JPH0778095B2 - Method for producing high expansion type water-absorbent polymer - Google Patents

Method for producing high expansion type water-absorbent polymer

Info

Publication number
JPH0778095B2
JPH0778095B2 JP61064773A JP6477386A JPH0778095B2 JP H0778095 B2 JPH0778095 B2 JP H0778095B2 JP 61064773 A JP61064773 A JP 61064773A JP 6477386 A JP6477386 A JP 6477386A JP H0778095 B2 JPH0778095 B2 JP H0778095B2
Authority
JP
Japan
Prior art keywords
water
polymer
producing
metal hydroxide
binary metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61064773A
Other languages
Japanese (ja)
Other versions
JPS62223203A (en
Inventor
泰弘 森田
教義 岩本
寛行 片岡
泰二 上林
繁章 松本
忠蔵 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemicals Ind.,Ltd.
Original Assignee
Osaka Organic Chemicals Ind.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemicals Ind.,Ltd. filed Critical Osaka Organic Chemicals Ind.,Ltd.
Priority to JP61064773A priority Critical patent/JPH0778095B2/en
Priority to US06/880,447 priority patent/US4735987A/en
Publication of JPS62223203A publication Critical patent/JPS62223203A/en
Publication of JPH0778095B2 publication Critical patent/JPH0778095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高膨張型吸水性ポリマーの製造方法に関す
る。本発明により製造されるポリマーは、高膨張型で、
通気性が良く、吸水後のゲルのベタツキも無いことか
ら、農園芸土壌用保水材、衛生材料(紙おむつ、生理ナ
プキン)等に用いることができる。
TECHNICAL FIELD The present invention relates to a method for producing a highly expansive water-absorbing polymer. The polymer produced according to the present invention is of high expansion type,
Since it has good air permeability and does not cause stickiness of gel after absorbing water, it can be used as a water retention material for agricultural and horticultural soils, sanitary materials (paper diapers, sanitary napkins) and the like.

[従来の技術] 吸水性ポリマーは生理用品、紙おむつなどの衛生材料、
保水性として農園芸関係などに使用されるほか、汚泥の
凝固、油類の脱水などの種々の用途に用いられ、さらに
新しい用途が開発されつつある有用な合成ポリマーであ
る。これらのポリマーは、 デンプン−アクロニトリルグラフト重合体の加水分解
物(特公昭53-46199号公報、特開昭55-4820号公報) セルロース変性体(特開昭50-80376号公報) 逆相懸濁法によるポリアクリル酸ソーダ(特公昭54-3
0710号、特開昭56-26909号公報) 水溶液重合法(断熱重合、薄膜重合)により得られる
ポリアクリル酸ソーダ(特開昭55-133413号) 水溶性高分子の架橋物(特公昭43-23462号公報) デンプン−アクリル酸ソーダグラフト重合体(特公昭
53-46199号公報) 等が知られている。
[Prior Art] Water-absorbent polymers are used for sanitary products, sanitary materials such as disposable diapers,
It is a useful synthetic polymer used for various purposes such as coagulation of sludge and dehydration of oils as well as being used for water retention in agriculture and horticulture. These polymers are hydrolyzates of starch-acrylonitrile graft polymer (Japanese Patent Publication No. 53-46199, Japanese Patent Publication No. 55-4820), and modified cellulose (Japanese Patent Publication No. 50-80376). Sodium polyacrylate by turbidity method (Japanese Patent Publication No. 54-3
No. 0710, JP-A-56-26909) Sodium polyacrylate obtained by an aqueous solution polymerization method (adiabatic polymerization, thin film polymerization) (JP-A-55-133413) Cross-linked product of water-soluble polymer (JP-B-43- 23462) Starch-sodium acrylate graft polymer (Japanese Examined Patent Publication)
No. 53-46199) is known.

[発明が解決しようとする問題点] しかしながら、上記の方法には以下の如き問題点があっ
た。
[Problems to be Solved by the Invention] However, the above method has the following problems.

吸水能の不足、たとえ吸水能が高くても、吸水速度が
遅い、あるいは水への分散性が悪い等の欠点を有してい
る。
It has drawbacks such as insufficient water absorption capacity, low water absorption speed even if water absorption capacity is high, and poor dispersibility in water.

吸水後のゲルがべたつき、衛生材料を考えた場合、肌
への影響が心配される。
After absorbing water, the gel becomes sticky, and when considering hygiene materials, there is concern about the effect on the skin.

吸水膨潤状態のポリマー粒子相互間の凝集により通気
性が悪く、土壌用保水材を考えた場合、根が腐敗する危
険性がある。
The air permeability is poor due to the aggregation of the polymer particles in a water-swelling state, and there is a risk that the roots will rot when considering a water retaining material for soil.

[問題点を解決するための手段] 本発明者らは従来の欠点を改良すべく鋭意研究を重ねた
結果、吸水すると速やかに膨張し、吸水後のゲルがべた
つかず、しかも、通気性のある高膨張型ポリマーを製造
する方法を完成するに至った。
[Means for Solving Problems] As a result of intensive studies conducted by the present inventors to improve the conventional drawbacks, the present invention rapidly expands when water is absorbed, the gel after water absorption is not sticky, and is breathable. The method for producing a high expansion polymer has been completed.

本発明によれば、モノマーの場合により得られたアクリ
ル酸アルカリ塩を重合体の構成成分として含有する吸水
性ポリマーを共沸脱水時に、陰イオン交換能を有する二
元金属水酸化物の存在下、2個以上の官能基を有する架
橋剤で架橋せしめ、次いで乾燥することを特徴とする高
膨張型吸水性ポリマーの製造法が提供される。
According to the present invention, a water-absorbing polymer containing an acrylic acid alkali salt obtained as a monomer as a constituent component of a polymer is subjected to azeotropic dehydration in the presence of a binary metal hydroxide having anion exchange ability. A method for producing a highly expansive water-absorbing polymer, which comprises crosslinking with a crosslinking agent having two or more functional groups and then drying.

本発明の製造法において、モノマーの重合は、水溶性ラ
ジカル重合開始剤を用いて、カルボキシル基を有するビ
ニルモノマーを40重量%以上含む水溶液を分散剤の存在
下、脂肪族炭化水素系溶媒中に分散、懸濁させて重合反
応を行うのが好ましい。
In the production method of the present invention, the polymerization of the monomer is carried out by using a water-soluble radical polymerization initiator in an aliphatic hydrocarbon solvent in the presence of a dispersant containing an aqueous solution containing 40% by weight or more of a vinyl monomer having a carboxyl group. It is preferable to carry out the polymerization reaction by dispersing and suspending.

そして、本発明におけるアクリル酸アルカリ塩を重合体
の構成成分として含有する吸水性ポリマーとしては、ア
クリル酸のホモポリマーのアルカリ塩の他、アクリル酸
またはアクリル酸のアルカリ塩と共重合可能なモノマー
類と共重合せしめることにより得られるアクリル酸共重
合体のアルカリ塩も含まれる。
And as the water-absorbing polymer containing the alkali salt of acrylic acid as a constituent component of the polymer in the present invention, in addition to the alkali salt of a homopolymer of acrylic acid, monomers copolymerizable with acrylic acid or an alkali salt of acrylic acid It also includes an alkali salt of an acrylic acid copolymer obtained by copolymerization with.

ここでアクリル酸またはアクリル酸のアルカリ塩と共重
合可能なモノマーとしては、アクリル酸メチル、アクリ
ル酸エチル等のアクリル酸エステル類;メタクリル酸メ
チル、メタクリル酸エチル等のメタクリル酸エステル
類;ヒドロキシエチルアクリレートの如きヒドロキシア
ルキルアクリレート類;ヒドロキシエチルメタクリレー
トの如きヒドロキシアルキルメタクリレート類;スチレ
ン、α−メチルスチレン、p−メチルスチレン等のビニ
ル芳香族単量体等が挙げられる。共重合体にあっては、
アクリル酸アルカリ塩成分が75モル%以上含まれている
のが好ましい。
Here, as the monomer copolymerizable with acrylic acid or an alkali salt of acrylic acid, acrylic acid esters such as methyl acrylate and ethyl acrylate; methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; hydroxyethyl acrylate And hydroxyalkyl acrylates such as hydroxyethyl methacrylate; vinyl aromatic monomers such as styrene, α-methylstyrene, p-methylstyrene, and the like. In the case of copolymers,
It is preferable that the acrylic acid alkali salt component is contained in an amount of 75 mol% or more.

カルボキシル基を含有する高膨張型ポリマーを得る方法
としては、本発明では、重合後、共沸脱水で乾燥するた
め、作業性等から見てW/O懸濁重合が望ましい。W/O懸濁
重合は、界面活性剤として、ソルビタンモノステアレー
ト、ソルビタンジステアレート、ソルビタンモノラウレ
ート等のソルビタン脂肪酸エステル及び、エチルセルロ
ース、ベンジルセルロース等のセルロースエーテルマレ
イン化ポリエチレン、マレイン化ポリブタジエン等の高
分子分散剤を例示することが出来、これらの1種又は2
種以上いずれを用いても良い。又、その時に用いる疎水
性溶媒としては、n−ヘキサン、ヘプタン、オクタン等
の脂肪族炭化水素、シクロヘキサン、メチルシクロヘキ
サン、デカリン等の脂環式炭化水素、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素、クロルベンゼン、ジ
クロルベンゼン等のハロゲン化炭化水素を例示すること
ができる。
As a method for obtaining a high expansion polymer containing a carboxyl group, in the present invention, W / O suspension polymerization is preferable from the viewpoint of workability, etc., because after polymerization, it is dried by azeotropic dehydration. W / O suspension polymerization includes sorbitan monostearate, sorbitan distearate, sorbitan fatty acid esters such as sorbitan monolaurate, and cellulose ether maleated polyethylene such as ethyl cellulose and benzyl cellulose, and maleated polybutadiene as a surfactant. Examples of the polymer dispersant include one or two of these.
Any one or more species may be used. The hydrophobic solvent used at that time includes aliphatic hydrocarbons such as n-hexane, heptane and octane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and decalin, aromatic hydrocarbons such as benzene, toluene and xylene. And halogenated hydrocarbons such as chlorobenzene and dichlorobenzene.

本発明の方法において、特に重要な要件は、共沸脱水時
に、陰イオン交換能を有する二元金属水酸化物存在下で
架橋反応行なわせしめることである。本発明に用いる二
元金属水酸化物としては、吸水膨潤状態のポリマー粒子
相互間の通気性向上効果や保水性改善効果を有し、さら
にポリマー粒子を高膨張させる効果を有するもので天然
および合成のハイドロタルサイトのごとき陰イオン交換
能を有する二元金属水酸化物を使用することができる。
In the method of the present invention, a particularly important requirement is that during the azeotropic dehydration, the crosslinking reaction is carried out in the presence of a binary metal hydroxide having anion exchange ability. The binary metal hydroxide used in the present invention has an effect of improving air permeability and an effect of improving water retention between the water-swelled polymer particles, and further has an effect of highly expanding the polymer particles. It is possible to use a binary metal hydroxide having an anion exchange capacity, such as the hydrotalcite described above.

本発明で得られる高膨張型吸水性ポリマーが吸水すると
速やかに膨張する理由は明らかではないが、 1)重合乾燥したポリマーと二元金属水酸化物を単に混
合しても膨張性を示さず、IR,X線分析データも異なるこ
と、 2)共沸脱水時、二元金属水酸化物又は架橋剤のいずれ
かが不存在下でも膨張しないこと から以下のことが推定される。
It is not clear why the highly expansive water-absorbent polymer obtained in the present invention expands rapidly when it absorbs water, but 1) it does not exhibit expansiveness even if the polymerized and dried polymer and the binary metal hydroxide are simply mixed, The IR and X-ray analysis data are also different. 2) During azeotropic dehydration, it does not expand even in the absence of either a binary metal hydroxide or a cross-linking agent.

すなわち、アクリル酸アルカリ塩を重合して得られたス
ラリー状のポリマーと二元金属水酸化物と架橋剤が相違
に分子オーダーで交互した全く新しい複合体を形成した
ため、吸水時に複合体内のカルボキシル基間のイオン反
発より膨張性を示すのである。
That is, since a slurry-like polymer obtained by polymerizing an acrylic acid alkali salt, a binary metal hydroxide and a cross-linking agent are different in molecular order, a completely new complex is formed. It is expansive due to the ionic repulsion between them.

本発明において陰イオン交換能を有する二元金属水酸化
物の添加量はその種類及びポリマーの種類によっても異
なるが、通常モノマーに対して1〜30重量%が適切な範
囲である。更に望ましくはモノマーに対して5〜20重量
%である。前記二元金属水酸化物の添加使用量が1重量
%未満になるとポリマーは高膨張性を示さず、30重量%
より多くなると二元金属水酸化物添加時にポリマー粒子
相互間の凝集がおこり、ブロッキングしてしまう傾向が
ある。
In the present invention, the addition amount of the binary metal hydroxide having anion exchange ability varies depending on the kind and the kind of the polymer, but is usually 1 to 30% by weight relative to the monomer in an appropriate range. More preferably, it is 5 to 20% by weight with respect to the monomer. When the amount of the binary metal hydroxide added is less than 1% by weight, the polymer does not exhibit high expansion property,
If the amount is larger than the above, the polymer particles tend to aggregate when the binary metal hydroxide is added, resulting in blocking.

本発明に用いる架橋剤は、カルボキシル基(又はカルボ
キシレート基)と反応しうる官能基を2個以上有する化
合物であればいずれでも良い。かかる架橋剤としては、
例えばエチレングリコールジグリシジルエーテル、ポリ
エチレングリコールジグリシジルエーテル、グリセリン
トリグリシジルエーテル等のポリグリシジルエーテル;
エピクロルヒドリン、α−メチルクロルヒドリン等のハ
ロエポキシ化合物;グルタールアルデヒド、グリオキザ
ール等のポリアルデヒド類等を例示することができる。
The crosslinking agent used in the present invention may be any compound as long as it is a compound having two or more functional groups capable of reacting with a carboxyl group (or a carboxylate group). As such a cross-linking agent,
For example, polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether;
Examples thereof include haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin; polyaldehydes such as glutaraldehyde and glyoxal.

架橋剤の添加量は架橋剤の種類及びポリマーの種類によ
っても異なるが、通常モノマーに対して0.05〜2重量%
が適切な範囲である。更に望ましくはモノマーに対して
0.2〜1.0重量%である。前記架橋剤使用量が0.05重量%
未満ではママコ現象が生じ、高膨張型ポリマーは得られ
ず、2重量%より多くなると架橋密度が高くなりすぎ、
吸水能の著しい低下が生ずる。
The amount of cross-linking agent added varies depending on the type of cross-linking agent and the type of polymer, but is usually 0.05 to 2% by weight with respect to the monomer.
Is an appropriate range. More preferably for the monomer
It is 0.2 to 1.0% by weight. The amount of the crosslinking agent used is 0.05% by weight
If the amount is less than 2, the high expansion polymer cannot be obtained, and if it exceeds 2% by weight, the crosslinking density becomes too high.
A significant decrease in water absorption capacity occurs.

本発明で得られる高膨張型吸水性ポリマーは添加した水
に対し最大4倍の膨張を示すが、前記二元金属水酸化物
のみ、前記架橋剤のみを添加しても高膨張型のポリマー
は得られず、本発明の意図する所ではない。
The high expansion type water-absorbing polymer obtained by the present invention shows a maximum expansion of 4 times with respect to the added water, but even if only the binary metal hydroxide and the crosslinking agent are added, the high expansion type polymer is No, it is not the intention of the present invention.

[発明の効果] 本発明の方法を用いる事により、吸水能が良好で吸水速
度が速く、吸水後のゲルがベタつかず、しかも通気性の
ある高膨張型の吸水材料を得ることが可能となり、“も
れ”による肌への影響、また、根の腐敗等の心配が無く
なることから、衛生材料用吸水剤及び農業用保水剤とし
て使用するに非常に有利である。
[Advantages of the Invention] By using the method of the present invention, it is possible to obtain a highly expansive water-absorbing material having good water-absorption ability, high water-absorption rate, non-sticky gel after water-absorption, and breathability. It is very advantageous for use as a water absorbing agent for sanitary materials and a water retaining agent for agriculture, since there is no fear of "leakage" on the skin and fear of root rot.

[実施例] 次に本発明の方法を実施例によって具体的に説明する。
尚以下の実施例及び比較例における吸水能、体積倍率は
次の操作によって求められる値である。
[Examples] Next, the method of the present invention will be specifically described with reference to Examples.
The water absorption capacity and volume ratio in the following examples and comparative examples are values obtained by the following operations.

イオン交換水の吸水能の場合は、乾燥ポリマー0.5gを1
のイオン交換水に分散し、1昼夜静置後、60メッシュ
の金網で過し得られた膨潤ポリマー重量(W)を測定
し、この値を初めの乾燥ポリマー重量(Wo)で割って得
られた値である。つまりイオン交換水吸水能(g/g)=W
/Woとした。
For absorbing water of ion-exchanged water, add 0.5 g of dry polymer
It was dispersed in ion-exchanged water, and allowed to stand for a whole day and night, then the swelling polymer weight (W) obtained by passing through a 60-mesh wire net was measured, and this value was divided by the initial dry polymer weight (Wo). It is a value. That is, water absorption capacity of ion-exchanged water (g / g) = W
/ Wo.

生理食塩水の吸水能の場合は、乾燥ポリマー0.2gを60g
の0.9%食塩水に分散し、20分静置後、100メッシュの金
網で過し得られた膨潤ポリマー重量(W)を測定し、
この値を初めの乾燥ポリマー重量(Wo)で割って得られ
た値である。つまり生理食塩水吸水能(g/g)=W/Woと
した。
For saline water absorption capacity, dry polymer 0.2g to 60g
Was dispersed in 0.9% saline solution, allowed to stand for 20 minutes, and then passed through a 100-mesh wire net to measure the swollen polymer weight (W),
It is the value obtained by dividing this value by the initial dry polymer weight (Wo). That is, the physiological saline absorption capacity (g / g) = W / Wo.

体積倍率は、乾燥ポリマー(42メッシュふるいON,16メ
ッシュふるいパス)0.2gをネスラー管にとり、得られた
膨潤ポリマーの体積(V)を測定し、この値を加えた水
の体積(Vo)で割って得られた値である。つまり体積倍
とした。
The volume ratio was measured by measuring the volume (V) of the swollen polymer obtained by placing 0.2 g of dry polymer (42 mesh sieve ON, 16 mesh sieve pass) in a Nessler tube, and adding this value to the volume of water (Vo). It is the value obtained by dividing. That is, volume ratio And

実施例2以下の体積倍率は、上記乾燥ポリマー0.2gをネ
スラー管にとり、イオン交換水2.0g加えて得られた膨潤
ポリマーの値である。
The volume ratios in Example 2 and below are values of a swollen polymer obtained by taking 0.2 g of the dry polymer in a Nessler tube and adding 2.0 g of ion-exchanged water.

実施例1 攪拌機、還流冷却管、滴下斗、及び窒素ガス導入管を
備えた1のセパラフラスコに1n−ヘキサン360.7g、ソ
ルビタンモノラウレート4.32gを仕込み、50℃まで昇温
し溶解後、室温下で過硫酸カリウム0.24gを水10gに溶解
した水溶液に添加した。
Example 1 A separa flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas inlet tube was charged with 360.7 g of 1n-hexane and 4.32 g of sorbitan monolaurate, and the mixture was heated to 50 ° C. and dissolved at room temperature. Below, 0.24 g of potassium persulfate was added to an aqueous solution dissolved in 10 g of water.

一方、三角フラスコ中でアクリル酸72.0gを水93.6gに溶
解した水酸化ナトリウム32.2gで部分中和し、モノマー
水溶液中のモノマー濃度を43%とした。このモノマー水
溶液を上記のセパラフラスコに窒素気流バブリング下に
1時間かけて滴下し、重合し、1時間還流後、30%過酸
化水素水0.1gを添加し、さらに還流を2時間続けた。
On the other hand, in an Erlenmeyer flask, 72.0 g of acrylic acid was partially neutralized with 32.2 g of sodium hydroxide dissolved in 93.6 g of water to adjust the monomer concentration in the monomer aqueous solution to 43%. This monomer aqueous solution was added dropwise to the above-mentioned Separa flask under bubbling of a nitrogen gas stream over 1 hour, polymerized, refluxed for 1 hour, 0.1 g of 30% hydrogen peroxide solution was added, and the reflux was continued for 2 hours.

その後、合成ハイドロタルサイト8.85g(協和化学、キ
ョーワード500,Mg6Al2(OH)16CO3・4H2O)、及びエチ
レングリコールジグリシジルエーテル0.73gを添加し、
共沸脱水を行い乾燥すると、白色の粉粒状ポリマーを得
た。
After that, 8.85 g of synthetic hydrotalcite (Kyowa Kagaku, Kyoward 500, Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and 0.73 g of ethylene glycol diglycidyl ether were added,
After azeotropic dehydration and drying, a white powdery granular polymer was obtained.

得られた乾燥ポリマーは、イオン交換水に対する吸水能
が210(g/g)、生理食塩水に対する吸水能が40(g/
g)、体積倍率3.5(cm3/cm3)(水2.0g添加)のポリマ
ーであった。
The obtained dry polymer has a water absorption capacity of 210 (g / g) for ion-exchanged water and a water absorption capacity of 40 (g / g) for physiological saline.
g) and a volume ratio of 3.5 (cm 3 / cm 3 ) (water 2.0 g added).

また、上記で得られた乾燥ポリマー(16メッシュふるい
通過)0.2gにイオン交換水を加え、イオン交換水の添加
量と膨潤ポリマーの体積倍率V/Voとの関係を調べた。結
果は第1図曲線Aに示すように、水の添加量に相当する
体積よりも著しく大きい体積膨張を示した。比較のため
に市販のアクリル酸ナトリウム系の吸水性ポリマー(花
王(株)社製ポイズSA-20)0.2gについて同様の試験を
したところ、第1図曲線Bに示した如く体積膨張は小さ
かった。
Further, ion-exchanged water was added to 0.2 g of the dried polymer (passed through a 16-mesh sieve) obtained above, and the relationship between the addition amount of ion-exchanged water and the volume ratio V / Vo of the swollen polymer was investigated. As shown in the curve A in FIG. 1, the results showed a volume expansion significantly larger than the volume corresponding to the added amount of water. For comparison, the same test was carried out on a commercially available sodium acrylate-based water-absorbing polymer (Poise SA-20 manufactured by Kao Corporation), and the volume expansion was small as shown by the curve B in FIG. .

実施例2 ソルビタンモノラウレートの代わりにソルビタンモノス
テアレート4.32gとした以外は実施例1に準じて重合及
び乾燥を行い白色の粉粒状ポリマーを得た。得られた乾
燥ポリマーは、イオン交換水に対する吸水能が145(g/
g)、生理食塩水に対する吸水能が31(g/g)、体積倍率
3.0(cm3/cm3)のポリマーであった。
Example 2 Polymerization and drying were carried out in the same manner as in Example 1 except that sorbitan monostearate was replaced by 4.32 g instead of sorbitan monolaurate to obtain a white powdery granular polymer. The resulting dried polymer has a water absorption capacity of 145 (g / g for ion-exchanged water).
g), water absorption capacity for physiological saline is 31 (g / g), volume ratio
The polymer was 3.0 (cm 3 / cm 3 ).

実施例3 ソルビタンモノラウレートの代わりにソルビタンジステ
アレート4.32gとした以外は実施例1に準じて重合及び
乾燥を行い白色の粉粒状ポリマーを得た。得られた乾燥
ポリマーは、イオン交換水に対する吸水能が120(g/
g)、生理食塩水に対する吸水能が28(g/g)、体積倍率
3.0(cm3/cm3)のポリマーであった。
Example 3 Polymerization and drying were carried out in the same manner as in Example 1 except that 4.32 g of sorbitan distearate was used instead of sorbitan monolaurate to obtain a white powdery granular polymer. The resulting dried polymer has a water absorption capacity of 120 (g /
g), water absorption capacity for physiological saline is 28 (g / g), volume ratio
The polymer was 3.0 (cm 3 / cm 3 ).

実施例4 実施例1に準じて重合を行い、表1に示した二元金属水
酸化物8.85g、エチレングリコールグリシジルエーテル
0.73gを共沸脱水時に添加し、乾燥を行うとそれぞれ白
色の粉粒状ポリマーを得た。
Example 4 Polymerization was carried out in the same manner as in Example 1 to give 8.85 g of the binary metal hydroxide shown in Table 1 and ethylene glycol glycidyl ether.
0.73 g was added at the time of azeotropic dehydration and dried to obtain white powdery granular polymers.

実施例5 実施例1に準じて重合を行い、表2に示した量の二元金
属水酸化物、エチレングリコールジグリシジルエーテル
を共沸脱水時に添加し、乾燥を行いそれぞれ白色の粉粒
状ポリマーを得た。
Example 5 Polymerization was carried out according to Example 1, and the amounts of the binary metal hydroxide and ethylene glycol diglycidyl ether shown in Table 2 were added during azeotropic dehydration, followed by drying to obtain white powdery granular polymers. Obtained.

比較例1 実施例1に準じて重合を行い、キョーワード500 8.85g
のみを共沸脱水時に添加し、乾燥を行い、白色の粉粒状
ポリマーを得た。得られたポリマーは、イオン交換水に
対する吸水能が80(g/g)、生理食塩水に対する吸水能
が47(g/g)、体積倍率1.3(cm3/cm3)のポリマーであ
った。
Comparative Example 1 Polymerization was carried out according to Example 1, and Kyoward 500 8.85 g
Only was added at the time of azeotropic dehydration and dried to obtain a white powdery granular polymer. The obtained polymer was a polymer having a water absorption capacity of 80 (g / g) for ion-exchanged water, a water absorption capacity of 47 (g / g) for physiological saline, and a volume ratio of 1.3 (cm 3 / cm 3 ).

比較例2 実施例1に準じて重合を行い、エチレングリコールグリ
シジルエーテル0.73gのみを共沸脱水時に添加し、乾燥
を行い、白色の粉粒状ポリマーを得た。得られたポリマ
ーは、イオン交換水に対する吸水能が120(g/g)、生理
食塩水に対する吸水能が31(g/g)、体積倍率1.5(cm3/
cm3)であった。
Comparative Example 2 Polymerization was carried out in the same manner as in Example 1, and only 0.73 g of ethylene glycol glycidyl ether was added during azeotropic dehydration, followed by drying to obtain a white powdery granular polymer. The obtained polymer has a water absorption capacity of 120 (g / g) for ion-exchanged water, a water absorption capacity of 31 (g / g) for physiological saline, and a volume ratio of 1.5 (cm 3 /
cm 3 ).

比較例3 比較例1のポリマー100部に対しキョーワード500を100
部加えてよく混合したところ、イオン交換水に対する吸
水能が120(g/g)、生理食塩水に対する吸水能が35(g/
g)、体積倍率1.5(cm3/cm3)であった。
Comparative Example 3 Kyoward 500 was added to 100 parts of the polymer of Comparative Example 1 to 100 parts.
When added well and mixed well, it has a water absorption capacity of 120 (g / g) for ion-exchanged water and 35 (g / g) for physiological saline.
g) and the volume ratio was 1.5 (cm 3 / cm 3 ).

【図面の簡単な説明】[Brief description of drawings]

第1図は乾燥ポリマーにイオン交換水を添加していった
場合の、イオン交換水の添加量と膨潤ポリマーの体積倍
率V/Vo(但し、Voは添加した水の体積、Vは膨潤ポリマ
ーの体積である)との関係を示すグラフで、曲線Aは実
施例1で得られた乾燥ポリマーの試験結果を示し、曲線
Bは市販ポリマーの試験結果を示す。
Figure 1 shows the amount of ion-exchanged water added and volume ratio V / Vo of swollen polymer when ion-exchanged water was added to dry polymer (where Vo is the volume of added water and V is the volume of swollen polymer). Curve A shows the test result of the dry polymer obtained in Example 1, and curve B shows the test result of the commercial polymer.

フロントページの続き (72)発明者 加藤 忠蔵 東京都品川区上大崎2丁目3番4号 (56)参考文献 特開 昭60−147475(JP,A)Front page continuation (72) Inventor Chuzo Kato 2-3-4 Kamiosaki, Shinagawa-ku, Tokyo (56) References JP-A-60-147475 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】モノマーの重合により得られたアクリル酸
アルカリ塩を重合体の構成成分として含有する吸水性ポ
リマーを共沸脱水時に、陰イオン交換能を有する二元金
属水酸化物の存在下、2個以上の官能基を有する架橋剤
で架橋せしめ、次いで乾燥することを特徴とする高膨張
型吸水性ポリマーの製造法。
1. A water-absorbing polymer containing an acrylic acid alkali salt obtained by polymerization of a monomer as a constituent component of a polymer is subjected to azeotropic dehydration in the presence of a binary metal hydroxide having an anion exchange ability, A method for producing a highly expansive water-absorbing polymer, which comprises crosslinking with a crosslinking agent having two or more functional groups and then drying.
【請求項2】陰イオン交換能を有する二元金属水酸化物
がハイドロタルサイトである特許請求の範囲第1項記載
の高膨張型吸水性ポリマーの製造法。
2. The method for producing a highly expansive water-absorbing polymer according to claim 1, wherein the binary metal hydroxide having anion exchange ability is hydrotalcite.
【請求項3】陰イオン交換能を有する二元金属水酸化物
がモノマーに対して1〜30重量%用いられる特許請求の
範囲第1項記載の高膨張型吸水性ポリマーの製造法。
3. The method for producing a highly expansive water-absorbing polymer according to claim 1, wherein the binary metal hydroxide having anion exchange capacity is used in an amount of 1 to 30% by weight based on the monomer.
【請求項4】架橋剤がエチレングリコールジクリシジル
エーテルである特許請求の範囲第1項記載の高膨張型吸
水性ポリマーの製造法。
4. The method for producing a highly expansive water-absorbing polymer according to claim 1, wherein the crosslinking agent is ethylene glycol diglycidyl ether.
【請求項5】架橋剤がモノマーに対して0.05〜2重量%
用いられる特許請求の範囲第1項記載の高膨張型吸水性
ポリマーの製造法。
5. The cross-linking agent is contained in an amount of 0.05 to 2% by weight based on the monomers.
The method for producing a high expansion type water-absorbent polymer according to claim 1, which is used.
JP61064773A 1986-03-25 1986-03-25 Method for producing high expansion type water-absorbent polymer Expired - Lifetime JPH0778095B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61064773A JPH0778095B2 (en) 1986-03-25 1986-03-25 Method for producing high expansion type water-absorbent polymer
US06/880,447 US4735987A (en) 1986-03-25 1986-06-30 Method for manufacture of high-expansion type absorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064773A JPH0778095B2 (en) 1986-03-25 1986-03-25 Method for producing high expansion type water-absorbent polymer

Publications (2)

Publication Number Publication Date
JPS62223203A JPS62223203A (en) 1987-10-01
JPH0778095B2 true JPH0778095B2 (en) 1995-08-23

Family

ID=13267857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064773A Expired - Lifetime JPH0778095B2 (en) 1986-03-25 1986-03-25 Method for producing high expansion type water-absorbent polymer

Country Status (1)

Country Link
JP (1) JPH0778095B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326819A (en) * 1988-04-16 1994-07-05 Oosaka Yuuki Kagaku Kogyo Kabushiki Kaisha Water absorbent polymer keeping absorbed water therein in the form of independent grains
US5149334A (en) * 1990-04-02 1992-09-22 The Procter & Gamble Company Absorbent articles containing interparticle crosslinked aggregates
US5124188A (en) * 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
US5180622A (en) * 1990-04-02 1993-01-19 The Procter & Gamble Company Absorbent members containing interparticle crosslinked aggregates
US5492962A (en) * 1990-04-02 1996-02-20 The Procter & Gamble Company Method for producing compositions containing interparticle crosslinked aggregates
US5300565A (en) * 1990-04-02 1994-04-05 The Procter & Gamble Company Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates
US5508381A (en) * 1991-09-20 1996-04-16 Lucky Limited Process for preparing highly water absorbent resin
KR102196888B1 (en) 2012-10-01 2020-12-30 가부시키가이샤 닛폰 쇼쿠바이 Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
BR112019020505A2 (en) 2017-03-31 2020-06-23 Sumitomo Seika Chemicals Co., Ltd. WATER-ABSORBING RESIN PARTICLE
CN111902462B (en) * 2018-03-28 2023-10-27 住友精化株式会社 Water-absorbent resin particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147475A (en) * 1984-01-11 1985-08-03 Arakawa Chem Ind Co Ltd Manufacture of water-absorptive resin

Also Published As

Publication number Publication date
JPS62223203A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
US4735987A (en) Method for manufacture of high-expansion type absorbent polymer
US4340706A (en) Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
US4446261A (en) Process for preparation of high water-absorbent polymer beads
JPS634843B2 (en)
GB1589975A (en) Water absorbent polymers
JPH05170848A (en) Preparation of water-absorbent resin
JPH10330433A (en) Water-swelling hydrophilic polymer composition
JPH078882B2 (en) Manufacturing method of highly water-absorbent resin with excellent durability
JPH0519563B2 (en)
JPS61271303A (en) Production of water-absorptive resin
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JPH0693008A (en) Production of amorphous polymer particle
JPH03195713A (en) Production of polymer having high water absorption
JPH04120176A (en) Water absorbing agent and production thereof
JPS62254841A (en) Production of highly expandable water-absorptive polymer
JPH0555523B2 (en)
JPH0645651B2 (en) Method for producing high expansion water-absorbent polymer
JPH0848721A (en) Preparation of water-absorptive resin
JPH0248292B2 (en)
JP3168240B2 (en) Thermosensitive absorption and drainage composition
JP2967952B2 (en) Method for producing porous polymer
JPS634844B2 (en)
JPS62254842A (en) Production of highly expandable water-absorptive polymer
JP2917418B2 (en) Method for producing superabsorbent polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term