JPS634843B2 - - Google Patents

Info

Publication number
JPS634843B2
JPS634843B2 JP57153097A JP15309782A JPS634843B2 JP S634843 B2 JPS634843 B2 JP S634843B2 JP 57153097 A JP57153097 A JP 57153097A JP 15309782 A JP15309782 A JP 15309782A JP S634843 B2 JPS634843 B2 JP S634843B2
Authority
JP
Japan
Prior art keywords
water
polymer
polymerization
hydrophilic polymer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57153097A
Other languages
Japanese (ja)
Other versions
JPS5962665A (en
Inventor
Harumasa Yamazaki
Takatoshi Kobayashi
Juzo Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP57153097A priority Critical patent/JPS5962665A/en
Priority to GB08322850A priority patent/GB2126591B/en
Priority to US06/527,134 priority patent/US4497930A/en
Priority to ES525269A priority patent/ES8602064A1/en
Priority to DE19833331644 priority patent/DE3331644A1/en
Publication of JPS5962665A publication Critical patent/JPS5962665A/en
Publication of JPS634843B2 publication Critical patent/JPS634843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高吸水性ポリマーの製造法に関する。 更に詳しくは、耐塩性及び吸水速度に優れた吸
水材料の製造方法に関する。 従来衛生材料(生理用ナプキン、紙オムツ)の
分野及び農業分野で紙、パルプ等の種々の吸水材
料が使用されてきたが、これらの吸水材料は吸水
能力も低く、しかも一旦吸収された水も圧力が加
わればそのかなりの部分がしぼり出されてしま
う。 これらの材料に替わるものとして近年デンプン
―アクリロニトリルグラフト重合体の加水分解
物、変成セルロースエーテル、並びにアクリル酸
メチル/酢酸ビニル共重合体の加水分解物等の吸
水材料が提案され、更に改良もされてきている。
しかしこれらは優れた吸水能力及び吸水速度を示
すとは言い難く、満足な吸水材料が得られていな
い。 本発明者らは、すでに吸水性能に優れた吸水材
料を提案し(特公昭54−30710)、更に改良した吸
水材料についても提案してきた(特願昭56−
43488、特願昭56−43489)。しかしこれらの吸水
材料も高分子電解質であるため、塩類溶液での性
能が著しく低下すると云う問題が有り、1日も早
く耐塩性に優れた吸水材料の出現が望まれてい
た。 そこで本発明者らはこの欠点を有しない耐塩性
及び吸水速度に優れたポリマーを得るべく鋭意研
究を行つた結果、親水性ポリマーに、そのポリマ
ーの含水物中の水分含量を特定範囲にコントロー
ルした状態で架橋剤を添加し、架橋せしめ得られ
るポリマーが吸水性、特に耐塩性及び吸水速度に
優れていることを見出し本発明を完成した。 即ち、本発明は水分含量が10〜40重量%となる
様に調整されたカルボキシル基(又はカルボキシ
レート基)を有する親水性ポリマーの含水物を、
カルボキシル基(又はカルボキシレート基)と反
応しうる2個以上の官能基を有する架橋剤で架橋
せしめることを特徴とする高吸水性ポリマーの製
造法を提供するものである。 従来吸水性ポリマーを得る方法としては水溶性
ポリマーをわずかに架橋し、水不溶性にするもの
が中心であり、その架橋方法としては (1) 製造条件の最適化により自己架橋を行なう。 (2) 架橋剤を重合時又は重合後に添加し架橋を行
なう。 が提案されている。この様にして得られた吸水性
ポリマーは優れた性質を示すものもあるが、要求
される全ての性能を満足するものではなかつた。
すなわち吸水性ポリマーの要求性能として(1)吸水
量、(2)吸水速度、(3)ゲル強度を挙げる事が出来る
がこれらの性能の間には吸水速度 吸水速度という関係が一般に認められており、従
来の吸水性ポリマーはこれらのバランスの上に成
立しているため、それぞれの性能が若干犠性にな
つた所で製造されていた。 本発明は、これらの欠点を改良し、高吸水性ポ
リマーに要求される諸性能を満足させる画期的な
吸水性ポリマーを製造する方法を提供するもので
ある。 本発明の目的を達成させる為の重要な点は、親
水性ポリマー中にカルボキシル基(又はカルボキ
シレート基)を有する事及び親水性ポリマーの含
水物中の水分含量が特定範囲の割合である事であ
る。 本発明に使用し得る親水性ポリマーとしてはそ
の構成単位にカルボキシル基(又はカルボキシレ
ート基)を有するものであれば重合体の種類及び
重合方法は問わない。本発明に好適に使用し得る
ものとしては、特公昭54−30710、特開昭56−
26909等に記載の逆相懸濁重合法によるポリアク
リル酸ソーダ、又特開昭55−133413等に記載の水
溶液重合(断熱重合、薄膜重合)により得られる
ポリアクリル酸ソーダ、特公昭53−46199等に記
載のデンプン―アクリル酸ソーダグラフト重合体
等を例示する事ができる。又これらの重合体を製
造するに際し極微量の架橋剤添加であれば本発明
の効果を妨げるものでない。更にこれらの重合体
が自己架橋されていることが望ましい。本発明で
は含水ポリマー中の水分含量をコントロールする
事を要件としているから通常ポリマーを合成後、
脱水工程を必要とする。このため作業性等から見
て逆相懸濁重合法で得られた重合体が望ましい。
その構成単位にカルボキシル基(又はカルボキシ
レート基)を有する重合体としては、一般にポリ
アクリル酸(及びその塩)、及びポリメタクリル
酸(及びその塩)を例示する事が出来、これらは
本発明の方法に好ましく使用し得る。又アクリル
酸又はメタクリル酸にマレイン酸、イタコン酸、
アクリルアミド、2―アクリルアミド―2―メチ
ルプロパンスルホン酸、2―(メタ)アクリロイ
ルエタンスルホン酸、2―ヒドロキシエチル(メ
タ)アクリレート等のコモノマーを吸水性ポリマ
ーの性能を低下させない範囲で共重合せしめた共
重合体も、又本発明の方法に使用し得る。 重合方法に逆相懸濁重合方法を採用する場合、
上記の公知文献に記載される如き常法に従い、過
硫酸塩等の水溶性開始剤を含有したカルボキシル
基(又はカルボキシレート基)を有する親水性モ
ノマーの水溶液を非水溶剤中で保護コロイドを用
いて逆相懸濁重合せしめる。その際使用される保
護コロイドとしてソルビタンモノステアレート、
ソルビタンモノラウレート等のソルビタン脂肪酸
エステル及びエチルセルロース、ベンジルセルロ
ース等のセルロースエーテル、セルロースアセテ
ート、セルロースブチレート、セルロースアセテ
ートブチレート等のセルロースエステル、マレイ
ン化ポリブタジエン、マレイン化ポリエチレン、
マレイン化α―オレフイン等の高分子分散剤を挙
げる事が出来、これらの1種又は2種以上いずれ
を用いても良い。得られるポリマーの粉塵対策の
面から考えると望ましくは大きい粒子径を与える
高分子分散剤である。又その時に用いる非水溶剤
としてヘキサン、ヘプタン、オクタン等の脂肪族
炭化水素、シクロヘキサン、メチルシクロヘキサ
ン、デカリン等の脂肪族炭化水素、ベンゼン、ト
ルエン、キシレン等の芳香族炭化水素、クロルベ
ンゼン、ブロムベンゼン、ジクロルベンゼン等の
ハロゲン化炭化水素を挙げる事が出来る。 本発明の方法に於て特に重要な要件は架橋剤を
添加し、架橋反応を行わしめる時の親水性ポリマ
ー含水物中の水分含量である。従来重合後に架橋
反応を行なわしめる吸水性ポリマーの製造法は公
知であり、例えば特開昭56−131608号公報にはポ
リアクリル酸塩を水と親水性有機溶剤との混合溶
媒中で架橋する方法が記載されており、特公昭57
−28505号公報にはポリアクリル酸(又はその塩)
を水の存在下で架橋する方法が記載されている。 しかしながら、これらの含水ポリマー中の水分
含量は50重量%以上、特に後者は水分含量が70重
量%以上であり、このような水分含量では本発明
の効果は達成されない。 通常、親水性ポリマーはモノマー濃度45重量%
以下、即ち水分含量55重量%以上の水溶液中で重
合して得られる。従つて、本発明の実施にあたつ
ては、通常の方法で得られた親水性ポリマー生成
物中の水分含量を調整する必要がある。 本発明によればこの水分含量は10〜40重量%
(対親水性ポリマー含水物の全量)の範囲にある
ことが必須の条件である。更に好ましくは、15〜
35重量%(対全量)である。親水性ポリマー中の
水分含量が上記範囲を外れた場合には、吸水量及
び/又は吸水速度が劣り、本発明の顕著な効果が
得られない。例えば本発明に於ては逆相懸濁重合
法で重合して得られるポリアクリル酸系ポリマー
を濃縮して上記の範囲の水分含量にコントロール
することにより所期の効果を達成し得る。 本発明に用いられる架橋剤は、カルボキシル基
(又はカルボキシレート基)と反応しうる官能基
を2個以上有する化合物であればいずれでもよ
い。かかる架橋剤としては、例えばエチレングリ
コールジグリシジルエーテル、ポリエチレングリ
コールグリシジルエーテル、グリセリントリグリ
シジルエーテル等のポリグリシジルエーテル、エ
ピクロルヒドリン、α―メチルクロルヒドリン等
のハロエポキシ化合物、グルタールアルデヒド、
グリオキザール等のポリアルデヒド、グリセリ
ン、ペンタエリスリトール、エチレングリコール
等のポリオール及びエチレンジアミン等のポリア
ミン類を挙げる事が出来る。望ましくはエチレン
グリコールジグリシジルエーテル等のポリグリシ
ジルエーテルである。 架橋剤の添加量は架橋剤の種類及び重合体の種
類に依つても異なるが通常、重合体に対して0.01
〜5.0重量%が適切な範囲である。架橋剤の添加
量が0.01重量%より少ない場合には添加効果が十
分発現せず、反対に5.0重量%よりも多い場合は
架橋密度が高くなり吸水量の低下をまねく結果と
なり、本発明の意図する所ではない。 架橋剤を添加し反応させる方法としては種々の
方法がある。すなわち、逆相懸濁重合法により得
られた重合体の場合は、有機溶剤中に水分含量が
本発明に規定した範囲に調整された親水性ポリマ
ーが懸濁した状態に於て架橋剤を加え、熱処理す
る方法が例示され、又薄膜重合法等による場合に
は生成ポリマーゲルを解砕後、乾燥工程により水
分含量を調整し、次でニーダ中にこのポリマーを
入れ、そこに架橋剤を加え熱処理し、架橋反応を
行なう方法を例示することが出来る。架橋反応を
円滑に行なうためには加熱する事が望ましく、
40゜〜150℃の範囲で反応させるのが好ましい。 本発明の方法を用いる事により耐塩性及び吸水
速度に優れた吸水材料を得ることが可能となり、
農業用保水剤及び衛生材料用吸水剤として使用す
るに非常に有利である。本発明の方法により得ら
れた高吸水性ポリマーは特に多量の尿をすみやか
に吸水しなくていけない紙おむつの分野及び血液
を吸収しなくてはいけない生理用ナプキンの分野
で有利に用いることができ、“もれ”や“不快感”
を残すことがなくなる事を可能とし得る。 以下実施例及び比較例によつて本発明を具体的
に説明するが、本発明はこれらの実施例に限定さ
れるものではない。 尚、以下の実施例及び比較例における吸水量と
は次の操作によつて求められる値である。即ちポ
リマー約1gを大過剰のイオン交換水又は生理食
塩水中に分散し、充分膨潤させ、ついで80メツシ
ユの金網で過し、得られた膨潤ポリマー重量
(W)を測定し、この値を初めのポリマー重量
(Wo)で割つて得られる値である。 つまり吸水量(g/g)=W/Woとした。又
吸水速度はポリマー0.5gが10分間に吸収した生
理食塩水の値でもつて表わした。 実施例 1〜3 撹拌機、還流冷却器、滴下斗及び窒素ガス導
入管を付した500mlの4つ口丸底フラスコにシク
ロヘキサン230ml、ソルビタンモノステアレート
1.8gを仕込み75℃まで昇温した。別に三角フラ
スコ中でアクリル酸30gを水39gに溶解した苛性
ソーダ13.4gで中和した。モノマー水溶液中のモ
ノマー濃度は45%(水分量55%)となつた。つい
で過硫酸カリウム0.1gを加えて溶解した。この
モノマー水溶液を上記の4つ口フラスコに窒素雰
囲気下に1.5時間かかつて滴下重合した後70゜〜75
℃で0.5時間保持し重合を完了させた。この後共
沸脱水(シクロヘキサンは還流)によりシクロヘ
キサン中に懸濁しているポリマー中の水分量を35
%、27%、20%にそれぞれコントロールした。こ
の後それぞれにエチレングリコールジグリシジル
エーテル0.03gを水1mlに溶解した水溶液を73℃
で添加し、この温度に2時間保持した後シクロヘ
キサンを除去し、ポリマーを80゜〜100℃で減圧下
に乾燥し吸水ポリマーを得た。 実施例 4 実施例1に準じて重合を行なつた。但しソルビ
タンモノステアレートの代わりにエチルセルロー
スT―50 0.5gを用いた。重合終了後共沸脱水に
よりポリマー中の水分量を22%にコントロールし
たのち、グリセリンジグリシジルエーテル0.04g
を水1mlに溶解した水溶液を73℃で添加し、この
温度に3時間保持した後、シクロヘキサンを除去
し、ポリマーを80゜〜100℃で減圧下に乾燥し吸水
ポリマーを得た。 実施例 5 実施例4に準じて重合を行なつた。但しモノマ
ー水溶液中のモノマー濃度を35%とし、更にN,
N―メチレンビスアクリルアミド0.003gを加え
た。重合後共沸脱水によりポリマー中の水分量を
27%にコントロールしたのち、ポリエチレングリ
コールジグリシジルエーテル(n=9)0.15gを
水1mlに溶解した水溶液を90℃で添加、この温度
に3時間保持した後シクロヘキサンを除去し、ポ
リマーを80゜〜110℃で減圧下に乾燥し、吸水ポリ
マーを得た。 実施例 6 アクリル酸30gを水39gに溶解した苛性ソーダ
13.4gで中和し、モノマー水溶液中のモノマー濃
度が45%となつた。ついて過硫酸ソーダ0.1gを
加えて溶解した。このモノマー水溶液を2枚のテ
フロン板の間に流し込み薄膜状にして65℃で3時
間保持し重合した。生成したポリマーゲルを3mm
片に切断した後、熱風乾燥機で水分含量が30%に
なるまで乾燥した。このものをニーダに入れ、エ
チレングリコールジグリシジルエーテル0.03gを
水1mlに溶解した水溶液を噴霧し、70℃で1時間
保持した後、70゜〜80℃で減圧下に乾燥し、生成
したポリマーを粉砕して中心粒径100〜250μmの
吸水ポリマーを得た。 比較例 1 実施例1に準じて重合を行なつた。但しエチレ
ングリコールジグリシジルエーテル0.03gをモノ
マー水溶液に添加し、重合と同時に架橋を行なつ
た。重合終了後シクロヘキサンを除去し、ポリマ
ーを80゜〜100℃で減圧下に乾燥し吸水ポリマーを
得た。 比較例 2 実施例1に準じて重合を行なつた。但しエチレ
ングリコールジグリシジルエーテル0.03gを水1
mlに溶解した水溶液を重合終了後(含水ポリマー
の水分含量55%)に添加し、73℃で1時間保持し
た。架橋反応終了後シクロヘキサンを除去し、ポ
リマーを80゜〜100℃で減圧下に乾燥し吸水ポリマ
ーを得た。 比較例 3 実施例1に準じて重合を行なつた。但しエチレ
ングリコールジグリシジルエーテル0.03gを水1
mlに溶解した水溶液を、共沸脱水によりポリマー
中の水分含量45%にコントロールした時点で添加
し、60℃で2時間保持した。架橋反応終了後シク
ロヘキサンを除去し、ポリマーを80゜〜100℃で減
圧下に乾燥し吸水ポリマーを得た。 比較例 4 実施例1に準じて重合を行なつた後、シクロヘ
キサンを除去し、70゜〜80℃で減圧下に乾燥した。
このポリマーの水分量は7%であつた。このポリ
マーを再度シクロヘキサンに分散・懸濁した状態
でエチレングリコールジグリシジルエーテル0.03
gを水1mlに溶解した水溶液を添加し、70℃で1
時間保持した。その後シクロヘキサンを除去し、
ポリマーを80゜〜100℃で減圧乾燥し吸水ポリマー
を得た。実施例1〜6及び比較例1〜4で得られ
た各吸水ポリマーの粒径、吸水量及び吸水速度を
表―1に示した。
The present invention relates to a method for producing superabsorbent polymers. More specifically, the present invention relates to a method for producing a water-absorbing material with excellent salt resistance and water absorption rate. Conventionally, various water-absorbing materials such as paper and pulp have been used in the field of sanitary materials (sanitary napkins, disposable diapers) and in the agricultural field, but these water-absorbing materials have low water-absorbing ability, and moreover, once absorbed water If pressure is applied, a large portion of it will be squeezed out. In recent years, water-absorbing materials such as hydrolysates of starch-acrylonitrile graft polymers, modified cellulose ethers, and hydrolysates of methyl acrylate/vinyl acetate copolymers have been proposed as alternatives to these materials, and further improvements have been made. ing.
However, these materials cannot be said to exhibit excellent water absorption ability and water absorption rate, and a satisfactory water absorption material has not been obtained. The present inventors have already proposed a water-absorbing material with excellent water-absorbing performance (Japanese Patent Publication No. 54-30710), and have also proposed further improved water-absorbing materials (Japanese Patent Application No. 56-30710).
43488, patent application No. 56-43489). However, since these water-absorbing materials are also polymer electrolytes, there is a problem in that their performance in salt solutions is significantly reduced, and it has been desired to develop water-absorbing materials with excellent salt resistance as soon as possible. Therefore, the present inventors conducted intensive research in order to obtain a polymer with excellent salt resistance and water absorption rate that does not have these drawbacks.As a result, the present inventors made a hydrophilic polymer and controlled the water content in the hydrous material of the polymer within a specific range. The present invention was completed based on the discovery that the polymer obtained by adding a crosslinking agent in this state is excellent in water absorption, particularly in salt resistance and water absorption rate. That is, the present invention uses a hydrophilic polymer having a carboxyl group (or carboxylate group) whose water content is adjusted to be 10 to 40% by weight.
The present invention provides a method for producing a superabsorbent polymer, which is characterized by crosslinking with a crosslinking agent having two or more functional groups capable of reacting with carboxyl groups (or carboxylate groups). Conventionally, the main method for obtaining water-absorbing polymers is to slightly crosslink a water-soluble polymer to make it water-insoluble.The crosslinking methods include (1) self-crosslinking by optimizing manufacturing conditions; (2) Crosslinking is carried out by adding a crosslinking agent during or after polymerization. is proposed. Although some of the water-absorbing polymers obtained in this manner exhibit excellent properties, they do not satisfy all required performances.
In other words, the required performances of water-absorbing polymers include (1) water absorption amount, (2) water absorption rate, and (3) gel strength. It is generally accepted that there is a relationship between water absorption rates, and conventional water-absorbing polymers have been established on the balance between these two properties, so they have been manufactured at the expense of some performance. The present invention aims to improve these drawbacks and provide a method for producing an innovative water-absorbing polymer that satisfies various performances required of super-absorbent polymers. The important points for achieving the purpose of the present invention are that the hydrophilic polymer has a carboxyl group (or carboxylate group) and that the water content of the hydrophilic polymer is within a specific range. be. The hydrophilic polymer that can be used in the present invention is not limited to any type and polymerization method as long as it has a carboxyl group (or carboxylate group) in its constituent unit. Examples of materials that can be suitably used in the present invention include Japanese Patent Publication No. 54-30710 and Japanese Patent Publication No. 56-30710.
Sodium polyacrylate obtained by the reverse-phase suspension polymerization method described in JP-A No. 55-133413, etc., and sodium polyacrylate obtained by aqueous solution polymerization (adiabatic polymerization, thin film polymerization) described in JP-A No. 55-133413, etc., Patent Publication No. 53-46199. Examples include the starch-sodium acrylate graft polymer described in . Further, when producing these polymers, the effects of the present invention are not hindered as long as a very small amount of crosslinking agent is added. Furthermore, it is desirable that these polymers be self-crosslinked. Since the present invention requires controlling the water content in the water-containing polymer, usually after synthesizing the polymer,
Requires dehydration process. Therefore, from the viewpoint of workability and the like, it is desirable to use a polymer obtained by a reversed-phase suspension polymerization method.
Examples of polymers having carboxyl groups (or carboxylate groups) in their constituent units include polyacrylic acid (and its salts) and polymethacrylic acid (and its salts), which are used in the present invention. It can be preferably used in the method. Also, maleic acid, itaconic acid, acrylic acid or methacrylic acid,
Copolymerized comonomers such as acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, 2-(meth)acryloylethanesulfonic acid, and 2-hydroxyethyl(meth)acrylate within a range that does not reduce the performance of the water-absorbing polymer. Polymers may also be used in the method of the invention. When adopting the reverse phase suspension polymerization method as the polymerization method,
According to the conventional method described in the above-mentioned known literature, an aqueous solution of a hydrophilic monomer having a carboxyl group (or carboxylate group) containing a water-soluble initiator such as a persulfate is prepared in a non-aqueous solvent using a protective colloid. and perform reverse phase suspension polymerization. Sorbitan monostearate is used as a protective colloid.
Sorbitan fatty acid esters such as sorbitan monolaurate, cellulose ethers such as ethyl cellulose and benzyl cellulose, cellulose esters such as cellulose acetate, cellulose butyrate, and cellulose acetate butyrate, maleated polybutadiene, maleated polyethylene,
Examples include polymeric dispersants such as maleated α-olefin, and either one or two or more of these may be used. From the viewpoint of dust control of the resulting polymer, a polymer dispersant that provides a large particle size is desirable. In addition, non-aqueous solvents used at that time include aliphatic hydrocarbons such as hexane, heptane, and octane, aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, and decalin, aromatic hydrocarbons such as benzene, toluene, and xylene, chlorobenzene, and bromobenzene. , dichlorobenzene and other halogenated hydrocarbons. A particularly important requirement in the method of the present invention is the water content in the hydrophilic polymer hydrate when the crosslinking agent is added and the crosslinking reaction is carried out. Conventionally, methods for producing water-absorbing polymers in which a crosslinking reaction is performed after polymerization are known. For example, Japanese Patent Application Laid-Open No. 131608/1983 describes a method in which polyacrylates are crosslinked in a mixed solvent of water and a hydrophilic organic solvent. is written, and was published in 1987.
-28505 publication describes polyacrylic acid (or its salt)
A method for crosslinking in the presence of water is described. However, these water-containing polymers have a water content of 50% by weight or more, especially the latter have a water content of 70% by weight or more, and the effects of the present invention cannot be achieved with such a water content. Typically, hydrophilic polymers have a monomer concentration of 45% by weight
It is obtained by polymerization in an aqueous solution having a water content of 55% by weight or more. Therefore, in practicing the present invention, it is necessary to control the water content in the hydrophilic polymer product obtained by conventional methods. According to the invention, this water content is between 10 and 40% by weight.
(total amount of hydrophilic polymer hydrates) is an essential condition. More preferably, 15 to
It is 35% by weight (based on the total amount). If the water content in the hydrophilic polymer is outside the above range, the water absorption amount and/or water absorption rate will be poor, and the remarkable effects of the present invention will not be obtained. For example, in the present invention, the desired effect can be achieved by concentrating the polyacrylic acid polymer obtained by polymerization using a reversed-phase suspension polymerization method and controlling the water content within the above range. The crosslinking agent used in the present invention may be any compound having two or more functional groups capable of reacting with a carboxyl group (or carboxylate group). Examples of such crosslinking agents include polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol glycidyl ether, and glycerin triglycidyl ether, haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin, glutaraldehyde,
Examples include polyaldehydes such as glyoxal, polyols such as glycerin, pentaerythritol, and ethylene glycol, and polyamines such as ethylenediamine. Preferably, it is a polyglycidyl ether such as ethylene glycol diglycidyl ether. The amount of crosslinking agent added varies depending on the type of crosslinking agent and the type of polymer, but it is usually 0.01% per polymer.
~5.0% by weight is a suitable range. If the amount of the crosslinking agent added is less than 0.01% by weight, the effect of the addition will not be sufficiently expressed, and on the other hand, if it is more than 5.0% by weight, the crosslinking density will increase, resulting in a decrease in water absorption, which does not meet the intent of the present invention. It's not the place to do it. There are various methods for adding and reacting a crosslinking agent. In other words, in the case of a polymer obtained by reverse-phase suspension polymerization, a crosslinking agent is added to a hydrophilic polymer whose water content is adjusted to the range specified in the present invention in an organic solvent. In the case of thin film polymerization, etc., the resulting polymer gel is crushed, the moisture content is adjusted by a drying process, and then the polymer is placed in a kneader and a crosslinking agent is added thereto. An example of a method is to perform a heat treatment and perform a crosslinking reaction. In order to carry out the crosslinking reaction smoothly, it is desirable to heat it.
It is preferable to carry out the reaction at a temperature in the range of 40° to 150°C. By using the method of the present invention, it is possible to obtain a water-absorbing material with excellent salt resistance and water absorption rate,
It is very advantageous for use as a water retaining agent for agriculture and a water absorbing agent for sanitary materials. The superabsorbent polymer obtained by the method of the present invention can be advantageously used particularly in the field of disposable diapers that must quickly absorb a large amount of urine and the field of sanitary napkins that must absorb blood. “Leak” and “discomfort”
It may be possible to eliminate the need to leave behind. The present invention will be specifically explained below using Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, the water absorption amount in the following examples and comparative examples is a value obtained by the following operation. That is, approximately 1 g of polymer is dispersed in a large excess of ion-exchanged water or physiological saline, allowed to swell sufficiently, and then passed through an 80-mesh wire gauze, the resulting swollen polymer weight (W) is measured, and this value is calculated from the initial This is the value obtained by dividing by the weight of the polymer (Wo). In other words, water absorption amount (g/g) = W/Wo. The water absorption rate was also expressed as the amount of physiological saline absorbed by 0.5 g of polymer in 10 minutes. Examples 1 to 3 230 ml of cyclohexane and sorbitan monostearate were placed in a 500 ml four-neck round bottom flask equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube.
1.8g was added and the temperature was raised to 75°C. Separately, in an Erlenmeyer flask, 30 g of acrylic acid was neutralized with 13.4 g of caustic soda dissolved in 39 g of water. The monomer concentration in the monomer aqueous solution was 45% (water content 55%). Then, 0.1 g of potassium persulfate was added and dissolved. This monomer aqueous solution was dropped into the above four-necked flask under a nitrogen atmosphere for 1.5 hours, and then polymerized at 70° to 75°C.
The polymerization was completed by holding at ℃ for 0.5 hours. After this, the water content in the polymer suspended in cyclohexane was reduced to 35% by azeotropic dehydration (cyclohexane was refluxed).
%, 27%, and 20%, respectively. After this, an aqueous solution of 0.03 g of ethylene glycol diglycidyl ether dissolved in 1 ml of water was added to each at 73°C.
After maintaining this temperature for 2 hours, the cyclohexane was removed, and the polymer was dried under reduced pressure at 80° to 100°C to obtain a water-absorbing polymer. Example 4 Polymerization was carried out according to Example 1. However, 0.5 g of ethyl cellulose T-50 was used instead of sorbitan monostearate. After polymerization, the water content in the polymer was controlled to 22% by azeotropic dehydration, and 0.04g of glycerin diglycidyl ether was added.
An aqueous solution of 1 ml of water was added at 73 DEG C., and after maintaining this temperature for 3 hours, cyclohexane was removed and the polymer was dried under reduced pressure at 80 DEG -100 DEG C. to obtain a water-absorbing polymer. Example 5 Polymerization was carried out according to Example 4. However, the monomer concentration in the monomer aqueous solution is 35%, and N,
0.003 g of N-methylenebisacrylamide was added. After polymerization, the water content in the polymer is reduced by azeotropic dehydration.
After controlling the concentration to 27%, an aqueous solution of 0.15 g of polyethylene glycol diglycidyl ether (n=9) dissolved in 1 ml of water was added at 90°C, and after keeping at this temperature for 3 hours, the cyclohexane was removed and the polymer was heated to 80°C. It was dried at 110°C under reduced pressure to obtain a water-absorbing polymer. Example 6 Caustic soda with 30 g of acrylic acid dissolved in 39 g of water
It was neutralized with 13.4 g, and the monomer concentration in the monomer aqueous solution became 45%. Then, 0.1 g of sodium persulfate was added and dissolved. This monomer aqueous solution was poured between two Teflon plates to form a thin film, and was held at 65°C for 3 hours to polymerize. 3mm of the generated polymer gel
After cutting into pieces, they were dried in a hot air dryer until the moisture content was 30%. This material was placed in a kneader, and an aqueous solution of 0.03 g of ethylene glycol diglycidyl ether dissolved in 1 ml of water was sprayed on it, and after being held at 70°C for 1 hour, it was dried under reduced pressure at 70° to 80°C to remove the resulting polymer. It was pulverized to obtain a water-absorbing polymer with a center particle diameter of 100 to 250 μm. Comparative Example 1 Polymerization was carried out according to Example 1. However, 0.03 g of ethylene glycol diglycidyl ether was added to the aqueous monomer solution to effect crosslinking simultaneously with polymerization. After the polymerization was completed, cyclohexane was removed, and the polymer was dried under reduced pressure at 80° to 100°C to obtain a water-absorbing polymer. Comparative Example 2 Polymerization was carried out according to Example 1. However, 0.03g of ethylene glycol diglycidyl ether is added to 1 part of water.
ml of the aqueous solution was added after the polymerization was completed (water content of the hydrous polymer was 55%) and maintained at 73°C for 1 hour. After the crosslinking reaction was completed, cyclohexane was removed, and the polymer was dried under reduced pressure at 80° to 100°C to obtain a water-absorbing polymer. Comparative Example 3 Polymerization was carried out according to Example 1. However, 0.03g of ethylene glycol diglycidyl ether is added to 1 part of water.
ml of the aqueous solution was added when the water content in the polymer was controlled to 45% by azeotropic dehydration, and maintained at 60°C for 2 hours. After the crosslinking reaction was completed, cyclohexane was removed, and the polymer was dried under reduced pressure at 80° to 100°C to obtain a water-absorbing polymer. Comparative Example 4 After polymerization was carried out according to Example 1, cyclohexane was removed and the mixture was dried under reduced pressure at 70° to 80°C.
The moisture content of this polymer was 7%. This polymer was again dispersed and suspended in cyclohexane and 0.03% of ethylene glycol diglycidyl ether was added.
Add an aqueous solution of 1 ml of water and stir at 70°C.
Holds time. Then remove the cyclohexane,
The polymer was dried under reduced pressure at 80° to 100°C to obtain a water-absorbing polymer. Table 1 shows the particle size, water absorption amount, and water absorption rate of each water-absorbing polymer obtained in Examples 1 to 6 and Comparative Examples 1 to 4.

【表】【table】

【表】 表―1から本発明により得られたポリマーがい
かに耐塩性及び吸水速度に優れた吸収性能を示す
かが明らかである。
[Table] It is clear from Table 1 how the polymer obtained by the present invention exhibits excellent absorption performance in salt resistance and water absorption rate.

Claims (1)

【特許請求の範囲】 1 水分含量が10〜40重量%となる様に調整され
たカルボキシル基(又はカルボキシレート基)を
有する親水性ポリマーの含水物を、カルボキシル
基(又はカルボキシレート基)と反応しうる2個
以上の官能基を有する架橋剤で架橋せしめること
を特徴とする高吸水性ポリマーの製造法。 2 親水性ポリマーが、水溶性開始剤を含有した
カルボキシル基(又はカルボキシレート基)を有
する親水性モノマー水溶液の逆相懸濁重合により
得られる親水性ポリマーである特許請求の範囲第
1項記載の高吸水性ポリマーの製造法。 3 カルボキシル基(又はカルボキシレート基)
を有する親水性ポリマーがアクリル酸(又はアク
リル酸アルカリ塩)の重合体又は共重合体である
特許請求の範囲第1項又は第2項記載の高吸水性
ポリマーの製造法。 4 架橋剤がポリグリシジルエーテルである特許
請求の範囲第1項、第2項又は第3項記載の高吸
水性ポリマーの製造法。 5 親水性ポリマーが水溶性開始剤を含有したカ
ルボキシル基(又はカルボキシレート基)を有す
る親水性モノマー水溶液を保護コロイドである高
分子分散剤の存在下、非水溶媒中に分散、懸濁さ
せて重合することにより得られる親水性ポリマー
である特許請求の範囲第1項記載の高吸水性ポリ
マーの製造法。
[Scope of Claims] 1. A hydrophilic polymer having a carboxyl group (or carboxylate group) whose water content is adjusted to be 10 to 40% by weight is reacted with a carboxyl group (or carboxylate group). 1. A method for producing a superabsorbent polymer, which comprises crosslinking with a crosslinking agent having two or more functional groups that can bind to water. 2. The hydrophilic polymer according to claim 1, wherein the hydrophilic polymer is a hydrophilic polymer obtained by reverse-phase suspension polymerization of an aqueous solution of a hydrophilic monomer having a carboxyl group (or carboxylate group) containing a water-soluble initiator. A method for producing superabsorbent polymers. 3 Carboxyl group (or carboxylate group)
3. The method for producing a superabsorbent polymer according to claim 1 or 2, wherein the hydrophilic polymer having the following is a polymer or copolymer of acrylic acid (or an alkali salt of acrylic acid). 4. The method for producing a superabsorbent polymer according to claim 1, 2, or 3, wherein the crosslinking agent is polyglycidyl ether. 5 A hydrophilic monomer aqueous solution in which the hydrophilic polymer has a carboxyl group (or carboxylate group) containing a water-soluble initiator is dispersed and suspended in a non-aqueous solvent in the presence of a polymeric dispersant that is a protective colloid. The method for producing a superabsorbent polymer according to claim 1, which is a hydrophilic polymer obtained by polymerization.
JP57153097A 1982-09-02 1982-09-02 Preparation of polymer having high water-absorption Granted JPS5962665A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57153097A JPS5962665A (en) 1982-09-02 1982-09-02 Preparation of polymer having high water-absorption
GB08322850A GB2126591B (en) 1982-09-02 1983-08-25 Process for producing highly water absorptive polymer
US06/527,134 US4497930A (en) 1982-09-02 1983-08-26 Process for producing highly water absorptive polymer
ES525269A ES8602064A1 (en) 1982-09-02 1983-08-31 Process for producing highly water absorptive polymer
DE19833331644 DE3331644A1 (en) 1982-09-02 1983-09-02 METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153097A JPS5962665A (en) 1982-09-02 1982-09-02 Preparation of polymer having high water-absorption

Publications (2)

Publication Number Publication Date
JPS5962665A JPS5962665A (en) 1984-04-10
JPS634843B2 true JPS634843B2 (en) 1988-02-01

Family

ID=15554903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153097A Granted JPS5962665A (en) 1982-09-02 1982-09-02 Preparation of polymer having high water-absorption

Country Status (1)

Country Link
JP (1) JPS5962665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114442U (en) * 1988-01-29 1989-08-01

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189103A (en) * 1983-04-11 1984-10-26 Nippon Shokubai Kagaku Kogyo Co Ltd Water-absorbing agent
JPS612853A (en) * 1984-06-15 1986-01-08 花王株式会社 Absorbable article
JPS6116903A (en) * 1984-07-02 1986-01-24 Nippon Shokubai Kagaku Kogyo Co Ltd Water-absorbent
JP2509087B2 (en) * 1984-08-11 1996-06-19 三洋化成工業株式会社 Water absorbent resin, manufacturing method and water absorbent, water retention agent
JPS61257235A (en) * 1985-05-08 1986-11-14 Sanyo Chem Ind Ltd Water absorbent resin composition, its preparation and water absorbent-water retention agent
US4654039A (en) * 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
JP2506271B2 (en) * 1985-06-28 1996-06-12 キャメロット エス エイ インコーポレーテッド Water-absorbent polymer composition and article of manufacture thereof
JPH0788410B2 (en) * 1986-09-01 1995-09-27 ライオン株式会社 Method for producing surface-crosslinked porous polymer
US4731067A (en) * 1986-10-06 1988-03-15 Arco Chemical Company Extended shelf life water-absorbing composition which facilitates fiber formation
JP2572982B2 (en) * 1987-03-31 1997-01-16 日東電工株式会社 Acrylic water absorbing agent and method for producing the same
US5140076A (en) * 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
CA2086031A1 (en) * 1992-01-28 1993-07-29 Shigeki Ueda Process for producing improved water absorbing resin and resin made by the same
JPH0737494B2 (en) * 1993-07-13 1995-04-26 三洋化成工業株式会社 Water absorbent resin manufacturing method
JP3425594B2 (en) 1995-09-05 2003-07-14 有限会社 向山蘭園 Support for plant cultivation and method for growing plant
IL128299A (en) 1996-08-01 2006-06-11 Mebiol Inc Water-retaining carrier for plant
US6107358A (en) * 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
EP1145621B8 (en) 1998-11-06 2008-10-15 Mebiol Inc. Water-holding carriers for plants and water-holding materials for growing plants
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
TWI344469B (en) * 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
TWI394789B (en) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
CN102548654A (en) 2009-09-29 2012-07-04 株式会社日本触媒 Particulate water absorbent and process for production thereof
CN102648218B (en) * 2009-11-27 2013-12-11 住友精化株式会社 Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507842A (en) * 1972-11-06 1975-01-27
JPS51136588A (en) * 1975-05-09 1976-11-26 Nat Starch Chem Corp Surface treatment for dispersion improvement of hygroscopic composites
JPS5346200A (en) * 1976-10-08 1978-04-25 Bucalo Louis Method and device for controlling number of spermatozoons
JPS5684632A (en) * 1979-12-11 1981-07-10 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbent
JPS56131608A (en) * 1980-03-19 1981-10-15 Seitetsu Kagaku Co Ltd Production of acrylic acid polymer having excellent absorptive capacity for saline water
JPS5744627A (en) * 1980-08-29 1982-03-13 Seitetsu Kagaku Co Ltd Improvement of water absorption of water-absorbing polymer of acrylic acid salt
JPS5842602A (en) * 1981-09-07 1983-03-12 Sanyo Chem Ind Ltd Production of water-absorbing resin
JPS58117222A (en) * 1981-12-30 1983-07-12 Seitetsu Kagaku Co Ltd Improvement in water absorptivity of water-absorbing resin
JPS6018690A (en) * 1984-06-08 1985-01-30 松下電器産業株式会社 Piping joint

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507842A (en) * 1972-11-06 1975-01-27
JPS51136588A (en) * 1975-05-09 1976-11-26 Nat Starch Chem Corp Surface treatment for dispersion improvement of hygroscopic composites
JPS5346200A (en) * 1976-10-08 1978-04-25 Bucalo Louis Method and device for controlling number of spermatozoons
JPS5684632A (en) * 1979-12-11 1981-07-10 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbent
JPS56131608A (en) * 1980-03-19 1981-10-15 Seitetsu Kagaku Co Ltd Production of acrylic acid polymer having excellent absorptive capacity for saline water
JPS5744627A (en) * 1980-08-29 1982-03-13 Seitetsu Kagaku Co Ltd Improvement of water absorption of water-absorbing polymer of acrylic acid salt
JPS5842602A (en) * 1981-09-07 1983-03-12 Sanyo Chem Ind Ltd Production of water-absorbing resin
JPS58117222A (en) * 1981-12-30 1983-07-12 Seitetsu Kagaku Co Ltd Improvement in water absorptivity of water-absorbing resin
JPS6018690A (en) * 1984-06-08 1985-01-30 松下電器産業株式会社 Piping joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114442U (en) * 1988-01-29 1989-08-01

Also Published As

Publication number Publication date
JPS5962665A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
JPS634843B2 (en)
US4497930A (en) Process for producing highly water absorptive polymer
US4666975A (en) Absorptive material
JPH078882B2 (en) Manufacturing method of highly water-absorbent resin with excellent durability
JPH09502221A (en) Aqueous liquid-absorbent powdery polymer, its production method and use as absorbent material
JPH05170848A (en) Preparation of water-absorbent resin
JPH0733418B2 (en) Method for producing superabsorbent polymer
JPH0117482B2 (en)
KR20140147124A (en) Water-absorbing resin suitable for use in sanitary products
JPH0625209B2 (en) Water absorbent resin and method for producing the same
EP0429608A1 (en) Processes for producing highly water absorptive resins.
JP3118779B2 (en) Method for producing improved superabsorbent resin
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JPH0639487B2 (en) Super absorbent resin manufacturing method
JPH0374241B2 (en)
JPH04227705A (en) Production of salt-resistant water absorbing resin
JP2848882B2 (en) Manufacturing method of super absorbent resin
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JPS634845B2 (en)
JP4815710B2 (en) Water-absorbing material and blood-absorbing article using the same
JP2901480B2 (en) Water-absorbing resin and method for producing the same
JPS634844B2 (en)
JPS6036516A (en) Manufacture of highly functional water-absorptive resin
JPH0563490B2 (en)
JPH062769B2 (en) Method for producing super absorbent polymer with excellent salt resistance