing materials or materials that absorb water and swell to be used in good condition. can be used.

(従来技術) 従来、□紙、パルプ、不織布、スポンジ状ウレタン樹脂
等は、保水剤として生理用ナプキン、紙オシメ、各種の
衛生材料及び各種の実業用材料等に使用されてきた。し
かしこれらの材料はその吸水量が自重の10〜50倍程
度にすぎないので、多量の水を吸収または保持せしめる
ためには、多量の材料が必要であり、著しくかさ高にな
るばかりでなく、吸水した材料を加圧すると簡単に水分
を分離する等の欠点があった。
(Prior Art) Conventionally, paper, pulp, nonwoven fabric, sponge-like urethane resin, etc. have been used as water-retaining agents in sanitary napkins, paper diapers, various sanitary materials, and various industrial materials. However, these materials absorb only about 10 to 50 times their own weight, so in order to absorb or retain a large amount of water, a large amount of material is required, which not only makes them extremely bulky, but also There were drawbacks, such as the fact that if a material that had absorbed water was pressurized, the water would easily separate.

この種の吸水材料の上記欠点を改良する°ものとして、
近年、高吸水性の種々高分子材料が提案されている。例
えば、でん粉グジフト重合体(!!#公昭53−461
99号公報等)、セルロース変性体(!!#開昭50−
80376号公報等)、水溶性高分子の架橋物(特公昭
43−23462号公報等)、自己架橋型アクリル酸ア
ルカリ金嘱塩ポリマー(特公昭54−30710号公報
等)、等が提案°された。
To improve the above-mentioned drawbacks of this type of water-absorbing material,
In recent years, various highly absorbent polymer materials have been proposed. For example, starch gujift polymer (!!#Koshō 53-461
No. 99, etc.), cellulose modified products (!! #Kaisho 50-
80376, etc.), crosslinked water-soluble polymers (Japanese Patent Publication No. 43-23462, etc.), self-crosslinking type alkali gold acrylate polymers (Japanese Patent Publication No. 54-30710, etc.), etc. have been proposed. Ta.

しかしながらこれらの高吸水性高分子材料本吸水能が低
かったり、たとえ吸水能が高くて屯吸水速度が遅く、被
吸水体と接触した時、いわゆる“ままこ”が生成して効
率良く吸収されず、所望の量を吸水する為には長時間を
必要とする。従って特に生理用ナプキン、紙オシメ等の
様に一度に多量の被吸水体を吸収し、かつ瞬間吸水能を
必要とする用途には不向きであり、多くの問題点を有し
ていた。
However, these super absorbent polymer materials have low water absorption capacity, or even if they have high water absorption capacity, the water absorption rate is slow, and when they come into contact with an object to be absorbed, so-called "mamako" is generated and the water is not absorbed efficiently. , it takes a long time to absorb the desired amount of water. Therefore, it is particularly unsuitable for applications such as sanitary napkins, paper diapers, etc., which absorb a large amount of water-absorbing material at once and require instantaneous water-absorbing ability, and have many problems.

(本発明が解決せんとする問題点) 本発明は前記の様な高吸水性材料における問題点、即ち
吸水速度及びゲル強度、特に吸水速度を特段に向上した
高吸水性ポリマーの製造方法を提供せんとするものであ
る。
(Problems to be Solved by the Present Invention) The present invention addresses the above-mentioned problems in super absorbent materials, namely, provides a method for producing a super absorbent polymer that has significantly improved water absorption rate and gel strength, particularly water absorption rate. This is what I am trying to do.

(問題点の解決手段) 本発明者等は、前記の問題点を解決する目的で種々研究
を重ねた結果、カルボキシル基またはカルボキシレート
基を重合体または共重合体の構成成分として含有する高
吸水性ポリマーを水存在下、トリメチロールプロパンジ
グリシジルエーテル、ジグリセロールジグリシジルエー
テル、ジグリセロールトリグリシジルエーテル、ソルビ
トールジグリシジルエーテル、ンルビトールトリグリシ
ジルエーテル、フルビトールテトラクリシジルエーテル
から選ばれる1種以上の架橋剤で表面架橋処理すると同
時に、ポリマー表面に水酸基を導入することにより、著
しく吸水速度の大きい高吸水性ポリマーが簡単な処理方
法にて得られる。ことを見い出し、本発明を完成するに
至り九のである。
(Means for Solving the Problems) As a result of various studies aimed at solving the above-mentioned problems, the present inventors have discovered that super absorbent polymers containing carboxyl groups or carboxylate groups as constituent components of polymers or copolymers In the presence of water, one or more selected from trimethylolpropane diglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl ether, sorbitol diglycidyl ether, nrubitol triglycidyl ether, and flubitol tetracricidyl ether. By carrying out surface crosslinking treatment with a crosslinking agent and simultaneously introducing hydroxyl groups onto the polymer surface, a super absorbent polymer with an extremely high water absorption rate can be obtained by a simple treatment method. This led to the discovery of this fact and the completion of the present invention.

一般的に、親水性重合体の水への分散性および溶解また
は吸水速度を向上させる1−)の方iとして重合体表面
を疎水化する方法が知られている。
Generally, a method of making the surface of a hydrophilic polymer hydrophobic is known as method 1-i of improving the water dispersibility and dissolution or water absorption rate of a hydrophilic polymer.

すなわち、ソルビタンモノステアレート等の界面活性剤
、非揮発性炭化水素およびステアリン酸カルシウム等を
粉末状の親水性重合体に混合することにより、水への分
散性改善が図られた。しかしながら、この方法を高吸水
性ポリマーに適用してもごく初期においては水への分散
性が改善されるものの、吸水速度が遅いため、これが改
善されなければ吸水過程においていわゆる1ままこ”が
生成し、十分な効果は発揮されない。
That is, by mixing a surfactant such as sorbitan monostearate, a non-volatile hydrocarbon, calcium stearate, etc. into a powdered hydrophilic polymer, the dispersibility in water was improved. However, even if this method is applied to superabsorbent polymers, although the dispersibility in water is improved in the very early stage, the water absorption rate is slow, and if this is not improved, so-called "one-piece strands" will be generated during the water absorption process. However, sufficient effects are not achieved.

高吸水性ポリマーの吸水速度を速める他の方法としては
、架橋密度を高くして、ポリマーの親水性を低下させる
方法がある。しかしながらこの方法を実施すれば、吸水
速度はやや向上されるが、それとても顕著な効果はなく
、この場合、吸水能が著しく低下し、高吸水性ポリマ一
本来の性能が損われるので好ましい方法とは云い難い。
Another method for increasing the water absorption rate of superabsorbent polymers is to increase the crosslinking density to reduce the hydrophilicity of the polymer. However, if this method is carried out, the water absorption rate will be slightly improved, but it will not have a very noticeable effect, and in this case, the water absorption capacity will be significantly reduced, and the original performance of the super absorbent polymer will be impaired, so it is not the preferred method. It's hard to say.

また他方においては、アクリル酸(塩)等に列えば2−
ヒドロキシエチルアクリレートの様な水酸基を有する化
合物を前記のコモノマーとして共重合する(特開昭57
−168921号公報′4)ことにより著しく吸水速度
が向上することが報じられているが、本流の様な製造方
法により得られたポリマーでは、若干吸水速度は改善さ
れるものの、コモノマーとして添加された水酸基を有す
る化合物がポリマー中にはソ均−状に分布することによ
り十分ではなく、また水への分散性が悪くままζを生じ
易い。
On the other hand, 2-
A compound having a hydroxyl group such as hydroxyethyl acrylate is copolymerized as the above-mentioned comonomer (Japanese Patent Laid-Open No. 57
-168921 '4) It has been reported that the water absorption rate is significantly improved by the polymers added as comonomers, although the water absorption rate is slightly improved in polymers obtained by mainstream production methods. Since the compound having a hydroxyl group is uniformly distributed in the polymer, it is not sufficient, and the dispersibility in water is poor and ζ tends to occur.

また高吸水性ポリマーに水溶性高分子または水溶性界面
活性剤をコーティングする方法(特開昭57=1j89
21号公報等)が唱えられているが、本流の様な処理で
は十分な吸水速度は得られず、ま九ある種の水溶性界面
活性剤を使用した場合、製品ポリマーにぺとりきが生じ
、使用しがたいものとなってしまう。
Also, a method of coating a superabsorbent polymer with a water-soluble polymer or a water-soluble surfactant (JP-A-57-1J89)
21, etc.), but mainstream treatments do not provide a sufficient water absorption rate, and when some types of water-soluble surfactants are used, the product polymer may develop cracks. , it becomes difficult to use.

本発明番等はカルボキシル基またはカルボキシレート基
を重合体ま九は共重合体の構成成分として含有する高吸
水性ポリマーの吸水能を損うことなく、吸水速度が大き
く、1ままこ”を生成しないことを目的として種々検討
を重ねた結果、これら高吸水性ポリマーを水の存在下ト
リメチロールプロパンジグリシジルエーテル、ジグリセ
ロールジグリシジルエーテル、ジグリセロールトリグリ
シジルエーテル、ソルビトールジクリシジルエーテル、
ソルビトールトリグリシジルエーテル、ソルビトールテ
トラグリシジルエーテルから選ばれる1種以上の架橋剤
で該架橋剤中のグリシジル基と高吸水性ポリマー中の官
能基との反応性を利用して表面架橋処理すると同時に、
ポリマー表面に水酸基を導入することにより、著しく吸
水速度の大きい高吸水性ポリマーが簡単な処理方法にて
得られることが判明した。
The present invention has a high water absorption rate without impairing the water absorption ability of the super absorbent polymer containing a carboxyl group or a carboxylate group as a component of the polymer or copolymer, and produces 1 mako As a result of various studies with the aim of preventing these superabsorbent polymers, we found that these superabsorbent polymers were treated in the presence of water with trimethylolpropane diglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl ether, sorbitol dicrycidyl ether,
At the same time, surface crosslinking treatment is performed using one or more crosslinking agents selected from sorbitol triglycidyl ether and sorbitol tetraglycidyl ether, utilizing the reactivity between the glycidyl groups in the crosslinking agent and the functional groups in the superabsorbent polymer,
It has been found that by introducing hydroxyl groups onto the polymer surface, a superabsorbent polymer with a significantly high water absorption rate can be obtained using a simple processing method.

本発明に使用し得る高吸水性ポリマーとしては、重合体
あるいは共重合体の構成成分としてカルボキシル基また
はカルボキシレート基を含有するものであればいかなる
ものも用いることが出来、重合体の種類及び重合方法は
問わない。これら高吸水性ポリマーの例としては、アク
リル酸(塩)重合体、メタクリル酸(塩)重合体、アク
リル酸(塩)/メタクリル酸(塩)共重合体、澱粉/ア
クリル酸(塩)グラフト共重合体、澱粉/アクリル酸エ
チルグラフト共重合体のケン化物、澱粉/メタクリル酸
メチルグラフト共重合体のケン化物、メタクリル酸メチ
ル/酢酸ビニル共重合体のケン化物、アクリル酸メチル
/酢酸ビニル共重合体のケン化物、澱粉/アクリロニト
リルグラフト共重合体のケン化物、澱粉/アクリルアミ
ドグラフト共重合体のケン化物、澱粉/アクリロニトリ
ル−2−アクリルアミド−2−メチルプロパンスルホン
酸グラフト共重合体のケン化物、澱粉/アクリロニトリ
ル/ビニルスルホン酸グラフト共重合体のケン化物の各
架橋物、アクリル酸で架橋されたポリエチレンオキシド
、ナトリウムカルボキシメチルセルロースの架橋物など
が上げられる。またアクリル酸(塩)、あるいはメタク
リル酸(塩)にマレイン酸(塩)、イタコン峻(塩)、
アクリルアミド、2−アクリルアミド−2−メチルプロ
パンスルホン酸、2−(メタ)アクリロイルエタンスル
ホン酸、2−ヒドロキシエチル(メタ)アクリレート等
のコモノマーを吸水性ボリマニの性能を低下させない範
囲で共重合せしめた共重合体も、また本発明の方法に使
用し得る。
As the superabsorbent polymer that can be used in the present invention, any polymer or copolymer containing a carboxyl group or carboxylate group as a constituent component can be used, and the type of polymer and polymerization The method doesn't matter. Examples of these superabsorbent polymers include acrylic acid (salt) polymer, methacrylic acid (salt) polymer, acrylic acid (salt)/methacrylic acid (salt) copolymer, and starch/acrylic acid (salt) graft copolymer. Polymer, saponified starch/ethyl acrylate graft copolymer, saponified starch/methyl methacrylate graft copolymer, saponified methyl methacrylate/vinyl acetate copolymer, methyl acrylate/vinyl acetate copolymer Saponified product of union, saponified product of starch/acrylonitrile graft copolymer, saponified product of starch/acrylamide graft copolymer, saponified product of starch/acrylonitrile-2-acrylamido-2-methylpropanesulfonic acid graft copolymer, starch Examples include crosslinked products of saponified products of /acrylonitrile/vinyl sulfonic acid graft copolymers, polyethylene oxide crosslinked with acrylic acid, and crosslinked products of sodium carboxymethyl cellulose. Also, acrylic acid (salt) or methacrylic acid (salt), maleic acid (salt), itacon shunji (salt),
Comonomers such as acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, 2-(meth)acryloylethanesulfonic acid, and 2-hydroxyethyl(meth)acrylate are copolymerized within a range that does not reduce the performance of water-absorbing borimani. Polymers may also be used in the method of the invention.

本発明に使用される架橋剤としては、1分子中に2個以
上のグリシジル基と1個以上の水酸基を有する化合物で
ちり、該グリシジル基の反応性を利用して高吸水性ポリ
マー中の官能基、例えばカルボキシル基と反応せしめて
架橋化し、同時にポリマー表面に水酸基を導入するもの
である。
The crosslinking agent used in the present invention is a compound having two or more glycidyl groups and one or more hydroxyl group in one molecule. It crosslinks by reacting with a group such as a carboxyl group, and at the same time introduces a hydroxyl group onto the polymer surface.

この様な架橋剤の一例としては、トリメチロールプロパ
ンジグリシジルエーテル、ジグリセロールジグリシジル
エーテル、ジグリセロールトリグリシジルエーテル、ン
ルピトールジグリシジルエーテル、ソルビトールトリグ
リシジルエーテル、ソルビトールテトラグリシジルエー
テル等が上げられ、これらは単独または2橿以上の混合
物としても使用できる。これらは一般的には、公知方法
に従い1分子中に水酸基が3個以上含まれる多価アルコ
ールと、この水酸基数よりも低い化学量論量のエピクロ
ルヒドリンにより付加体を形成後、カセイソーダを加え
て閉環し、生成した塩化ナトリウムを分離後得られる。
Examples of such crosslinking agents include trimethylolpropane diglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl ether, nlupitol diglycidyl ether, sorbitol triglycidyl ether, sorbitol tetraglycidyl ether, etc. These can be used alone or as a mixture of two or more. Generally, these are produced by forming an adduct with a polyhydric alcohol containing three or more hydroxyl groups in one molecule and epichlorohydrin in a stoichiometric amount lower than the number of hydroxyl groups according to a known method, and then adding caustic soda to close the ring. The resulting sodium chloride is obtained after separation.

これら架橋剤を前記高吸水性ポリマーと反応処現せしめ
るには、まず水が必要であり、これは本発明目的を達成
する為の必須条件である。具体的な方法の一例として、
例えば乾燥ポリマー中に上記架橋剤と水との混合溶液を
添加せしめ、加熱蒸発するか、あるいはメタノール、エ
タノール等のアルコール畑、メチルエチルケトン等のケ
トン類、ジエチルエーテル、ジブチルエーテル、ジオキ
サン、テトラヒドロフラン等のエーテル類、n−ペンタ
ン、n−ヘキサン、n−へブタン、シクロへ午ナン、ベ
ンゼン、トルエン、キシレン、等の炭化水素類、四塩化
炭素、塩化メチレン、クロロホルム、エチレンジクロ2
イド、等のハロゲン化炭化水素類等の不活性溶媒にてス
ラリーとし、上記架橋剤と水との混合溶液を添加せしめ
好ましくは還流下に熱処理するか、あるいは架橋剤を加
えた後のスラリー液を加熱蒸発するか、または上記の不
活性溶媒及び水、または水を含む反応工程から得られる
反応液中に架橋剤を添加して好ましくは還流下に加熱す
るか、あるいは架橋剤を加えた後のスラリー液を加熱蒸
発することによって反応処理することができる。
In order to react these crosslinking agents with the superabsorbent polymer, water is first required, and this is an essential condition for achieving the object of the present invention. As an example of a specific method,
For example, a mixed solution of the above-mentioned crosslinking agent and water is added to a dry polymer and evaporated by heating, or alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, ethers such as diethyl ether, dibutyl ether, dioxane, and tetrahydrofuran are used. Hydrocarbons such as n-pentane, n-hexane, n-hebutane, cyclohexane, benzene, toluene, xylene, carbon tetrachloride, methylene chloride, chloroform, ethylene dichloro2
The slurry is made into a slurry with an inert solvent such as halogenated hydrocarbons such as hydride, etc., and a mixed solution of the above-mentioned cross-linking agent and water is added thereto, and then heat-treated preferably under reflux, or the slurry liquid after adding the cross-linking agent. or by adding a crosslinking agent to the above-mentioned inert solvent and water, or to the reaction solution obtained from the reaction step containing water and heating preferably under reflux, or after adding the crosslinking agent. The reaction treatment can be carried out by heating and evaporating the slurry liquid.

反応処理後は蒸発/乾燥して製品化することは言うまで
もない。
Needless to say, after the reaction treatment, the product is manufactured by evaporation/drying.

本発明で用いられる前記架橋剤の使用量は、高吸水性ポ
リマーの種類、存在する水の量、不活性溶媒の種類及び
量等により若干異なってくるが、通常高吸水性ポリマー
に対して0.001〜1O10重量パーセントが適切な
範囲の場合が多い。一般に架橋剤の使用量が0.001
重量パーセントより少い場合は、添加効果が発現せず、
1o、o重量パーセントより多い場合は、吸水能が著し
く低下するので好ましくない。
The amount of the crosslinking agent used in the present invention varies slightly depending on the type of superabsorbent polymer, the amount of water present, the type and amount of inert solvent, etc., but it is usually 0% to the superabsorbent polymer. A suitable range is often .001 to 10 weight percent. Generally, the amount of crosslinking agent used is 0.001
If it is less than the weight percent, the addition effect will not be expressed,
If the amount is more than 10.0% by weight, the water absorption capacity will be significantly lowered, which is not preferable.

また本発明において反応処理するに当り、存在する水の
量は高吸水性ポリマー100重量部に対してO,S〜3
00重量部が適当である。水の量が0.5重量部以下で
は高吸水性ポリマーははソ非膨潤状態となり、架橋剤と
の反応が進みにくくなり、長い反応時間を必要とする為
、工業的には不利である。一方水の量が300重量部以
上では、得られる高吸水性ポリマーのゲル強度は改良さ
れるものの、吸水速度向上にはあまシ効果的とならず、
吸水速度向上の為には多量の架橋剤が必要とし、その結
果吸水能が著しく低下するので好ましくはない。
In addition, in the reaction treatment in the present invention, the amount of water present is O,S~3
00 parts by weight is suitable. If the amount of water is less than 0.5 parts by weight, the superabsorbent polymer will be in a non-swollen state, the reaction with the crosslinking agent will be difficult to proceed, and a long reaction time will be required, which is industrially disadvantageous. On the other hand, if the amount of water is 300 parts by weight or more, although the gel strength of the superabsorbent polymer obtained is improved, it is not very effective in improving the water absorption rate.
In order to improve the water absorption rate, a large amount of crosslinking agent is required, and as a result, the water absorption capacity is significantly reduced, which is not preferable.

本発明で反応処理するに当り、具体例で示した前記不活
性溶媒を使用する場合は、高吸水性ポリマーに対して何
等の影響を及ぼさない溶媒のことであることは勿論でら
り、単独ま九は2種以上を混合しても使用出来る。その
使用量は用いる高吸水性ポリマーや不活性溶媒の種類に
よっても異なるが、一般的には高吸水性ポリマー100
重量部に対して10〜5000重量部、好ましくは50
〜SOO重量部で使用すると好結果が得られる。
In the reaction treatment of the present invention, when using the above-mentioned inert solvent shown in the specific example, it goes without saying that it is a solvent that does not have any influence on the superabsorbent polymer, and it is not necessary to use it alone. Maku can also be used by mixing two or more types. The amount used varies depending on the type of superabsorbent polymer and inert solvent used, but generally the superabsorbent polymer is 100%
10 to 5000 parts by weight, preferably 50 parts by weight
Good results are obtained when used in parts by weight of ~SOO.

不活性溶媒の量が少い程容積効率が良いが、高吸水性ポ
リマーの分散性が悪くな9反応処理が進みにくくなる。
The smaller the amount of inert solvent, the better the volumetric efficiency, but the dispersibility of the superabsorbent polymer will be poor, making it difficult for the reaction treatment to proceed.

一方不活性溶媒の量が多いと分散しやすく、反応処理が
進み易くなるが、容積効率が悪く、コスト高となって工
業的にはあまり得策でにない。従って本発明で反応処理
するに当り、好ましくは前記不活性溶媒を上記濃度範囲
内に存在せしめ、反応処理することが好ましい形憶とし
てとしては、使用する架橋剤の種類、不活性溶媒の種類
及び看、存在する水の量、高吸水性ポリマーの種類4に
よねや\異なるので一概には言えないが、通常20〜1
80℃、好ましくは50〜150℃で反応させるのが良
い。20℃以下の温度では反応速度が遅すぎる為、長時
間を要し、180℃以上の温度では、架橋剤中の水酸崖
で例えば、高吸水性ポリマー中のカルボキシル基と反応
してエステル化を生起したり、高吸水性ポリマーが熱劣
化を起して、吸水性能の低下をきたす等の障害を引き起
こす傾向がある。
On the other hand, if the amount of inert solvent is large, it will be easier to disperse and the reaction will proceed more easily, but the volumetric efficiency will be poor and the cost will be high, which is not very good from an industrial perspective. Therefore, in the reaction treatment according to the present invention, the inert solvent is preferably present within the above concentration range, and the reaction treatment is preferably carried out with respect to the type of crosslinking agent used, the type of inert solvent, and the like. Although it is difficult to generalize because it varies depending on the amount of water present and the type of superabsorbent polymer, it is usually 20 to 1
The reaction is preferably carried out at 80°C, preferably from 50 to 150°C. At temperatures below 20°C, the reaction rate is too slow and takes a long time; at temperatures above 180°C, the hydroxyl cliff in the crosslinking agent reacts with, for example, the carboxyl group in the superabsorbent polymer, resulting in esterification. This tends to cause problems such as thermal deterioration of superabsorbent polymers and a decrease in water absorption performance.

(発明の効果等) 本発明の特徴は、処理方法が簡単でちり、かり吸水能を
保持しつつ吸水時に発生しやすい“ままこ“を防止して
吸水速度が著しく改良され、かつゲル強度のすぐれたも
のが得られる等にある。
(Effects of the Invention, etc.) The features of the present invention are that the treatment method is simple, dust and water absorption ability is maintained, and the water absorption rate is significantly improved by preventing "stickiness" that tends to occur during water absorption, and the gel strength is improved. You can get something excellent.

従って本発明の製法で得られるポリマーは、その優れ九
吸水性能、吸水速度を用いて、生理用ナプキン、紙オク
メ等及びその他衛生材料の製造に有利に使用できる。
Therefore, the polymer obtained by the production method of the present invention can be advantageously used in the production of sanitary napkins, paper towels, etc. and other sanitary materials by taking advantage of its excellent water absorption performance and water absorption rate.

またその優れた吸水性能、ゲル強度を利用して、最近注
目ゼれる様になりてきた土壌改良剤、保水剤等をはじめ
とする園芸用または農業用の各種材料の製造にも使用す
ることができる。
Furthermore, by taking advantage of its excellent water absorption performance and gel strength, it can also be used to manufacture various materials for horticultural and agricultural purposes, including soil conditioners and water retention agents, which have recently become popular. can.

以下実施例及び比較例をあげて本発明をさらに詳述する
The present invention will be explained in further detail below with reference to Examples and Comparative Examples.

なお、これらの例に記載の純水吸水能、食塩水吸水能及
び吸水速度は下記の試験方法によって測定し丸数値をさ
す。
Note that the pure water absorption capacity, saline water absorption capacity, and water absorption rate described in these examples were measured by the following test method and are indicated by rounded numbers.

A、純水吸水能 1tのビーカーにポリマー約0.5 f及び純水約IL
をそれぞれ秤量して入れて混合してから約60分間放置
して水でポリマーを十分に膨潤させた。次いで100メ
ツシユフルイで水切りをしたのち、そのろ過液量を秤量
し、下記式に従って純水吸水能を算出する。
A. Approximately 0.5 f of polymer and approximately IL of pure water in a beaker with a pure water absorption capacity of 1 t.
were weighed and mixed, and then left to stand for about 60 minutes to allow the polymer to sufficiently swell with water. Next, after draining with a 100-mesh filter, the amount of the filtrate is weighed, and the pure water absorption capacity is calculated according to the following formula.

B。食塩水吸水能 300dのビーカーにポリマー約0.51F、及び濃度
0.9重敬%の食塩水約20ofをそれぞれ秤量して入
れて混合してから、約60分間放置して食塩水によって
ポリマーを十分に膨潤させた。次いで100メツシユフ
ルイで水切りをしたのちそのろ過食塩水量を秤量し、下
記式に従って食塩水吸水能を算出する。
B. Weigh and mix about 0.51F of polymer and about 20of of saline with a concentration of 0.9% in a beaker with a saline water absorption capacity of 300d, and then leave it for about 60 minutes to fully absorb the polymer with the saline. swelled to. Next, after draining with a 100-mesh filter, the amount of filtered saline solution is weighed, and the water absorption capacity of the saline solution is calculated according to the following formula.

C0吸水速度 300mビーカーに濃度0.9重量%の食塩水を約20
0f秤量し、これにポリマー約0.5f秤量して添加分
散せしめ、所定時間(1分、3分、5分)静置膨潤させ
る。所定時間後100メッシュフルイで水切月りろ過液
量を秤量し、Bに示した計算式で吸水量を求める。
C0 water absorption rate 300 m Add saline solution with a concentration of 0.9% by weight to a beaker for about 20 minutes.
About 0.5 f of polymer is weighed out, added and dispersed, and left to swell for a predetermined period of time (1 minute, 3 minutes, 5 minutes). After a predetermined period of time, weigh the volume of the filtrate using a 100 mesh sieve, and calculate the amount of water absorbed using the formula shown in B.

実m例および比較例の結果は後の表1にまとめて示す。The results of the actual example and comparative example are summarized in Table 1 below.

比較例−1 特願昭59−236685号公報実施例1に基づき高吸
水性ポリマーを製造した。即ち、攪拌機、還流冷却器、
温度計、窒素ガス導入管を付設した容量1tの四つ口丸
底フラスコに、シクロヘキサン375fを入れ、ソルビ
タンモノステアレート4.52を添加して溶解させたの
ち、窒素ガスを吹き込み、溶存酸素を追出した。
Comparative Example-1 A super absorbent polymer was produced based on Example 1 of Japanese Patent Application No. 59-236685. i.e. stirrer, reflux condenser,
Put 375f of cyclohexane into a 1 ton capacity four-necked round bottom flask equipped with a thermometer and a nitrogen gas inlet tube, add 4.52% of sorbitan monostearate and dissolve it, then blow in nitrogen gas to remove dissolved oxygen. kicked out.

別に容量500wjのフラスコ中でアクリル酸75fを
外部より氷冷しながらこれに水201@に/1解した3
1.2fの苛性ソーダを加えてカルボキシル基の74.
9%を中和した。この場合の水に対するモノマー濃度と
して300重量%相当する。次いでこれに過硫酸カリウ
ム0.259を加えて溶解したのち窒素ガスを吹き込ん
で溶存酸素を追い出した。前記の四つロフラスコの内部
に、この500−のフラスコの内容物を添加し、攪拌し
て分散させ、窒素ガスをバブリングさせながら、油浴に
よりフラスコ内温を昇温させたところ、60℃付近に達
してから内温か急激に上昇し、数十分後には75℃に達
した。次いでその内1を60〜65℃に保持し、攪拌し
ながら4時間反応させた。なお攪拌は250 rpmで
行なった。
Separately, in a flask with a capacity of 500 wj, 75 f of acrylic acid was dissolved in 201 @ of water while cooling with ice from the outside.
Add 1.2f of caustic soda to remove 74% of the carboxyl group.
Neutralized 9%. In this case, the monomer concentration relative to water corresponds to 300% by weight. Next, 0.259 g of potassium persulfate was added and dissolved, and then nitrogen gas was blown in to drive out dissolved oxygen. The contents of this 500-ml flask were added to the interior of the four-bottomed flask, stirred to disperse them, and the temperature inside the flask was raised in an oil bath while bubbling nitrogen gas, resulting in a temperature around 60°C. After reaching the temperature, the internal temperature rose rapidly and reached 75°C several tens of minutes later. Next, one of them was kept at 60 to 65°C and reacted for 4 hours while stirring. Note that stirring was performed at 250 rpm.

4時間反応後に攪拌を停止すると、湿潤ポリマー粒子が
フラスコの底に沈降し、デカンテーションでシクロヘキ
サン相と容易に分離することができた。
When stirring was stopped after 4 hours of reaction, the wet polymer particles settled to the bottom of the flask and could be easily separated from the cyclohexane phase by decantation.

分離した湿潤ポリマーを減圧乾燥器に移し、80〜90
℃に加熱して付着したシクロヘキサン及び水を除去した
結果、さらさらとした容易に粉砕できる塊を含む粉末ポ
リマーとして得られた。
The separated wet polymer was transferred to a vacuum dryer and dried at 80-90%
The adhering cyclohexane and water were removed by heating to 0.degree. C., resulting in a powdered polymer containing free-flowing, easily grindable lumps.

比較例−2 特公昭54−30710号公報実施列−1に基づき高吸
水性ポリマーを製造した。即ち、攪拌機、還流冷却器、
滴下F斗、窒素ガス導入管を付した500dの四つ口丸
底フラスコにn−ヘキサン22B−をとり、ソルビタン
モノステアレート1.8fを添加溶解した後、窒素ガス
を吹き込んで溶存酸素を追い出した。別に三角フラスコ
中でアクリル酸30fを外部より氷冷しつつ水39fに
溶解した1 3.1 f095%苛性ソーダでカルボキ
シル基の75%を中和した。水相中のモノマー濃度は4
5重量うとなった。ついで過硫酸カリウム0.19を加
えて溶解したのち窒素ガスを吹き込んで溶液内に存在す
る酸素を除去した。三角フラスコの内容を上記四つロフ
ラスコに加えて分散させ、僅かに窒素ガスを導入しクク
油浴によ抄フラスコの内温を60〜65℃に保持しクク
、6時間反応を続けた。反応系は攪拌を停止すると膨潤
ポリマー粒手が容易に沈降分離する懸濁系となりた。n
−ヘキサンを減圧下留去し、残った膨潤ポリマ一部分を
80〜90℃下減圧下乾燥したポリマーはさらさらとし
た容易に粉末化しうる塊を含む粉末として得られた。
Comparative Example 2 A superabsorbent polymer was produced based on Example 1 of Japanese Patent Publication No. 54-30710. i.e. stirrer, reflux condenser,
Add 22B of n-hexane to a 500D four-necked round bottom flask equipped with a nitrogen gas inlet tube, add and dissolve 1.8F of sorbitan monostearate, and then blow in nitrogen gas to drive out the dissolved oxygen. Ta. Separately, in an Erlenmeyer flask, 75% of the carboxyl groups were neutralized with 13.1 f095% caustic soda dissolved in 39 f of water while cooling 30 f of acrylic acid with ice from the outside. The monomer concentration in the aqueous phase is 4
I lost 5 weight. Next, 0.19 g of potassium persulfate was added and dissolved, and nitrogen gas was blown into the solution to remove oxygen present in the solution. The contents of the Erlenmeyer flask were added to the above-mentioned four-hole flask and dispersed, a slight amount of nitrogen gas was introduced, and the internal temperature of the flask was maintained at 60 to 65° C. in an oil bath to continue the reaction for 6 hours. When the stirring was stopped, the reaction system became a suspension system in which the swollen polymer particles easily sedimented and separated. n
- Hexane was distilled off under reduced pressure, and a portion of the remaining swollen polymer was dried under reduced pressure at 80-90° C. The polymer was obtained as a free-flowing powder containing lumps that could be easily powdered.

比較例−3 特開昭56−131608号公報実施例1に基づき高吸
水性ポリマーを製造した。即ち、アクリル酸30fを1
00−フラスコに取り、冷却しつつ攪拌下に22.6重
量%の苛性ソーダ水溶液58.72を滴下して80モル
%の中和を行ったのち、過硫酸カリウム0.11を添加
し、攪拌を継続して室温にて溶解した。
Comparative Example-3 A superabsorbent polymer was produced based on Example 1 of JP-A-56-131608. That is, 30f of acrylic acid is
00- flask, and while cooling and stirring, 58.72% of a 22.6% by weight aqueous solution of caustic soda was added dropwise to neutralize the solution to 80% by mole, then 0.11% of potassium persulfate was added, and the mixture was stirred. Continued dissolution at room temperature.

あらかじめ系内を窒素置換した還流冷却器付き500m
フラスコにシクロヘキサン163.4fとHL B 8
.6のソルピタンモノラウリレ−1−1,9fを仕込み
、攪拌下室温にて界面活性剤を溶解させたのち、前述の
アクリル酸部分中和塩水溶液を滴下し懸濁せしめた。再
び系内を窒素で充分に置換した後、昇温を行い、油浴の
!!1度を55〜60℃に保持して3時間重合反応を行
った。
500m equipped with a reflux condenser that replaced the system with nitrogen in advance
Cyclohexane 163.4f and HL B 8 in the flask
.. After the surfactant was dissolved at room temperature under stirring, the above-mentioned aqueous solution of partially neutralized acrylic acid salt was added dropwise and suspended. After sufficiently purging the system with nitrogen again, the temperature is raised and the oil bath is heated! ! The polymerization reaction was carried out for 3 hours while maintaining the temperature at 55 to 60°C.

生成した重合液を減圧下で蒸発乾固することにより、微
顆粒状の乾燥重合体を得た。
The produced polymer solution was evaporated to dryness under reduced pressure to obtain a dry polymer in the form of fine granules.

比較例−4 特開昭52−25886号公報実施例9に基づき高吸水
性ポリマーを製造し丸。即ち、1stのトウモロコシデ
ンプン(’1159の水とを撹拌棒、? 窒素吹き込み管、温度計を備えた反応容器に仕込み、窒
素気流下80℃にて1時間攪拌し30℃に冷却後、15
fのアクリル酸%15fのアクリルアミ)’、0.15
Fのカルシウムオキシド、及び重合触媒としてo、i 
s tの過硫酸アンモニウム、0.0152の重亜硫酸
ナトリウムを添加し、40℃で3時間攪拌して重合せし
めた。反応液は弾力性のある白色固体状となう九。得ら
れた白色固体を80〜90℃にて減圧乾燥し、粉砕し、
粉末状とした。
Comparative Example-4 A super absorbent polymer was produced based on Example 9 of JP-A-52-25886. That is, 1st corn starch ('1159 water) was charged into a reaction vessel equipped with a stirring rod, a nitrogen blowing tube, and a thermometer, stirred at 80°C for 1 hour under a nitrogen stream, cooled to 30°C,
f acrylic acid %15f acrylamide)', 0.15
Calcium oxide of F, and o, i as a polymerization catalyst
St of ammonium persulfate and 0.0152 of sodium bisulfite were added, and the mixture was stirred at 40°C for 3 hours to polymerize. The reaction solution becomes an elastic white solid.9. The obtained white solid was dried under reduced pressure at 80 to 90°C, pulverized,
It was made into a powder.

この粉末に5%水酸化ナトIJウムの水/メタノール混
合浴WL(水対メタノール重量比1対5)146.5f
tft&加し、室温下、1時間放置後、80〜90℃に
て減圧乾燥し、粉砕したところ若干かつ色を呈した粉末
として得られた。
This powder was added to a 5% sodium hydroxide water/methanol mixed bath WL (water to methanol weight ratio 1:5), 146.5f.
After adding tft& and leaving it for 1 hour at room temperature, it was dried under reduced pressure at 80 to 90°C and crushed to obtain a slightly colored powder.

比較例−5 特開昭52−27455号公報実施例3に基づき高吸水
性ポリマーを製造した。即ち、酢酸ビニル60tとアク
リル酸メチル40Fに重合開始剤として過酸化ベンゾイ
ル0.5tを加え、これを分散安定剤として部分ケン化
ポリビニルアルコール3tを含む水300d中に分散せ
しめ65℃で6時間重合せしめた後、生成共重合体をろ
過、乾燥した。
Comparative Example-5 A superabsorbent polymer was produced based on Example 3 of JP-A-52-27455. That is, 0.5 t of benzoyl peroxide was added as a polymerization initiator to 60 t of vinyl acetate and 40 F of methyl acrylate, and this was dispersed in 300 d of water containing 3 t of partially saponified polyvinyl alcohol as a dispersion stabilizer, and polymerized at 65° C. for 6 hours. After cooling, the resulting copolymer was filtered and dried.

次いで前記共重合体259を800−のメタノールに加
a溶解し、40%の苛性ソーダ水溶液を58.1+d添
加して60℃で5時間ケン化した。反応終了後のケン化
物はメタノールで洗浄した後減圧乾燥し、粉末状として
得られた。
Next, the copolymer 259 was dissolved in 800 methanol, and 58.1+d of 40% aqueous sodium hydroxide solution was added thereto, followed by saponification at 60°C for 5 hours. After the reaction was completed, the saponified product was washed with methanol and then dried under reduced pressure to obtain a powder.

比較例−6 特開昭58−71907号公報実施例11に基づき高吸
水性ポリマーを製造した。即ち、アクリル酸309を脱
イオン水9.24 tに加え、更にこれに中和剤として
純度85%の水酸化カリウム20.6 fと、N、N’
−メチノンビスアクリルアミド0.00832 fとを
順次添加し、混合単量体濃度70重t%のアクリル酸カ
リウム水溶液(中和度75%)を調整する。
Comparative Example-6 A super absorbent polymer was produced based on Example 11 of JP-A-58-71907. That is, 309 acrylic acid was added to 9.24 t of deionized water, and to this was added 20.6 f of potassium hydroxide with a purity of 85% as a neutralizing agent, N, N'
- Methinone bisacrylamide 0.00832 f is sequentially added to prepare a potassium acrylate aqueous solution (neutralization degree 75%) with a mixed monomer concentration of 70% by weight.

上記で調整された水溶液を70℃に保温し、これに水1
.Ofに2,2′−アゾビス(2−アミジノプロパン)
2塩酸塩0.208 fを溶解した混合液をに保りてお
く)数秒後重合が開始され、約1分以内で完結し、重合
熱で発泡した乾燥ポリマーとして得られ、これを粉砕し
て粉末状とした。
The aqueous solution prepared above was kept warm at 70°C, and 1 part of water was added to it.
.. Of 2,2'-azobis(2-amidinopropane)
Polymerization starts after a few seconds and is completed within about 1 minute, resulting in a dry polymer foamed by the heat of polymerization. It was made into a powder.

実施例−1 比較例−1と同処方で得た乾燥ポリマー201を300
t#ナス型フラスコに加えた。次いでメタノール259
を加え、スラリーとし、攪拌下、水4.5tにトリメチ
ロールプロパンジグリシジルエーテルo、osrを溶解
せしめた混合液を添加し、室温にて約30分攪拌を続け
た。次いで80℃の油浴に上記内容物をつけ、110℃
迄昇温し、加熱処理を行った。110℃に昇温後更に減
圧にし、蒸発乾固して乾燥ポリマーを得た。
Example-1 Dry polymer 201 obtained with the same formulation as Comparative Example-1 was
t# eggplant flask. Then methanol 259
was added to form a slurry, and while stirring, a mixed solution of trimethylolpropane diglycidyl ether o and osr dissolved in 4.5 t of water was added, and stirring was continued for about 30 minutes at room temperature. Next, the above contents were placed in an oil bath at 80°C and heated to 110°C.
The temperature was raised to 100°C, and heat treatment was performed. After raising the temperature to 110°C, the pressure was further reduced and evaporated to dryness to obtain a dry polymer.

実施例−2 比較例−1と同処方で得た乾燥ポリマーを用い、架橋剤
としてソルビトールジグリシジルエーテルを用い良風外
は実施例−1と同処方で乾燥ポリマーを得た。
Example 2 Using a dry polymer obtained using the same recipe as in Comparative Example 1, and using sorbitol diglycidyl ether as a crosslinking agent, a dry polymer was obtained using the same recipe as in Example 1.

実施例−3 比較例−1と同処方で得た重合液から水を180?留出
した後、その中にソルビトールジグリシジルエーテル0
.359を添加し、充分混合した後、80℃の油浴につ
け、110℃迄昇温し、加熱処理した。11011::
に昇温後減圧にし蒸発乾固して乾燥ポリマーを得た。
Example-3 Water was added to 180? After distillation, there is 0 sorbitol diglycidyl ether in it.
.. After adding 359 and thoroughly mixing, the mixture was placed in an 80°C oil bath and heated to 110°C for heat treatment. 11011::
After raising the temperature to , the pressure was reduced and the mixture was evaporated to dryness to obtain a dry polymer.

比較例−7 特開昭56−161413号公報の実施例−1に基づき
高吸水性ポリマーを製造した。即ち、比較列−2にて使
用したと同様のフラスコにn−ヘキサン230111j
ヲとり、ソルビタンモノステアレー ト1.8 Fを添
加溶解後、窒素ガスを吹き込んで溶存酸素を追い出した
。別に三角フラスコ中にアクリル酸301を外部より氷
冷しつつ、水469に溶解した1 3.81095%苛
性ソーダで中和した後、2−ヒドロキ7エチルアクリレ
ート1.592を添加溶解した。次いで過硫酸カリウム
0.19を加えて溶解したのち窒素ガスを吹き込んで水
溶液内に存在する酸素を除去した。三角フラスコの内容
物を上記フラスコに加えて分散させ、僅小に窒素ガスを
導入しつつ、油浴によりフラスコの内温を60〜65℃
に保持し、3時間反応を続けた。
Comparative Example 7 A super absorbent polymer was produced based on Example 1 of JP-A-56-161413. That is, n-hexane 230111j was placed in the same flask as used in comparison column-2.
After removing the water and dissolving 1.8 F of sorbitan monostearate, nitrogen gas was blown into the solution to drive out dissolved oxygen. Separately, in an Erlenmeyer flask, acrylic acid 301 was cooled with ice from the outside and neutralized with 13.81095% caustic soda dissolved in water 469, and then 1.592% of 2-hydroxy 7-ethyl acrylate was added and dissolved. Next, 0.19% of potassium persulfate was added and dissolved, and then nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution. Add the contents of the Erlenmeyer flask to the above flask, disperse, and bring the internal temperature of the flask to 60 to 65°C in an oil bath while introducing a small amount of nitrogen gas.
The reaction was continued for 3 hours.

反応終了後n−へキサンを減圧下留去し、残った膨潤ポ
リマ一部分を80〜90℃下減圧乾燥し、粉末状ポリマ
ーを得た。
After the reaction was completed, n-hexane was distilled off under reduced pressure, and a portion of the remaining swollen polymer was dried under reduced pressure at 80 to 90°C to obtain a powdery polymer.

比較例−8 特開昭57−168921号公報内容に基づき、高吸水
性ポリマーを製造した。即ち、比較例−1と同処方で得
た乾燥ポリマー209中に、ポリエチレングリコール(
第一工業薬品■社製、P、EG−NO154G)1.4
Fをメタノール234fを溶解せしめた混合液を添加し
、室温下10分間攪拌する。グラスフィルターでろ過後
、減圧乾燥後乾燥ポリマーを得た。
Comparative Example-8 A super absorbent polymer was produced based on the contents of JP-A-57-168921. That is, polyethylene glycol (
Daiichi Kogyo Yakuhin ■, P, EG-NO154G) 1.4
A mixture of F and methanol 234f is added, and the mixture is stirred at room temperature for 10 minutes. After filtration with a glass filter and drying under reduced pressure, a dry polymer was obtained.

(以下余白) 1)ポリマー0.5tをシャーレ−にと秒、20mの食
塩水をピペットで滴下し、判定。
(Left below) 1) Place 0.5 t of polymer in a Petri dish and drop 20 m of saline solution with a pipette for 2 seconds and judge.

2)ポリマー自重の200倍の純水を吸水せしめた後の
ゲルにて判定。
2) Judgment is made using a gel after absorbing 200 times the weight of pure water of the polymer.

X二弱い Δ:やや弱い ○:普通(基準) ■=やや強め 02強いX2 weak Δ: Slightly weak ○: Normal (standard) ■=Slightly strong 02 strong

Claims (2)

【特許請求の範囲】[Claims] (1)カルボキシル基または/及びカルボキシレート基
を重合体または共重合体の構成成分として含有する高吸
水性ポリマーを水存在下、トリメチロールプロパンジグ
リシジルエーテル、ジグリセロールジグリシジルエーテ
ル、ジグリセロールトリグリシジルエーテル、ソルビト
ールジグリシジルエーテル、ソルビトールトリグリシジ
ルエーテル、ソルビトールテトラグリシジルエーテルか
ら選ばれる1種以上の架橋剤にて、表面架橋処理すると
同時に、ポリマー表面に水酸基を導入することを特徴と
する高吸水性ポリマーの製造方法。
(1) Trimethylolpropane diglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl is added to a superabsorbent polymer containing a carboxyl group or/and a carboxylate group as a component of a polymer or copolymer in the presence of water. A super absorbent polymer characterized by surface crosslinking treatment with one or more crosslinking agents selected from ether, sorbitol diglycidyl ether, sorbitol triglycidyl ether, and sorbitol tetraglycidyl ether, and at the same time, hydroxyl groups are introduced onto the polymer surface. manufacturing method.
(2)高吸水性ポリマーが(メタ)アクリル酸または/
及び(メタ)アクリル酸アルカリ金属塩を重合体の構成
成分として含有する重合体である特許請求の範囲第1項
記載の方法。
(2) The superabsorbent polymer is (meth)acrylic acid or/
The method according to claim 1, which is a polymer containing an alkali metal salt of (meth)acrylic acid as a constituent component of the polymer.
JP60056620A 1985-03-20 1985-03-20 Production of polymer having high water-absorptivity Pending JPS61213206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056620A JPS61213206A (en) 1985-03-20 1985-03-20 Production of polymer having high water-absorptivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056620A JPS61213206A (en) 1985-03-20 1985-03-20 Production of polymer having high water-absorptivity

Publications (1)

Publication Number Publication Date
JPS61213206A true JPS61213206A (en) 1986-09-22

Family

ID=13032321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056620A Pending JPS61213206A (en) 1985-03-20 1985-03-20 Production of polymer having high water-absorptivity

Country Status (1)

Country Link
JP (1) JPS61213206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361005A (en) * 1986-09-01 1988-03-17 Lion Corp Production of surface-crosslinked porous polymer
WO2013125407A1 (en) * 2012-02-22 2013-08-29 日本エクスラン工業株式会社 Moisture absorptive and desorptive polymer and material containing such polymer
EP2698392A1 (en) * 2012-08-17 2014-02-19 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Polymer network material comprising a poly(glycidyl ether) structure, method of its production and use
JP2019509307A (en) * 2016-03-21 2019-04-04 ノボマー, インコーポレイテッド Acrylic acid and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361005A (en) * 1986-09-01 1988-03-17 Lion Corp Production of surface-crosslinked porous polymer
WO2013125407A1 (en) * 2012-02-22 2013-08-29 日本エクスラン工業株式会社 Moisture absorptive and desorptive polymer and material containing such polymer
EP2698392A1 (en) * 2012-08-17 2014-02-19 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Polymer network material comprising a poly(glycidyl ether) structure, method of its production and use
WO2014027090A3 (en) * 2012-08-17 2014-07-17 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Polymer network material comprising a poly(glycidyl ether) structure, method of its production and use
JP2019509307A (en) * 2016-03-21 2019-04-04 ノボマー, インコーポレイテッド Acrylic acid and method for producing the same
JP2019512527A (en) * 2016-03-21 2019-05-16 ノボマー, インコーポレイテッド Improved acrylic acid production process
US11827590B2 (en) 2016-03-21 2023-11-28 Novomer, Inc. Acrylic acid, and methods of producing thereof

Similar Documents

Publication Publication Date Title
US4755560A (en) Process for producing highly water-absorbing polymer
JP5349723B2 (en) Method for producing water absorbent resin
JP3155294B2 (en) Method for producing superabsorbent polymer
JPS6018690B2 (en) Method for improving water absorbency of water absorbent resin
JPS6148521B2 (en)
JP2002530490A (en) Method for post-crosslinking hydrogels using N-acyl-2-oxazolylindinones
JPS61252212A (en) Production of highly water-absorptive polymer
US5314952A (en) Processes for producing highly water absorptive resins
JPH02308820A (en) Granulation of highly water absorbing resin
JPS61211305A (en) Production of highly water-absorptive polymer
JPH0710922B2 (en) Granulation method of super absorbent polymer
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JPH04331205A (en) Production of highly water-absorptive polymer
JPH03195713A (en) Production of polymer having high water absorption
JPH02153903A (en) Production of highly hygroscopic resin
JPH01113406A (en) Manufacture of highly water-absorptive polymer
JPS6343930A (en) Production of highly water-absorptive polymer
JP4550256B2 (en) Manufacturing method of water absorbent resin
JPS61264006A (en) Production of highly water-absorbing polymer
JPS61213206A (en) Production of polymer having high water-absorptivity
JPH04120176A (en) Water absorbing agent and production thereof
JPH01144404A (en) Production of water-absorbing resin
JPH03195705A (en) Production of highly water absorbing resin
JP3827354B2 (en) Method for producing superabsorbent polymer
JP2005054050A (en) Manufacturing process of water absorptive resin