JPS61252212A - Production of highly water-absorptive polymer - Google Patents

Production of highly water-absorptive polymer

Info

Publication number
JPS61252212A
JPS61252212A JP7769785A JP7769785A JPS61252212A JP S61252212 A JPS61252212 A JP S61252212A JP 7769785 A JP7769785 A JP 7769785A JP 7769785 A JP7769785 A JP 7769785A JP S61252212 A JPS61252212 A JP S61252212A
Authority
JP
Japan
Prior art keywords
polymer
water
group
silane coupling
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7769785A
Other languages
Japanese (ja)
Other versions
JPH0519563B2 (en
Inventor
Kiichi Ito
喜一 伊藤
Takeshi Shibano
芝野 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP7769785A priority Critical patent/JPS61252212A/en
Publication of JPS61252212A publication Critical patent/JPS61252212A/en
Publication of JPH0519563B2 publication Critical patent/JPH0519563B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled polymer of a high absorption rate of water and a high wet gel strength, by grafting a specified olefinically unsaturated silane coupling agent onto a highly water-absorptive polymer having carboxyl and/or carboxylate groups. CONSTITUTION:To 100pts.wt. highly water-absorptive polymer having carboxyl and/or carboxylate groups as a constituent of the (co)polymer [e.g., starch- acrylic acid (salt) graft copolymer], 0.001-50pts.wt. olefinically unsaturated silane coupling agent of the formula (wherein R is an olefinically unsaturated hydrocarbon or a hydrocarboxy, Y is a hydrolyzable organic group and R' is R or Y), 0.5-300pts.wt. water, 0.005-5pts.wt. organic peroxide (e.g., benzoyl peroxide) and, optionally, 10-5,000pts.wt. inet solvent (e.g., methanol) are added and the mixture is refluxed by heating to effect a graft reaction.

Description

【発明の詳細な説明】 本発明は、吸水速度が大きく且つ吸水ゲル強度の高い高
吸水性ポリマーの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superabsorbent polymer that has a high water absorption rate and high water absorption gel strength.

〔産業上の利用分野〕[Industrial application field]

本発明の製造方法によって得られるポリマーは、多量の
水を短時間で吸水して膨潤するが、水に不溶性であ抄且
つ膨潤ポリマーのゲル強度が高いから、各種の吸水性材
料又は吸水して膨潤した状態で使用する各種の材料等の
製造に有利に使用することが出来る。
The polymer obtained by the production method of the present invention absorbs a large amount of water in a short period of time and swells. However, since it is insoluble in water and has a high gel strength, the swollen polymer has high gel strength. It can be advantageously used in the production of various materials that are used in a swollen state.

〔従来技術〕[Prior art]

従来、紙、パルプ、不織布、スポンジ状ウレタン樹脂等
は、保水剤として生理用ナプキン、紙オシメ等を始めと
する各種の衛生材料及び各種の農業用°材料等に使用さ
れてきた。しかし、これらの材料はその吸水量が自重の
10〜50倍程度に過ぎないので、多量の水を吸収また
は保持せしめるためには、多量の材料が必要であり、著
しく嵩高になるばかりでなく、吸水した材料を加圧する
と簡単に水分を分離する等の欠点があった。
Conventionally, paper, pulp, nonwoven fabrics, sponge-like urethane resins, and the like have been used as water-retaining agents in various sanitary materials such as sanitary napkins and paper diapers, and in various agricultural materials. However, these materials absorb only 10 to 50 times their own weight of water, so in order to absorb or retain a large amount of water, a large amount of material is required, which not only makes them extremely bulky, but also makes them extremely bulky. There were drawbacks, such as the fact that if a material that had absorbed water was pressurized, the water would easily separate.

この種の吸水材料の上記欠点を改良するものとして、近
年、高吸水性の種1分子材料が提案されている。例えば
、澱粉のグラフト重合体(特公昭53−46199号公
報等)、セルロース変性体(特開昭50−80376号
公報等)、水溶性高分子の架橋物(特公昭43−234
62号公報等)、自己架橋型アクリル酸アルカリ金属塩
ポリマー(特公昭54−30710号公報等)、等が提
案された。
In order to improve the above-mentioned drawbacks of this type of water-absorbing material, a highly water-absorbing single-molecule material has been proposed in recent years. For example, starch graft polymers (Japanese Patent Publication No. 53-46199, etc.), modified cellulose (Japanese Patent Publication No. 50-80376, etc.), crosslinked products of water-soluble polymers (Japanese Patent Publication No. 43-234, etc.),
No. 62, etc.), self-crosslinking type acrylic acid alkali metal salt polymers (Japanese Patent Publication No. 54-30710, etc.), and the like have been proposed.

しかしながら、これらの高吸水性高分子材料も吸水能が
低かったり、たとえ吸水能が高くても吸水速度が遅く、
被吸収体と接触した時、いわゆる@ままこ“が生成して
効率良く吸収されず、所望の量を吸水する為には長時間
を必要とする。従って、特に生理用ナプキン、紙オシメ
等の様に一度に多量の被吸収体を吸収し、且つ瞬間吸水
能を必要とする用途には不向きであり、多くの問題点を
有していた。
However, these superabsorbent polymer materials also have low water absorption capacity, and even if they have high water absorption capacity, the water absorption rate is slow.
When it comes into contact with an absorbent material, a so-called @mamako is generated and water is not absorbed efficiently, and it takes a long time to absorb the desired amount of water. Therefore, it is unsuitable for applications that require instantaneous water absorption ability and absorbs a large amount of material at once, and has many problems.

一般的に、親水性重合体の水への分散性および溶解性ま
たは吸水速度を向上させるには、重合体表面を疎水化す
る方法が知られている。即ち、ンルビタンモノステアレ
ート等の界面活性剤、非揮発性炭化水素及びステアリン
酸カルシウム等を粉末状の親水性重合体に混合すること
によ抄、水への分散性改善が図られた。しかしながら、
この方法を高吸水性ポリマーに適用してもごく初期にお
いては水への分散性が改善されるものの、吸水速度が遅
いため、これが改善されなければ吸水過程においていわ
ゆる“!マと“が生成し、十分な効果は発揮されない。
Generally, in order to improve the dispersibility and solubility in water or the water absorption rate of a hydrophilic polymer, a method of making the surface of the polymer hydrophobic is known. That is, by mixing a surfactant such as nrubitan monostearate, a non-volatile hydrocarbon, calcium stearate, etc. into a powdered hydrophilic polymer, it has been possible to improve the dispersibility in papermaking and water. however,
Even if this method is applied to superabsorbent polymers, the dispersibility in water is improved in the very early stage, but the water absorption rate is slow, so if this is not improved, so-called "!ma" will be generated during the water absorption process. , the sufficient effect is not exerted.

高吸水性ポリマーの吸水速度を速める他の方法としては
、架橋密度を高くして、ポリマーの親水性を低下させる
方法がある。しかしながらこの方法を実施すれば、吸水
速度はやや向上されるが、それとても顕著な効果はなく
、この場合、吸水能が著しく低下し、高吸水性ポリマ一
本を性能が損われるので好ましい方法とは云い難い。
Another method for increasing the water absorption rate of superabsorbent polymers is to increase the crosslinking density to reduce the hydrophilicity of the polymer. However, if this method is carried out, the water absorption rate is slightly improved, but it does not have a very significant effect, and in this case, the water absorption capacity is significantly reduced, and the performance of a single super absorbent polymer is impaired, so it is not a preferred method. It's hard to say.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記のような高吸水性材料における問題点、即
ち、吸水速度及びゲル強度、特に吸水速度が特段に向上
した高吸水性ポリマーの製造方法を提供せんとするもの
である。
The present invention aims to address the above-mentioned problems with superabsorbent materials, ie, to provide a method for producing a superabsorbent polymer that has significantly improved water absorption rate and gel strength, particularly water absorption rate.

〔問題点を解決するための手段〕[Means for solving problems]

(発明の構成) 本発明者等は、前記の問題点を解決する目的で種々研究
を重ねた結果、カルボキシル基又は/及びカルボキシレ
ート基を重合体又は共重合体の構成成分として含有する
高吸水性ポリマーを水の存在下で一般式 %式% (式中、Rはオレフィン性不飽和炭化水素基又はハイド
ロカーボンオキシ基を示し、Yは加水分解性有機基を示
し、R′は基R又はYを示す。)で表わされるオレフィ
ン性不飽和シランカップリング剤で、グラフト化処理す
ることにより、特に吸水速度の著しく大きい高吸水性ポ
リマーが簡単な処理方法にて得られることを見い出し、
本発明を完成するに至ったのである。
(Structure of the Invention) As a result of various studies aimed at solving the above-mentioned problems, the present inventors have discovered that a superabsorbent polymer containing a carboxyl group or/and a carboxylate group as a component of a polymer or copolymer has been developed. % (wherein R represents an olefinically unsaturated hydrocarbon group or a hydrocarbonoxy group, Y represents a hydrolyzable organic group, and R' represents a group R or We have discovered that by grafting with an olefinically unsaturated silane coupling agent represented by
This led to the completion of the present invention.

(発明の詳細な説明) 本発明の製造方法に用いられる高吸水性ポリマーとして
は、重合体又は共重合体の構成成分としてカルボキシル
基又は/及びカルボキシレート基を含有するものであれ
ばいかなるものも使用することが出来、重合体の種類及
び重合方法は問わない。これら高吸水性ポリマーの例と
しては、例えばアクリル酸(塩)重合体、メタクリル酸
(塩)重合体、アクリル酸(塩)/メタクリル酸(塩)
共重合体、澱粉/アクリル酸(塩)グラフト共重合体、
澱粉/アクリル酸エチルグラフト共重合体のケン化物、
澱粉/メタクリル酸メチルグラフト共重合体のケン化物
、メタクリル酸メチル/酢酸ビニル共重体のケン化物、
アクリル酸メチル/酢酸ビニル共重合体のケン化物、澱
粉/アクリロニトリルグラフト共重合体のケン化物、澱
粉/アクリルアミドグラフト共重合体のケン化物、澱粉
/アクリロニトリル−2−アクリルアミド−2−メチル
プロパンスルホン酸グラフト共重合体のケン化物、澱粉
/アクリロニトリル/ビニルスルホン酸グラフト共重合
体のケン化物の各架橋物、アクリル酸で架橋されたポリ
エチレンオキシド、ナトリウムカルボキシメチルセルロ
ースの架橋物などが挙げられる。また、アクリル酸(塩
)、又はメタクリル酸(塩)にマレイン酸(塩)、イタ
コン酸(塩)、アクリルアミド、2−アクリルアミド−
2−メチルプロパンスルホン酸、2−(メタ)アクリロ
イルエタンスルホン酸、2−ヒドロキシエチル(メタ)
アクリレート等のコモノマーを生成した吸水性ポリマー
の性能を低下させない範囲で共重合せしめた共重合体も
、本発明の方法に使用し得る。
(Detailed Description of the Invention) The superabsorbent polymer used in the production method of the present invention may be any polymer or copolymer containing a carboxyl group or/and a carboxylate group as a constituent component. Any type of polymer or polymerization method may be used. Examples of these super absorbent polymers include acrylic acid (salt) polymer, methacrylic acid (salt) polymer, acrylic acid (salt)/methacrylic acid (salt) polymer, etc.
Copolymer, starch/acrylic acid (salt) graft copolymer,
saponified product of starch/ethyl acrylate graft copolymer,
saponified product of starch/methyl methacrylate graft copolymer, saponified product of methyl methacrylate/vinyl acetate copolymer,
Saponified products of methyl acrylate/vinyl acetate copolymer, saponified products of starch/acrylonitrile graft copolymer, saponified products of starch/acrylamide graft copolymer, starch/acrylonitrile-2-acrylamide-2-methylpropanesulfonic acid graft Examples include saponified copolymers, crosslinked saponified starch/acrylonitrile/vinyl sulfonic acid graft copolymers, polyethylene oxide crosslinked with acrylic acid, and crosslinked sodium carboxymethyl cellulose. In addition, acrylic acid (salt) or methacrylic acid (salt), maleic acid (salt), itaconic acid (salt), acrylamide, 2-acrylamide-
2-methylpropanesulfonic acid, 2-(meth)acryloylethanesulfonic acid, 2-hydroxyethyl (meth)
Copolymers in which comonomers such as acrylates are copolymerized to the extent that they do not reduce the performance of the resulting water-absorbing polymer may also be used in the method of the present invention.

これら高吸水性ポリマーのカルボキシレート基の塩の型
としては、アルカリ金属塩、アルカリ土類金属塩、アン
モニウム塩及びアミン塩等が挙げられるが、中でもアル
カリ金属塩が好適である。
Examples of the salts of the carboxylate groups of these superabsorbent polymers include alkali metal salts, alkaline earth metal salts, ammonium salts, and amine salts, among which alkali metal salts are preferred.

また、これら高吸水性ポリマーを製造するに当っての架
橋化方法の具体的な例を上げれば、例えばN、N’−メ
チレンビスアクリルアミド、(ポリ)エチレングリコー
ルジ(メタ)アクリレート等のジビニル化合物で共重合
せしめる方法、(ポリ)エチレングリコールジグリシジ
ルエーテル等のポリグリシジルエーテル類、エピクロル
ヒドリン等のへロエボキシ化合物、ゲルタールアルデヒ
ド、グリオキザール等のポリアルデヒド類、エチレング
リコール、グリセリン等のポリオール類及びエチレンジ
アミン等のポリアミン類等で高吸水性ポリマー中の官能
基、例えばカルボキシル基又はカルボキシレート基と反
応しうる多官能性化合物で反応せしめ架橋せしめる方法
、その他重合過程で疑似架橋や分子鎖の高度なからまり
による自己架橋が挙げられる。
Further, specific examples of crosslinking methods used in producing these super absorbent polymers include divinyl compounds such as N,N'-methylenebisacrylamide and (poly)ethylene glycol di(meth)acrylate. Polyglycidyl ethers such as (poly)ethylene glycol diglycidyl ether, herroeboxy compounds such as epichlorohydrin, polyaldehydes such as geltaraldehyde and glyoxal, polyols such as ethylene glycol and glycerin, and ethylene diamine, etc. A method of crosslinking by reacting polyamines etc. with a polyfunctional compound that can react with functional groups in super absorbent polymers, such as carboxyl groups or carboxylate groups, and other methods that cause pseudo-crosslinking or high degree of entanglement of molecular chains during the polymerization process. Self-crosslinking by

本発明の製造方法で用いられるシランカップリング剤は
、一般式RR’sty、  で表わされるが、ここでR
はオレフィン性不飽和炭化水素基又はアシルオキシ基、
アシル基、アルコキシ基を有する炭化水素基を指すハイ
ドロカーボンオキシ基を示す。このような基の例として
は、ビニル基、アリル基、ブテニル基、シクロヘキセニ
ル基、シクロ・Cジ ペンタジノニル基、アクリロキシプロピル基、メタアク
リロキシプロピル基等がある。この中でも特にビニル基
、メタアクリロキシプロピル基が好適である。
The silane coupling agent used in the production method of the present invention is represented by the general formula RR'sty, where R
is an olefinically unsaturated hydrocarbon group or an acyloxy group,
A hydrocarbonoxy group refers to a hydrocarbon group having an acyl group or an alkoxy group. Examples of such groups include vinyl, allyl, butenyl, cyclohexenyl, cyclo-C dipentazinonyl, acryloxypropyl, methacryloxypropyl, and the like. Among these, vinyl groups and methacryloxypropyl groups are particularly preferred.

Yは加水分解性有機基を示し、例えばメトキシ基、エト
キシ基、ブトキシ基等のようなアルコキシ基、ホルミロ
キシ基、アセトキシ基またはプロピオノキシ基のような
アシロキシ基、−0N=C(CHJ)2、−0N=C(
C,f(5)2(7)ようなオキシム基又は−NHCH
3、−NHC2H5、及び−NH(C,H5)のような
アルキルアミノ基、及び了り−ルアミノ基等がある。ま
た、R′は基R又は基Yである。
Y represents a hydrolyzable organic group, such as an alkoxy group such as a methoxy group, an ethoxy group, a butoxy group, an acyloxy group such as a formyloxy group, an acetoxy group, or a propionoxy group, -0N=C(CHJ)2, - 0N=C(
Oxime groups such as C, f(5)2(7) or -NHCH
3, -NHC2H5, and alkylamino groups such as -NH(C,H5), and -ruamino groups. Further, R' is a group R or a group Y.

上記の様なシランカップリング剤のうちで、3個の加水
分解性有機基を含有するものが好適であり、具体的には
、例えばビニルトリメトキシシラン、ビニルトリエトキ
シシラン及びγ−メタクリロキシプロピルトリメトキシ
シランが好適である。
Among the above-mentioned silane coupling agents, those containing three hydrolyzable organic groups are preferable, and specifically, for example, vinyltrimethoxysilane, vinyltriethoxysilane, and γ-methacryloxypropyl Trimethoxysilane is preferred.

これらシランカップリング剤の使用量は、用いる高吸水
性ポリマーの種類やグラフト化度、存在せしめる水の量
、不活性溶媒の種類及び量によっても若干具なってくる
が一般的には高吸水性ポリマー100重量部に対してo
、o o t〜50重量部、好ましくは0.2〜10重
量部である。o、o o i重量部よし少い使用量では
、その添加効果が発現せず、50重量部より多い場合に
は、それ以上の顕著な効果が出す、コスト高となり、ま
た処理後のポリマーの吸水能が低下するため好ましくな
い。
The amount of these silane coupling agents used varies depending on the type and degree of grafting of the superabsorbent polymer used, the amount of water present, and the type and amount of inert solvent, but in general, superabsorbent o per 100 parts by weight of polymer
, o o t to 50 parts by weight, preferably 0.2 to 10 parts by weight. o, o o i parts by weight If the amount used is too small, the effect of the addition will not be expressed, and if it is more than 50 parts by weight, even more significant effects will be produced, resulting in high costs and the polymer quality after treatment. This is not preferable because the water absorption capacity decreases.

本発明に用いられる前記高吸水性ポリマーを上記シラン
カップリング剤でグラフト化処理する方法としては、従
来から知られているいかなる方法でもよく、例えば放射
線、電子線、紫外線などを照射する方法、第二セリウム
塩、過硫酸カリウムや過硫酸アンモニウム等の過硫酸塩
、過酸化水素、過酸化ベンゾイル、過酸化ラウロイル、
クメンヒドロパーオキシド、t−ブチルパーオキシド等
の有機過酸化物、アゾイソブチロニトリル、ジメチルア
ゾジイソブチレート等のアゾ化合物等を用いる方法等高
吸水性ポリマー中に遊離ラジカルを発生せしめるもので
あればいかなる方法でも良い。
The method of grafting the superabsorbent polymer used in the present invention with the silane coupling agent may be any conventionally known method, such as a method of irradiating with radiation, an electron beam, an ultraviolet ray, etc. Diserium salts, persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide,
Methods that generate free radicals in superabsorbent polymers, such as methods using organic peroxides such as cumene hydroperoxide and t-butyl peroxide, and azo compounds such as azoisobutyronitrile and dimethyl azodiisobutyrate. Any method is fine.

これらの中でも特に過酸化水素、過酸化ベンゾイル等の
有機過酸化物が好適に用いられる。
Among these, organic peroxides such as hydrogen peroxide and benzoyl peroxide are particularly preferably used.

これらの遊離ラジカル発生剤の使用量は、使用する高吸
水性ポリマーの種類、反応温度レベル等により若干異な
ってくるが、一般的には高吸水性ポリマー100重量部
に対して0.005〜5重量部、好ましくは0.02〜
2重量部である。使用量が0.005重量部以下では効
果的なグラフト化が起こ抄難く、5重量部以上では際立
った効果も認められず、コスト的にも有利ではない。
The amount of these free radical generators used varies slightly depending on the type of superabsorbent polymer used, the reaction temperature level, etc., but generally it is 0.005 to 5 parts by weight per 100 parts by weight of superabsorbent polymer. Part by weight, preferably 0.02~
2 parts by weight. When the amount used is less than 0.005 parts by weight, effective grafting is difficult to occur, and when it is used more than 5 parts by weight, no remarkable effect is observed and it is not advantageous in terms of cost.

前記の様なシランカップリング剤を高吸水性ポリマーに
グラフト化せしめるに当っての具体的な実施態様の例を
述べるとすれば、例えば乾燥高吸水性ポリマー中にシラ
ンカップリング剤と上記遊離ラジカル発生剤及び水との
混合物を添加せしめ加熱するか、或いは乾燥した高吸水
性ポリマーをメタノール、エタノール等のアルコール類
、アセトン、メチルエチルケトン等のケトン類、ジエチ
ルエーテル、ジブチルエーテル、ジオキサン、テトラヒ
ドロフラン等のエーテル類、n−ペンタン、n−ヘキサ
ン、n−へブタン、シクロヘキサン、ベンゼン、トルエ
ン、キシレン等の炭化水X 類、塩化メチレン、クロロ
ホルム、エチレンジクロライド等のハロゲン化炭化水素
類、等々の不活性溶媒にてスラリーとし、シランカップ
リング剤と遊離ラジカル発生剤及び水との混合物を添加
して、好ましくは還流下に加熱処理するか或はシランカ
ップリング剤、水及び遊離ラジカル発生剤を加えた後の
スラリー液を加熱蒸発する方法が挙げられる。また、上
記のような不活性溶媒及び水又は水を含む重合反応工程
から得られる反応液中にシランカップリング剤及び遊離
ラジカル発生剤を添加し、好ましくは還流下に加熱する
か或いはシランカップリング剤及び遊離ラジカル発生剤
を加えた後のスラリー液を加熱蒸発することKよシ、反
応ジグラフト化処理後更にシラノール縮合触媒として一
般的に知られているジプチル錫ジクラウリレート、ジプ
チル錫ジアセテート、ジプチル錫ジオクトエート等を添
加して反応処理せしめることによシ、よシ効果的に本発
明の目的とする吸水速度の優れた高吸水性ポリマーが得
られる。
To describe a specific embodiment of grafting the above-mentioned silane coupling agent onto a superabsorbent polymer, for example, a silane coupling agent and the above-mentioned free radicals are grafted into a dry superabsorbent polymer. A mixture of a generator and water is added and heated, or the dried superabsorbent polymer is mixed with alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether, dibutyl ether, dioxane, and tetrahydrofuran. Inert solvents such as hydrocarbons such as n-pentane, n-hexane, n-hebutane, cyclohexane, benzene, toluene, and xylene, halogenated hydrocarbons such as methylene chloride, chloroform, and ethylene dichloride, etc. to form a slurry, add a mixture of a silane coupling agent, a free radical generator and water, and heat-treat, preferably under reflux, or after adding the silane coupling agent, water and a free radical generator. A method of heating and evaporating the slurry liquid can be mentioned. In addition, a silane coupling agent and a free radical generator are added to the above-mentioned inert solvent and water or a reaction solution obtained from the polymerization reaction step containing water, and the mixture is preferably heated under reflux or silane coupling is carried out. After adding the agent and the free radical generator, the slurry liquid is heated and evaporated, and after the reactive digrafting treatment, diptyltin diclaurylate, diptyltin diacetate, which are generally known as silanol condensation catalysts, are added. By adding diptyltin dioctoate or the like and carrying out the reaction treatment, the superabsorbent polymer having an excellent water absorption rate, which is the object of the present invention, can be obtained more effectively.

本発明において反応処理するに当#)(存在する水の量
は高吸水性ポリマー100重量部に対して0.5〜30
0重量部が適当である。水の量が0.5重量部以下では
高吸水性ポリマーははソ非膨潤状態となシ、シランカッ
プリング剤とのグラフト化及びシラノール縮合反応が進
み難くなシ、長い反応時間を必要とする為、工業的には
不利である。
In the reaction treatment in the present invention, the amount of water present is 0.5 to 30 parts by weight per 100 parts by weight of the superabsorbent polymer.
0 parts by weight is suitable. If the amount of water is less than 0.5 parts by weight, the superabsorbent polymer will not be swollen, and the grafting with the silane coupling agent and silanol condensation reaction will be difficult to proceed, requiring a long reaction time. Therefore, it is disadvantageous industrially.

一方、水の鎗が300重量部以上では、得られる高吸水
性ポリマーのゲル強度は改良されるものの、要として、
その結果吸水能が著しく低下するので好ましくはない。
On the other hand, if the amount of water is 300 parts by weight or more, the gel strength of the superabsorbent polymer obtained is improved, but the main point is that
As a result, the water absorption capacity is significantly reduced, which is not preferable.

本発明で反応処理するに当シ具体例で示した前記不活性
溶媒を使用する場合は、高吸水性ポリマーに対して何等
の影響を及はさない溶媒のことであることは文論であシ
、単独または2種以上を混合しても使用出来る。その使
用量は用いる高吸水性ポリマーや不活性溶媒の種類によ
っても異なるが、一般的には高吸水性ポリマーioo重
量部に対して10〜5ooo重量部、好ましくは50〜
50ON量部で使用すると好結果が得られる。不活性溶
媒の量が少い程容積効率が良いが、高吸水性ポリマーの
分散性が悪くなシ反応処理が進みにくくなる。一方、不
活性溶媒の量が多いと分散し易すく反応処理が進み易く
なるが、容積効率が悪く、コスト高となって工業的には
あまシ得策ではない。従って、本発明で反応処理するに
当シ、好ましくは前記不活性溶媒を上記濃度範囲内に存
在せしめ、反応処理することが好ましい形態として挙げ
ることが出来る。
When using the above-mentioned inert solvent shown in this specific example for the reaction treatment in the present invention, it is known in the literature that it is a solvent that does not have any influence on the superabsorbent polymer. They can be used alone or in combination of two or more. The amount used varies depending on the type of superabsorbent polymer and inert solvent used, but is generally 10 to 5ooo parts by weight, preferably 50 to 50ooo parts by weight, based on the superabsorbent polymer and ioo parts by weight.
Good results are obtained when used in amounts of 50 ON parts. The smaller the amount of inert solvent, the better the volumetric efficiency, but the dispersibility of the superabsorbent polymer is poor, making it difficult for the reaction treatment to proceed. On the other hand, if the amount of inert solvent is large, it will be easier to disperse and the reaction will proceed more easily, but the volumetric efficiency will be poor and the cost will be high, which is not a good idea from an industrial perspective. Therefore, in carrying out the reaction treatment in the present invention, it is preferable that the inert solvent is present within the above concentration range and the reaction treatment is carried out.

また、本発明ではシランカップリング剤と共に前記の様
なシラノール縮合触媒を添加せしめるととKよシ、よシ
吸水速度の大きいポリマーが得られるが、この場合、シ
ラノール縮合触媒の添加量は一般的にシランカップリン
グ剤100重量部に対して0.1〜500重量部、好ま
しくは矛1〜200重量部である。0.1重量以下では
その添加効果は少く、また、500重量部以上では効果
を更に上げる程の利点もなく、工業的にコスト高となっ
てあまシ意味がない。
Furthermore, in the present invention, if a silanol condensation catalyst as described above is added together with a silane coupling agent, a polymer with a much higher water absorption rate can be obtained, but in this case, the amount of silanol condensation catalyst added is generally The amount is 0.1 to 500 parts by weight, preferably 1 to 200 parts by weight, per 100 parts by weight of the silane coupling agent. If it is less than 0.1 part by weight, the effect of adding it will be small, and if it is more than 500 parts by weight, it will not be advantageous enough to further increase the effect, and the cost will be high industrially, so there is no point in adding it.

本発明で反応処理を円滑に行うための温度条件としては
、使用するシランカップリング剤の種類、不活性溶媒の
種類及び量、存在する水の量、高吸水性ポリマーの種類
等によシや\異なるので一概〈は言えないが、通常20
〜180℃、好ましくは50〜150℃で反応させるの
が良い。
The temperature conditions for smooth reaction treatment in the present invention vary depending on the type of silane coupling agent used, the type and amount of inert solvent, the amount of water present, the type of superabsorbent polymer, etc. \It's different so I can't give you a general idea, but it's usually 20
It is preferable to carry out the reaction at a temperature of 180°C to 180°C, preferably 50 to 150°C.

〔発明の効果〕〔Effect of the invention〕

本発明の特徴は、処理方法が簡単であり、且つ吸水能を
保持しつつ吸水時に発生しゃすい”ままこ″を防止して
吸水速度が著しく増大し、かつゲル強度の太きhものが
得られる等にある。
The features of the present invention are that the processing method is simple, and that the water absorption rate is significantly increased by preventing the "scattering" that occurs during water absorption while retaining the water absorption ability, and that the gel strength is thick. There are many things that can be done.

従って、本発明の製法で得られるポリマーは、その優れ
た吸水性能、吸水速度を用いて、生理用ナプキン、紙オ
シメ等及びその他衛生材料の製造に有利に使用できる。
Therefore, the polymer obtained by the production method of the present invention can be advantageously used in the production of sanitary napkins, paper diapers, and other sanitary materials by utilizing its excellent water absorption performance and water absorption rate.

また、その優れた吸水性能、ゲル強度を利用して、最近
注目される様になってきた土壌改良剤、保水剤等を始め
とする園芸用または農業用の各種材料の製造にも使用す
ることができる。
In addition, by taking advantage of its excellent water absorption performance and gel strength, it can be used to manufacture various materials for horticulture and agriculture, including soil conditioners and water retention agents, which have recently been attracting attention. I can do it.

〔発明の実施例〕[Embodiments of the invention]

以下実施例及び比較例を挙げて本発明を更に詳述する。 The present invention will be explained in more detail below by giving Examples and Comparative Examples.

なお、これらの例に記載の純水吸水能、食塩水吸水能及
び吸水速度は下記の試験方法によって測定した数値を指
すO A 純水吸水能 1jのビーカーにポリマー約0.51及び純水約1ノを
それぞれ秤量して入れて混合してから約60分間放置し
て水でポリマーを十分に膨潤させた。
Note that the pure water absorption capacity, saline water absorption capacity, and water absorption rate described in these examples refer to the values measured by the following test method. After weighing and mixing 1 piece of each, the polymer was left to stand for about 60 minutes to sufficiently swell the polymer with water.

次いで100メツシユフルイで水切シをした後、その濾
過液量を秤量し、下記式に従って純水吸水能を算出する
Next, after draining with a 100-mesh filter, the amount of filtrate is weighed, and the pure water absorption capacity is calculated according to the following formula.

B 食塩水吸水能 300−のビーカーにポリマー約0.5 f及び濃度0
.9重量%の食塩本釣2001をそれぞれ秤量して入れ
て混合してから、約60分間放置して、食塩水によって
ポリマーを十分に膨潤させた0次いで100メツシユフ
ルイで水切りをした後、そのろ過食塩水′Jliを秤蓋
し、下記式に従って食塩水吸水能を算出する。
B. Polymer approximately 0.5 f and concentration 0 in a beaker with a saline water absorption capacity of 300
.. After weighing and mixing 9% by weight of salt Honsuri 2001, let it stand for about 60 minutes, and draining it with a 0 and 100 mesh fluid to fully swell the polymer with salt water, and then add the filtered salt. Weigh the water 'Jli and calculate the saline water absorption capacity according to the following formula.

C吸水速度 300sdビ一カー1c濃度0.9重量%の食塩水を約
2002秤量し、これにポリマー約0.52秤量して添
加分散せしめ、所定時間(1分、3分、5分)静置膨潤
させる。所定時間後100メッシュフルイで水切シ後、
ろ過液量を秤量し、Bに示した計算式で吸水量を求める
C Water absorption rate: 300 sd Beaker 1c Weigh out about 2002 saline solution with a concentration of 0.9% by weight, add and disperse about 0.52 weight percent of polymer therein, and let it stand still for a predetermined period of time (1 minute, 3 minutes, 5 minutes). Leave to swell. After the specified time, drain with a 100 mesh sieve,
Weigh the amount of filtrate and calculate the amount of water absorbed using the formula shown in B.

実施例および比較例の結果は後の第1表にまとめて示す
The results of Examples and Comparative Examples are summarized in Table 1 below.

比較例−1 特願昭59−236685号公報実施例1に基づき高吸
水性ポリマーを製造した。即ち、攪拌機、還流冷却器、
温度計、窒素ガス導入管を付設した容量1jの四つ口丸
底フラスコに、シクロヘキサン375?を入れ、ソルビ
タンモノステアレート4.51を添加して溶解させたの
ち、窒素ガスを吹き込み、溶存酸素を追出した。
Comparative Example-1 A super absorbent polymer was produced based on Example 1 of Japanese Patent Application No. 59-236685. i.e. stirrer, reflux condenser,
Cyclohexane 375? After adding and dissolving 4.51 g of sorbitan monostearate, nitrogen gas was blown in to drive out dissolved oxygen.

別に容量5OO−の7ラスコ中でアクリル酸751を外
部よシ氷冷しながらこれに水2011に溶解した3x、
zrの苛性ンーダを加えてカルボキシル基の74.99
6を中和した。この場合の水に対するモノマー濃度とし
て30重量%に相当する。次いでこれに過硫酸カリウム
0.25 Fを加えて溶解した後、窒素ガスを吹き込ん
で溶存酸素を追い出した。前記の四つロフラスコの内容
物に、この500−のフラスコの内容物を添加し、攪拌
して分散させ、窒素ガスをバグリングさせながら、油浴
によシフラスコ内温を昇温させたところ、60℃付近に
違してから内温が急激に上昇し、数十分後には75℃に
達した。次いでその内温′(I−60〜65℃に保持し
、攪拌しながら4時間反応させた。なお、攪拌は250
 rpm  で行った。
Separately, acrylic acid 751 was dissolved in water 2011 (3x) in a 7 flask with a volume of 500 - while externally cooling on ice;
74.99 of carboxyl group by adding caustic powder of zr
6 was neutralized. In this case, the monomer concentration relative to water corresponds to 30% by weight. Next, 0.25 F of potassium persulfate was added and dissolved, and then nitrogen gas was blown in to drive out dissolved oxygen. The contents of this 500-ml flask were added to the contents of the 4-ml flask, stirred to disperse, and while nitrogen gas was being bubbled, the temperature inside the 500-ml flask was raised in an oil bath. After dropping to around 60°C, the internal temperature rose rapidly and reached 75°C several tens of minutes later. Then, the internal temperature was maintained at 60 to 65°C (I) and reacted for 4 hours with stirring.
I did it at rpm.

4時間反応後に攪拌を停止すると、湿潤ポリマー粒子が
72スコの底に沈降し、デカンテーションでシクロヘキ
サン相と容易に分離することができた。
When stirring was stopped after 4 hours of reaction, the wet polymer particles settled to the bottom of the 72 SCO and could be easily separated from the cyclohexane phase by decantation.

分離した湿潤ポリマーを減圧乾燥器に移し、80〜90
℃に加熱して付着したシクロヘキサン及び水を除去した
結果、さらさらとした容易に粉砕できる塊を含む粉末ポ
リマーとして得られた。
The separated wet polymer was transferred to a vacuum dryer and dried at 80-90%
The adhering cyclohexane and water were removed by heating to 0.degree. C., resulting in a powdered polymer containing free-flowing, easily grindable lumps.

比較例−2 特公昭54−30710号公報実施例−1に基づき高吸
水性ポリマーを製造した。即ち、攪拌機、還流冷却器、
滴下濾斗、窒素ガス導入管を付した500−の四つ口丸
底フラスコにn−ヘキサン2213dt−採D、ソルビ
タンモノステアレート1.81を添加溶解した後、窒素
ガスを吹き込んで溶存酸素を追い出した。別に三角フラ
スコ中でアクリル酸309金外部より氷冷しつつ水39
1に溶解した1 3.1 fの95%苛性ソーダでカル
ボキシル基の75チを中和した。水相中のモノマー濃度
は45重量%となった。ついで過硫酸カリウム0.12
を加えて溶解したのち窒素ガスを吹き込んで溶液内に存
在する酸素を除去した。三角フラスコの内容を上記四つ
ロフラスコに加えて分散させ、僅かに窒素ガスを導入し
つつ油浴によシフラスコの内温を60〜65℃に保持し
つつ、6時間反応を続けた。反応系は攪拌を停止すると
膨潤ポリマー粒子が容易に沈降分離する懸濁系となった
。n−へキサンを減圧下留去し、残った膨潤ポリマ一部
分を80〜90℃下減圧下乾燥した。ポリマーは、さら
さらとした容易に粉末化しうる塊を含む粉末として得ら
れた。
Comparative Example 2 A super absorbent polymer was produced based on Example 1 of Japanese Patent Publication No. 54-30710. i.e. stirrer, reflux condenser,
After adding and dissolving 2213 dt of n-hexane and 1.81 ml of sorbitan monostearate into a 500 mm four-necked round bottom flask equipped with a dropping funnel and a nitrogen gas inlet tube, nitrogen gas was blown into the flask to remove dissolved oxygen. kicked out. Separately, in an Erlenmeyer flask, cool 309 gold acrylic acid with ice from the outside and water 39 gold.
75 of the carboxyl groups were neutralized with 95% caustic soda dissolved in 1 3.1 f. The monomer concentration in the aqueous phase was 45% by weight. Then potassium persulfate 0.12
was added to dissolve the solution, and then nitrogen gas was blown into the solution to remove oxygen present in the solution. The contents of the Erlenmeyer flask were added to and dispersed in the four-hole flask, and the reaction was continued for 6 hours while introducing a slight amount of nitrogen gas and maintaining the internal temperature of the flask at 60 to 65° C. using an oil bath. When stirring was stopped, the reaction system became a suspension system in which the swollen polymer particles easily sedimented and separated. The n-hexane was distilled off under reduced pressure, and a portion of the remaining swollen polymer was dried under reduced pressure at 80 to 90°C. The polymer was obtained as a powder containing free-flowing, easily powderable masses.

比較例−3 特開昭58−13160831608号公報実施き高吸
水性ポリマーを製造した。即ち、アクリル酸30Fを1
00−フラスコに採シ、冷却しつつ攪拌下に22.6重
量%の苛性ソーダ水溶液58.72を滴下して80モル
チの中和を行った後、過硫酸カリウム0.1 tを添加
し、攪拌を継続して室温くて溶解した。
Comparative Example 3 A super absorbent polymer was produced according to Japanese Patent Application Laid-Open No. 58-13160831608. That is, 1 acrylic acid 30F
00- flask, and while cooling and stirring, add 58.72% of a 22.6% by weight aqueous solution of caustic soda dropwise to neutralize 80 mol, then add 0.1 t of potassium persulfate, and stir. was continuously dissolved at room temperature.

予め系内を窒素置換した還流冷却器付き500−フラス
コにシクロヘキサン163.4 fトHLB台 8.6−pヤソルビタンモノラウリレー) 1.9 t
を仕込み、攪拌下室温にて界面活性剤を溶解させ九のち
、前述のアクリル酸部分中和離水溶液を滴下し懸濁せし
めた。再び系内金窒素で充分に置換した後、昇温を行い
、油浴の温度を55〜60℃に保持して3時間重合反応
を行った。
Add 163.4 t of cyclohexane to a 500 flask equipped with a reflux condenser and purify the system with nitrogen in advance.
The surfactant was dissolved at room temperature under stirring, and then the above-mentioned partially neutralized aqueous syneresis solution of acrylic acid was added dropwise and suspended. After sufficiently purging the system with gold nitrogen again, the temperature was raised and the polymerization reaction was carried out for 3 hours while maintaining the temperature of the oil bath at 55 to 60°C.

生成した重合液を減圧下で蒸発乾固するととくよシ、微
顆粒状の乾燥重合体を得た。
The resulting polymer solution was evaporated to dryness under reduced pressure to obtain a dry polymer in the form of fine granules.

比較例−4 特開昭52−25886号公報実施例9に基づき高吸水
性ポリマーを展進した。即ち、15tのトウモロコシデ
ンプンを115fの水とを撹拌棒、窒素吹き込み管温度
計を備えた反応容器に仕込み、窒素気流下80℃にて1
時間攪拌し、次いで30℃に冷却後、151のアクリル
酸、152のアクリルアミド、0.15Fのカルシウム
オキシド、及び重合触媒として0.15 fの過硫酸ア
ンモニウム、0.015 fの重亜硫酸ナトリウムを添
加し、40℃で3時間攪拌して重合せしめた。
Comparative Example 4 A super absorbent polymer was developed based on Example 9 of JP-A-52-25886. That is, 15 tons of corn starch and 115 tons of water were placed in a reaction vessel equipped with a stirring rod and a nitrogen blowing tube thermometer, and heated at 80°C under a nitrogen stream for 1 hour.
After stirring for an hour and then cooling to 30° C., 151 F acrylic acid, 152 F acrylamide, 0.15 F calcium oxide, and 0.15 F ammonium persulfate, 0.015 F sodium bisulfite as polymerization catalysts were added. , and polymerization was carried out by stirring at 40° C. for 3 hours.

反応液は弾力性のある白色固体状となった。得られた白
色固体を80〜90℃にて減圧乾燥し、粉砕し、粉末状
とした。この粉末に5%水酸化ナトリウムの水/メタノ
ール混合溶液(水対メタノール重量比1対5 ) 14
6.5 fを添加し、室温下1時間放置後80〜90℃
にて減圧乾燥し、粉砕したところ若干褐色を呈した粉末
として得られた。
The reaction solution became an elastic white solid. The obtained white solid was dried under reduced pressure at 80 to 90°C and ground into powder. Add 5% sodium hydroxide to this powder in a water/methanol mixed solution (water to methanol weight ratio 1:5) 14
After adding 6.5 f and leaving it at room temperature for 1 hour, it was heated to 80-90°C.
The mixture was dried under reduced pressure and pulverized to obtain a slightly brown powder.

比較例−5 特開昭52−27455号公報実施例3に基づき高吸水
性ポリマーを創造し九〇即ち、酢酸ビニル60fとアク
リル酸メチル40 PI/C重合開始剤として過酸化ベ
ンゾイル0.5fを加え、これを分散安定剤として部分
ケン化ポリビニルアルコール3fを含む水300d中に
分散せしめ、65℃で6時間重合せしめた後、生成共重
合体を濾過、乾燥した。
Comparative Example-5 A super absorbent polymer was created based on Example 3 of JP-A No. 52-27455, and 90% of vinyl acetate, 40% of methyl acrylate, and 0.5% of benzoyl peroxide as a PI/C polymerization initiator were used. In addition, this was dispersed in 300 d of water containing 3 f of partially saponified polyvinyl alcohol as a dispersion stabilizer, and after polymerization at 65° C. for 6 hours, the resulting copolymer was filtered and dried.

次いで前記共重合体25yを800−のメタノールに加
温溶解し、4(lの苛性ソーダ水溶液を58.1−添加
して60℃で5時間ケン化した。反応終了後のケン化物
はメタノールで洗浄した後減圧乾燥し、粉末状として得
られた。
Next, the copolymer 25y was dissolved in 800 methanol under heating, and 4 (58.1 l) of an aqueous solution of caustic soda was added thereto and saponified at 60°C for 5 hours. After the reaction, the saponified product was washed with methanol. After that, it was dried under reduced pressure to obtain a powder.

比較例−6 特開昭58−71907号公報実施例11に基づき高吸
水性ポリマーを製造した。即ち、アクリル酸30fを脱
イオン水9.24f/C加え、更にこれに中和剤として
IiB度85チの水酸化カリウム20゜61と、N、N
’−メチレンビスアクリルアミド0.00832 S’
とを順次添加し、混合単量体濃度70重量%のアクリル
酸カリウム水溶液(中和度75%)を調製する。
Comparative Example-6 A super absorbent polymer was produced based on Example 11 of JP-A-58-71907. That is, 30 f of acrylic acid was added to 9.24 f/C of deionized water, and to this was added 20°61 of potassium hydroxide having a degree of IiB of 85 as a neutralizing agent, and N,N.
'-Methylenebisacrylamide 0.00832 S'
are added sequentially to prepare an aqueous potassium acrylate solution (degree of neutralization: 75%) with a mixed monomer concentration of 70% by weight.

上記でmsされた水溶液を70cK保温し、これに水1
.02に2,2′−アゾビス(2−アミジノプロパン)
2塩酸塩0.208 fを溶解した混合液を加え、直ち
に内径的10cmを有する円筒上反応器に流下延展させ
る。(反応器は予め70℃に保つれ、これを粉砕して粉
末状とした。
The aqueous solution subjected to ms above was kept at a temperature of 70 cK, and 1 part of water was added to it.
.. 02 to 2,2'-azobis(2-amidinopropane)
A mixed solution containing 0.208 f of dihydrochloride is added and immediately spread in a cylindrical reactor having an inner diameter of 10 cm. (The reactor was kept at 70°C in advance, and this was ground into powder.

実施例−1 攪拌機、還流冷却器、温度計、窒素ガス導入管を付設し
た容量Lot)dの四つ口丸底フラスコに比較例−工と
同処方で得た乾燥ポリマー202を加えた。次いで、ビ
ニルトリメトキシラン0.1 fをシクロヘキサン20
9に溶解せしめた混合液を添加してスラリーとし、攪拌
下、水4.5を中に30チ過酸化水素o、o s r溶
解せしめた混合液及びシクロヘキサン5f中にジシウリ
ン酸ジn−ブチル錫o、o s r溶解した混合液をそ
れぞれ添加し、室温下、30分処理した。その後油浴中
にて70℃迄昇温せしめ、同温度で3時間処理した。処
理後ロータリーエバポレーターにて蒸発乾固し、更に減
圧下乾燥を行って乾燥ポリマーを得九。
Example 1 Dry polymer 202 obtained from the same formulation as in Comparative Example was added to a four-neck round bottom flask with a capacity of Lot) d equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube. Then, 0.1 f of vinyltrimethoxylane was added to 20 g of cyclohexane.
9 was added to form a slurry, and while stirring, a mixture of 30% hydrogen peroxide and di-n-butyl disyurate in cyclohexane was added to the slurry. A mixed solution containing tin o and o s r dissolved therein was added and treated at room temperature for 30 minutes. Thereafter, the temperature was raised to 70°C in an oil bath and treated at the same temperature for 3 hours. After the treatment, the mixture was evaporated to dryness using a rotary evaporator and further dried under reduced pressure to obtain a dry polymer.

実施例−2 比較例−2と同処方で得た乾燥ポリマーを用いた以外は
、実施例−1と同処方で乾燥ポリマーを得た。
Example-2 A dry polymer was obtained using the same recipe as in Example-1, except that a dry polymer obtained using the same recipe as in Comparative Example-2 was used.

実施例−3 比較例−3と同処方で得た乾燥ポリマーを用いた以外は
、実施例−1と同処方で乾燥ポリマーを得た。
Example-3 A dry polymer was obtained using the same recipe as in Example-1, except that a dry polymer obtained using the same recipe as in Comparative Example-3 was used.

実施例−4 比較例−4と同処方で得た乾燥ポリマーを用いた以外は
、実施例−1と同処方で乾燥ポリマーを得た。
Example-4 A dry polymer was obtained using the same recipe as in Example-1, except that a dry polymer obtained using the same recipe as in Comparative Example-4 was used.

実施例−5 比較例−5と同処方で得た乾燥ポリマーを用いた以外は
、実施例−1と同処方で乾燥ポリマーを得た。
Example-5 A dry polymer was obtained using the same recipe as in Example-1, except that a dry polymer obtained using the same recipe as in Comparative Example-5 was used.

実施例−6 比較例−6と同処方で得た乾燥ポリマーを用いた以外は
、実施例−1と同処方で乾燥ポリマーを得た。
Example-6 A dry polymer was obtained using the same recipe as in Example-1, except that a dry polymer obtained using the same recipe as in Comparative Example-6 was used.

実施例−7 比較例〜1と同処方で得た乾燥ポリマーを用い、ビニル
トリメトキシシランを0.22とし、ジラウリン酸ジn
−ブチル錫は添加しない以外は、実施例−1と同処方で
乾燥ポリマーを得た。
Example 7 Using a dry polymer obtained with the same formulation as Comparative Example 1, vinyltrimethoxysilane was adjusted to 0.22, and dilauric acid di-n
A dry polymer was obtained using the same recipe as in Example 1, except that -butyltin was not added.

実施例−8 比較例−2と同処方で得た乾燥ポリマーを用い、ビニル
トリメトキシシランを0.22とし、ジラウリン酸ジn
−ブチル錫は添加しない以外は、実施例−1と同処方で
乾燥ポリマーを得た。
Example-8 Using a dry polymer obtained with the same formulation as in Comparative Example-2, vinyltrimethoxysilane was adjusted to 0.22, and dilauric acid di-n
A dry polymer was obtained using the same recipe as in Example 1, except that -butyltin was not added.

実施例−9 比較例−1と同処方で得た重合液小ら水を1852留出
した後、その中にビニルトリメトキシシラン0.5F、
30チ過酸化水素0.2 f、ジラウリン酸n−ジブチ
ル錫を0.51それぞれ添加し、充分混合した後、70
℃にて4時間攪拌下反応処理せしめた。処理後減圧にし
、蒸発乾固して乾燥ポリマーを得た。
Example-9 After distilling 1852 liters of polymer solution obtained using the same recipe as Comparative Example-1, 0.5F vinyltrimethoxysilane,
After adding 0.2 f of hydrogen peroxide and 0.51 f of n-dibutyltin dilaurate and mixing thoroughly,
The reaction was carried out at ℃ for 4 hours with stirring. After the treatment, the pressure was reduced and the mixture was evaporated to dryness to obtain a dry polymer.

実施例−10 比較例−2と同処方で得た重合液から水を321留出し
た後、その中にビニルトリメトキシ7ラン0.25F、
30チ過酸化水素0.05 r、ジラウリン酸n−ジブ
チル錫を0.3 tそれぞれ添加し、充分に混合した後
、70℃にて4時間攪拌下反応処理した。処理後減圧に
し、蒸発乾固して乾燥ポリマーを得た。
Example-10 After distilling 321 liters of water from the polymerization solution obtained using the same recipe as in Comparative Example-2, vinyl trimethoxy 7 run 0.25F,
After adding 0.05 r of 30 t hydrogen peroxide and 0.3 t of n-dibutyltin dilaurate and mixing thoroughly, reaction treatment was carried out at 70°C for 4 hours with stirring. After the treatment, the pressure was reduced and the mixture was evaporated to dryness to obtain a dry polymer.

実施例−11 比較例−1と同処方で得た乾燥ポリマーを用い、シラン
カップリング剤としてr−メタクリロキシプロビルトリ
メトキシシ乏ンを用いた以外は、実施例=1と同処方で
乾燥ポリマーを得た。
Example 11 Dry polymer obtained using the same formulation as Comparative Example 1 and drying using the same formulation as Example 1 except that r-methacryloxyprobyltrimethoxycin was used as the silane coupling agent. A polymer was obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)カルボキシル基又は/及びカルボキシレート基を
重合体又は共重合体の構成成分として含有する高吸水性
ポリマーを、水の存在下で一般式RR′SiY_2 (式中、Rはオレフィン性不飽和炭化水素基又はハイド
ロカーボンオキシ基を示し、Yは加水分解性有機基を示
し、R′は基R又はYを示す。)で表わされるオレフィ
ン性不飽和シランカップリング剤で、グラフト化処理す
ることを特徴とする高吸水性ポリマーの製造方法。
(1) A superabsorbent polymer containing a carboxyl group or/and a carboxylate group as a component of the polymer or copolymer is prepared with the general formula RR'SiY_2 (wherein, R is olefinically unsaturated) in the presence of water. Grafting treatment with an olefinically unsaturated silane coupling agent represented by a hydrocarbon group or a hydrocarbonoxy group, Y represents a hydrolyzable organic group, and R' represents a group R or Y. A method for producing a superabsorbent polymer characterized by:
(2)高吸水性ポリマーが(メタ)アクリル酸又は/及
び(メタ)アクリル酸アルカリ金属塩を重合体または共
重合体の構成成分として含有するポリマーである特許請
求の範囲第1項記載の製造方法。
(2) The production according to claim 1, wherein the superabsorbent polymer is a polymer containing (meth)acrylic acid or/and an alkali metal salt of (meth)acrylic acid as a constituent component of the polymer or copolymer. Method.
JP7769785A 1985-04-12 1985-04-12 Production of highly water-absorptive polymer Granted JPS61252212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7769785A JPS61252212A (en) 1985-04-12 1985-04-12 Production of highly water-absorptive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7769785A JPS61252212A (en) 1985-04-12 1985-04-12 Production of highly water-absorptive polymer

Publications (2)

Publication Number Publication Date
JPS61252212A true JPS61252212A (en) 1986-11-10
JPH0519563B2 JPH0519563B2 (en) 1993-03-17

Family

ID=13641082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7769785A Granted JPS61252212A (en) 1985-04-12 1985-04-12 Production of highly water-absorptive polymer

Country Status (1)

Country Link
JP (1) JPS61252212A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883158A (en) * 1994-08-12 1999-03-16 Kao Corporation Process for producing improved super absorbent polymer
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
EP1712584A2 (en) 1997-06-18 2006-10-18 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
WO2007108205A1 (en) 2006-03-17 2007-09-27 Sanyo Chemical Industries, Ltd. Cell culture substrate
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
WO2010073658A1 (en) 2008-12-26 2010-07-01 サンダイヤポリマー株式会社 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
WO2011052140A1 (en) 2009-10-30 2011-05-05 三洋化成工業株式会社 Absorbent resin particles for water-stopping tape, and water-stopping tape containing same
JP2013525592A (en) * 2010-05-07 2013-06-20 エボニック・ストックハウゼン・リミテッド・ライアビリティ・カンパニー Particulate superabsorbent polymer with increased capacity
WO2014046106A1 (en) 2012-09-21 2014-03-27 三洋化成工業株式会社 Aqueous liquid absorbing resin, aqueous liquid absorbing composition, and absorbent body and absorbent article using same
US10307732B2 (en) 2013-04-10 2019-06-04 Evonik Corporation Particulate superabsorbent polymer composition having improved stability and fast absorption
WO2020213298A1 (en) 2019-04-16 2020-10-22 三洋化成工業株式会社 Method for producing water-absorbing resin particles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2899925A1 (en) 2013-02-04 2014-08-07 Seres Therapeutics, Inc. Compositions and methods for inhibition of pathogenic bacterial growth
WO2014121304A1 (en) 2013-02-04 2014-08-07 Seres Health, Inc. Compositions and methods
CA2906921A1 (en) 2013-03-15 2014-09-18 Seres Therapeutics, Inc. Network-based microbial compositions and methods
CN116370507A (en) 2013-11-25 2023-07-04 赛里斯治疗公司 Synergistic bacterial compositions, methods of manufacture and uses thereof
EP3082431A4 (en) 2013-12-16 2017-11-15 Seres Therapeutics, Inc. Bacterial compositions and methods of use thereof for treatment of immune system disorders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240779A (en) * 1984-05-16 1985-11-29 C I Kasei Co Ltd Water-swellable, water-stopping and water-retaining material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240779A (en) * 1984-05-16 1985-11-29 C I Kasei Co Ltd Water-swellable, water-stopping and water-retaining material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883158A (en) * 1994-08-12 1999-03-16 Kao Corporation Process for producing improved super absorbent polymer
EP1712584A2 (en) 1997-06-18 2006-10-18 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US7495056B2 (en) 2001-01-26 2009-02-24 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and water-absorbent structure
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
WO2007108205A1 (en) 2006-03-17 2007-09-27 Sanyo Chemical Industries, Ltd. Cell culture substrate
WO2010073658A1 (en) 2008-12-26 2010-07-01 サンダイヤポリマー株式会社 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
US8742023B2 (en) 2008-12-26 2014-06-03 San-Dia Polymers, Ltd. Absorbent resin particle, process for producing the same, absorber containing the same, and absorbent article
WO2011052140A1 (en) 2009-10-30 2011-05-05 三洋化成工業株式会社 Absorbent resin particles for water-stopping tape, and water-stopping tape containing same
JP2013525592A (en) * 2010-05-07 2013-06-20 エボニック・ストックハウゼン・リミテッド・ライアビリティ・カンパニー Particulate superabsorbent polymer with increased capacity
KR20130096152A (en) * 2010-05-07 2013-08-29 에보닉 스톡하우젠, 엘엘씨 Particulate superabsorbent polymer having a capacity increase
WO2014046106A1 (en) 2012-09-21 2014-03-27 三洋化成工業株式会社 Aqueous liquid absorbing resin, aqueous liquid absorbing composition, and absorbent body and absorbent article using same
US10307732B2 (en) 2013-04-10 2019-06-04 Evonik Corporation Particulate superabsorbent polymer composition having improved stability and fast absorption
WO2020213298A1 (en) 2019-04-16 2020-10-22 三洋化成工業株式会社 Method for producing water-absorbing resin particles

Also Published As

Publication number Publication date
JPH0519563B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
JPS61252212A (en) Production of highly water-absorptive polymer
EP0195406B1 (en) Process for producing highly water-absorbing polymer
JP3155294B2 (en) Method for producing superabsorbent polymer
JP5349723B2 (en) Method for producing water absorbent resin
TW591039B (en) Water-absorbing material and absorbing article thereof
WO1996017884A1 (en) Water-absorbent resin, process for production thereof, and water-absorbent resin composition
JPS6018690B2 (en) Method for improving water absorbency of water absorbent resin
WO2007126002A1 (en) Process for production of water-absorbable resin
JPH01207327A (en) Surface treating method of water absorbing resin
JP2002530491A (en) Post-crosslinking method of hydrogel with 2-oxotetrahydro-1,3-oxazine
JPS6148521B2 (en)
JPS61211305A (en) Production of highly water-absorptive polymer
JPH05339381A (en) Production of water-absorptive resin and water absorbent
JPH04331205A (en) Production of highly water-absorptive polymer
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JP2901368B2 (en) Method for producing salt-resistant water-absorbent resin
JPH03195713A (en) Production of polymer having high water absorption
JPS61264006A (en) Production of highly water-absorbing polymer
JPS6343930A (en) Production of highly water-absorptive polymer
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JP3827354B2 (en) Method for producing superabsorbent polymer
JPH04339810A (en) Production of highly water-absorptive polymer
JPS6236411A (en) Production of highly water-absorptive polymer
JP3077294B2 (en) Water-absorbing resin composition and absorbent article using the same
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term