JPH0248292B2 - - Google Patents

Info

Publication number
JPH0248292B2
JPH0248292B2 JP57147583A JP14758382A JPH0248292B2 JP H0248292 B2 JPH0248292 B2 JP H0248292B2 JP 57147583 A JP57147583 A JP 57147583A JP 14758382 A JP14758382 A JP 14758382A JP H0248292 B2 JPH0248292 B2 JP H0248292B2
Authority
JP
Japan
Prior art keywords
water
carbon black
activated carbon
retention agent
water retention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57147583A
Other languages
Japanese (ja)
Other versions
JPS5938271A (en
Inventor
Tsuneo Tsubakimoto
Tadao Shimomura
Yoshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP57147583A priority Critical patent/JPS5938271A/en
Publication of JPS5938271A publication Critical patent/JPS5938271A/en
Publication of JPH0248292B2 publication Critical patent/JPH0248292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Sealing Material Composition (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐久性及び耐光性に優れた保水剤に
関するものである。詳しくは、カーボンブラツク
及び/又は活性炭を含有する吸水性樹脂からな
り、吸水状態での耐久性および耐光性に優れた保
水剤に関するものである。 近年、自重の数十〜数百倍もの水を吸収する吸
水性樹脂が開発され、生理用品、使いすて紙おむ
つ等の吸収剤として、あるいは農園芸用の保水
剤、汚泥の凝固剤、建材の結露防止剤、乾燥剤な
どとして用途開発が進められている。 この様な吸水性樹脂としては、たとえば、デン
プン―アクリロニトリルグラフト重合体の加水分
解物、デンプン―アクリル酸グラフト重合体の中
和物、酢酸ビニル―アクリル酸エステル共重合体
のケン化物、アクリロニトリル共重合体もしくは
アクリルアミド共重合体の加水分解物、またはこ
れらの架橋体、逆相懸濁重合によつて得られた自
己架橋型ポリアクリル酸ナトリウム、ポリアクリ
ル酸部分中和物架橋体等が知られている。 ところが、これら従来の吸水性樹脂はいずれも
乾燥状態での安定性は大きいが、吸水状態での安
定性にとぼしいのが欠点である。たとえば吸水性
樹脂に数百倍の水を吸収させたゲル状物を室内で
長期間放置すると、次第にゲル状物が可溶化して
ついには完全に水溶液となる事がある。また、吸
水したゲル状物を日光に曝すとわずか数時間のう
ちに可溶化してゲル状物がなくなつてしまう事も
ある。こうした吸水性樹脂をたとえば園芸用保水
剤として用いた場合、土壌と吸水性樹脂とを混合
して鉢に入れて植物を植え、潅水すると吸水ゲル
は土に比べて比重が小さいため土表面に出やす
く、そのために日光に曝されて可溶性物になつて
保水能力を失なつてしまう。土壌中にある吸水ゲ
ルは、比較的長期間保水能力を発揮するが、それ
でも長年月を経ると次第に可溶化して保水能力を
失なう傾向が見られる。建材の結露防止剤等とし
て用いた場合も、長年月の耐久性が要求されてい
る。 この様に、吸水状態での安定性を要求される用
途には従来の吸水性樹脂では満足できないのが現
状である。 本発明者らは、従来知られている吸水性樹脂の
有している上記の如き問題点を解決すべく鋭意研
究を重ねた結果、本発明を完成するに至つた。 従つて、本発明の目的は、吸水状態においても
耐久性のある、すなわち、吸水状態でも経時安定
性、耐光性のよい保水剤を提供することにある。 本発明の保水剤は、カーボンブラツク及び/又
は活性炭を含有する吸水性樹脂からなるものであ
る。 本発明で使用する吸水性樹脂としては、従来公
知の水不溶性の吸水性樹脂を用いることができ
る。そして、本発明で吸水性樹脂がカーボンブラ
ツク及び/又は活性炭を含有する状態としては、
例えば、吸水性樹脂粒子内部にカーボンブラツク
及び/又は活性炭粉末が均一に分散した状態、カ
ーボンブラツク及び/又は活性炭粉末を吸水性樹
脂でコーテイングしたもの、あるいはカーボンブ
ラツク及び/又は活性炭粉末に吸水性樹脂を含浸
した状態等が挙げられる。単なる吸水性樹脂粉末
とカーボンブラツク及び/又は活性炭との混合物
では耐久性・耐熱性に劣り、本発明の目的は達成
できない。 この様な本発明の保水剤の製法としては、例え
ばカーボンブラツク及び/又は活性炭の存在下で
架橋性単量体とアクリル酸塩系単量体とを重合す
る方法;架橋性単量体とアクリル酸塩系単量体と
を水溶液重合して含水ゲルとし、これにカーボン
ブラツク及び/又は活性炭を機械的に混練し、そ
の後乾燥する方法;直鎖状水溶性重合体にカーボ
ンブラツク及び/又は活性炭を混合した後、架橋
剤を混合し、反応させて保水剤を得る方法;粉末
状の吸水性樹脂カーボンブラツク及び/又は活性
炭を混合後、水又はバインダーを添加し、強固に
混練してカーボンブラツク及び/又は活性炭に吸
水性樹脂をコーテイングあるいは含浸させる方法
等を挙げることができる。 尚、これらの方法において、カーボンブラツク
及び/又は活性炭を添加するときに界面活性剤を
共存させると、カーボンブラツク及び/又は活性
炭と吸水性樹脂との親和性が向上して好ましいこ
とがある。 本発明の保水剤の製法を、更に具体的に次の第
〜項に示すが、勿論本発明がこれらの例に限
定されるものではない。 (A) 架橋性単量体 (B) アクリル酸及び/又はアクリル酸水溶性塩 (C) カーボンブラツク及び/又は活性炭 および (D) 水 からなる水分散液をラジカル重合開始剤の存在下
で重合して得られる保水剤。 脂環族及び/又は脂肪族炭化水素溶媒中に、
カーボンブラツク及び/又は活性炭、水溶性ラ
ジカル重合開始剤並びに必要により架橋性単量
体を含有するアクリル酸及び/又はアクリル酸
水溶性塩の水溶液をHLB3〜12の界面活性剤の
存在下に分散懸濁重合させて得られる保水剤。 カーボンブラツク及び/又は活性炭の存在下
に、ビニルエステルとエチレン系不飽和カルボ
ン酸及び/又はその誘導体との共重合を行な
い、その後、ケン化して得られる保水剤。 カーボンブラツク及び/又は活性炭の存在
下、デンプン及び/又はセルロース、カルボキ
シル基を有するか又は加水分解によりカルボキ
シル基を生成する単量体、並びに必要により架
橋性単量体を、水性媒体中で重合させ、必要に
よりさらに加水分解を行うことにより得られる
保水剤。 α―オレフインおよびビニル化合物からなる
群より選ばれた少なくとも1種以上の単量体と
無水マレイン酸とからなる無水マレイン酸系共
重合体にアルカリ性物質を反応させたものにカ
ーボンブラツク及び/又は活性炭を混合し、さ
らに必要により得られた混合物に多価エポキシ
化合物を反応させて得られる保水剤。 本発明の保水剤は、水での吸水倍率が10倍以上
である事が好ましい。吸水倍率が10倍以下である
と、たとえば農園芸用保水剤として用いた場合
に、効果を発揮するためには多量の保水剤を用い
る事が必要になり、経済的に好ましくない。 本発明で用いるカーボンブラツクまたは活性炭
は、通常市販のもので粉末又は粒状のものを使用
できるが、粒径の小さいものが好ましい。カーボ
ンブラツクまたは活性炭の含有量は、乾燥された
状態で保水剤に対して0.01〜70重量%である事が
好ましい。カーボンブラツク及び/又は活性炭の
含有量が0.01重量%未満では耐久性、耐光性に劣
り、70重量%を越えると吸水倍率が小さくなり、
ともに好ましくない。カーボンブラツクと活性炭
は、夫々単独で使用してもよく、併用してもよ
い。また、カーボンブラツクや活性炭以外の無機
充填剤を併用してもよい。 この様にして得られた本発明の保水剤は、従来
公知の吸水性樹脂に比較して吸水状態での耐久性
及び耐光性に優れたものである。 本発明の保水剤は、吸水性樹脂がカーボンブラ
ツク及び/又は活性炭の粒子を包みこんでいるた
め、保水剤が吸水して膨潤しても膨潤含水ゲル内
にカーボンブラツクや活性炭が存在する。このた
め、膨潤含水ゲルに潅水したり降雨があつても、
カーボンブラツクや活性炭が流れ去つたり分離す
る事がなく、そのため耐光性と耐久性が長期間持
続するものと思われる。一方、吸水性樹脂とカー
ボンブラツクや活性炭との単なる混合物ではこの
様な効果は期待できない。 本発明の保水剤は、農園芸用保水剤、建材の結
露防止剤、芳香剤ゲルの保水剤、保温・保冷材、
土木・建築用止水剤、重金属の吸着剤、有機溶剤
の脱水剤、生理用品、薬剤のコントロールリリー
ス化剤、脱臭剤等として広い用途に用いることが
出来る。 以下、実施例により本発明を詳細に説明する
が、本発明の範囲がこれらの実施例にのみ限定さ
れるものではない。なお、例中、特にことわりの
ない限り%は重量%を、部は重量部をそれぞれ示
すものとする。 実施例 1 全容量2.5の双腕型ニーダーに37%アクリル
酸ナトリウム水溶液956g、80%アクリル酸水溶
液113g、メチレンビスアクリルアミド0.8g及び
カーボンブラツク(コロンビアンカーボン社「ネ
オスペクトラマーク」)9gを投入した。撹拌
の回転数約50r.p.m.で窒素雰囲気下で40℃に加熱
し、10%過硫酸アンモニウム水溶液50g及び10%
亜硫酸水素ナトリウム水溶液20gを添加して重合
させた。重合開始とともに発熱し、開始して約10
分後に80℃に達した。同時に、単量体水溶液は含
水ゲルとなり、撹拌により次第に細分化された。
開始して80分後に撹拌を停止し、細分化された黒
色の含水ゲル重合体(平均粒径約3mm)を取り出
し、180℃の熱風乾燥器中で乾燥して保水剤(1)を
得た。この保水剤(1)は平均粒径約2mmの黒色粒状
で、吸水倍率は270倍であつた。なお、吸水倍率
の測定方法は次の通りである。(実施例2以下に
おいても同様) 吸水性樹脂1gを脱イオン水1000ml中に24時間
浸漬した後、200メツシユ金網で過し、10分間
水切りをした後、200メツシユ金網上に存在する
吸水ゲル重量を測定し、そのグラム数を吸水倍率
とする。 実施例 2 イソブチレン―無水マレイン酸共重合体154部、
カセイソーダ64部および水398部を混合し、90℃
で2時間加熱撹拌して均一な水溶液を調整した。
次いでこの水溶液に粉状活性炭(武田薬品工業(株)
製「白鷺M」)20部およびグリセリンジグリシジ
ルエーテル2.5部を添加し、混合後バツトへ流し
込み、110℃の熱風乾燥器中で架橋反応をおこさ
しめ、乾燥して黒色の保水剤(2)を得た。保水剤(2)
の吸水倍率は200倍であつた。 実施例 3 デンプン100部及び水600部を重合反応容器に仕
込み、窒素気流下、55℃で30分間撹拌後、30℃に
冷却し、アクリル酸200部、トリメチロールプロ
パントリアクリレート、カーボンブラツク(三菱
化成工業(株)製「三菱カーボンブラツク#600」)2
g、並びに重合開始剤として過硫酸アンモニウム
2部及びl―アスコルビン酸0.5部を添加し、40
℃で3時間撹拌して重合せしめたところ、反応液
は弾力性のある黒色固体状となつた。得られた黒
色固体を乾燥粉砕して黒色の保水剤(3)を得た。保
水剤(3)の吸水倍率は220倍であつた。 比較例 1 カーボンブラツクを添加しない以外は実施例1
と同様にして重合及び乾燥を行なつた。得られた
淡黄色の粒状物(比較保水剤(1))の吸水倍率は
280倍であつた。 比較例 2 活性炭を添加しない以外は実施例2と同様に架
橋反応を行ない、比較保水剤(2)を得た。比較保水
剤(2)の吸水倍率は250倍であつた。 比較例 3 カーボンブラツクを添加しない以外は実施例3
と同様にして重合、乾燥、粉砕を行ない、比較保
水剤(3)を得た。比較保水剤(3)の吸水倍率は200倍
であつた。 実施例 4 (耐久性テスト) 実施例1〜3及び比較例1〜3で得た各保水剤
1gに脱イオン水100gを加えて吸水させたのち、
これをガラス瓶に入れ、フタをして70℃恒温槽に
入れ、吸水ゲルの様子を経時的に観察した。その
結果を第1表に次の4段階で表示する。 A:かたいゲル状 B:やわらかいゲル状 C:一部溶解 (やわらかいゲル状も残存) D:全体に溶解
The present invention relates to a water retaining agent with excellent durability and light resistance. Specifically, the present invention relates to a water-retaining agent that is made of a water-absorbing resin containing carbon black and/or activated carbon and has excellent durability and light resistance in a water-absorbed state. In recent years, water-absorbing resins that absorb tens to hundreds of times their own weight in water have been developed, and are used as absorbents in sanitary products, disposable diapers, etc., water retention agents for agriculture and horticulture, coagulants for sludge, and building materials. It is being developed for use as an anti-condensation agent, desiccant, etc. Examples of such water-absorbing resins include hydrolysates of starch-acrylonitrile graft polymers, neutralized starch-acrylic acid graft polymers, saponified products of vinyl acetate-acrylic acid ester copolymers, and acrylonitrile copolymers. Hydrolyzed or acrylamide copolymer hydrolysates, crosslinked products thereof, self-crosslinking sodium polyacrylate obtained by reversed-phase suspension polymerization, crosslinked partially neutralized polyacrylic acid products, etc. are known. There is. However, all of these conventional water-absorbing resins have great stability in a dry state, but have a drawback that they have poor stability in a water-absorbed state. For example, if a gel-like material made of a water-absorbing resin absorbs several hundred times more water is left indoors for a long period of time, the gel-like material may gradually become solubilized and eventually become a completely aqueous solution. Furthermore, when a gel-like material that has absorbed water is exposed to sunlight, it may become solubilized and disappear within just a few hours. When such a water-absorbing resin is used as a water retention agent for gardening, for example, when soil and water-absorbing resin are mixed, a plant is planted in a pot, and watered, the water-absorbing gel will rise to the soil surface because its specific gravity is lower than that of soil. Therefore, when exposed to sunlight, it becomes soluble and loses its water-holding ability. Although water-absorbing gel in soil exhibits water-holding capacity for a relatively long period of time, it tends to gradually become solubilized and lose its water-holding capacity over many years. Even when used as a dew prevention agent for building materials, durability for many years is required. As described above, the current situation is that conventional water-absorbing resins cannot satisfy applications that require stability in a water-absorbing state. The present inventors have completed the present invention as a result of intensive research to solve the above-mentioned problems of conventionally known water-absorbing resins. Therefore, an object of the present invention is to provide a water retention agent that is durable even in a water-absorbed state, that is, has good temporal stability and light resistance even in a water-absorbed state. The water retention agent of the present invention is made of a water absorbent resin containing carbon black and/or activated carbon. As the water-absorbing resin used in the present invention, conventionally known water-insoluble water-absorbing resins can be used. In the present invention, the state in which the water absorbent resin contains carbon black and/or activated carbon is as follows:
For example, carbon black and/or activated carbon powder is uniformly dispersed inside water-absorbing resin particles, carbon black and/or activated carbon powder is coated with water-absorbing resin, or carbon black and/or activated carbon powder is coated with water-absorbing resin. Examples include a state in which it is impregnated with. A simple mixture of water-absorbing resin powder and carbon black and/or activated carbon has poor durability and heat resistance, and the object of the present invention cannot be achieved. Methods for producing the water retention agent of the present invention include, for example, a method of polymerizing a crosslinkable monomer and an acrylate monomer in the presence of carbon black and/or activated carbon; A method in which carbon black and/or activated carbon are mechanically kneaded with an aqueous solution polymerized with an acid salt monomer to form a hydrogel, and carbon black and/or activated carbon is then dried; After mixing, a crosslinking agent is mixed and reacted to obtain a water retention agent; after mixing powdered water-absorbing resin carbon black and/or activated carbon, water or a binder is added, and the mixture is thoroughly kneaded to form carbon black. and/or a method of coating or impregnating activated carbon with a water-absorbing resin. In these methods, it may be preferable to coexist a surfactant when adding carbon black and/or activated carbon, since this improves the affinity between carbon black and/or activated carbon and the water-absorbing resin. The method for producing the water retention agent of the present invention will be described in more detail in the following sections, but the present invention is of course not limited to these examples. Polymerize an aqueous dispersion consisting of (A) crosslinkable monomer (B) acrylic acid and/or water-soluble acrylic acid salt, (C) carbon black and/or activated carbon, and (D) water in the presence of a radical polymerization initiator. A water-retaining agent obtained by In an alicyclic and/or aliphatic hydrocarbon solvent,
An aqueous solution of acrylic acid and/or a water-soluble salt of acrylic acid containing carbon black and/or activated carbon, a water-soluble radical polymerization initiator, and optionally a crosslinking monomer is dispersed and suspended in the presence of a surfactant with HLB 3 to 12. Water retention agent obtained by turbid polymerization. A water retention agent obtained by copolymerizing a vinyl ester with an ethylenically unsaturated carboxylic acid and/or a derivative thereof in the presence of carbon black and/or activated carbon, followed by saponification. In the presence of carbon black and/or activated carbon, starch and/or cellulose, monomers having carboxyl groups or generating carboxyl groups by hydrolysis, and optionally crosslinking monomers are polymerized in an aqueous medium. , a water retention agent obtained by further hydrolysis if necessary. Carbon black and/or activated carbon is produced by reacting an alkaline substance with a maleic anhydride copolymer consisting of maleic anhydride and at least one monomer selected from the group consisting of α-olefins and vinyl compounds. A water retention agent obtained by mixing the following, and further reacting the resulting mixture with a polyvalent epoxy compound if necessary. The water retention agent of the present invention preferably has a water absorption capacity of 10 times or more. If the water absorption capacity is 10 times or less, for example, when used as a water retention agent for agriculture and horticulture, it will be necessary to use a large amount of the water retention agent in order to exhibit the effect, which is economically undesirable. The carbon black or activated carbon used in the present invention is usually commercially available and can be used in the form of powder or granules, but those with a small particle size are preferred. The content of carbon black or activated carbon is preferably 0.01 to 70% by weight based on the water retention agent in a dry state. If the carbon black and/or activated carbon content is less than 0.01% by weight, durability and light resistance will be poor, and if it exceeds 70% by weight, the water absorption capacity will be low.
Both are undesirable. Carbon black and activated carbon may be used alone or in combination. Further, inorganic fillers other than carbon black and activated carbon may be used in combination. The water retaining agent of the present invention thus obtained has excellent durability and light resistance in a water-absorbed state compared to conventionally known water-absorbing resins. In the water-retaining agent of the present invention, the water-absorbing resin encloses particles of carbon black and/or activated carbon, so even if the water-retaining agent absorbs water and swells, the carbon black and activated carbon remain within the swollen hydrogel. Therefore, even if the swollen hydrogel is watered or rained,
The carbon black and activated carbon do not run off or separate, so it is believed that the light resistance and durability will last for a long time. On the other hand, such an effect cannot be expected from a simple mixture of water-absorbing resin and carbon black or activated carbon. The water retention agent of the present invention is a water retention agent for agriculture and horticulture, a dew condensation prevention agent for building materials, a water retention agent for aromatic gel, a heat insulation/cold insulation material,
It can be used in a wide range of applications, including water stop agents for civil engineering and construction, adsorbents for heavy metals, dehydrating agents for organic solvents, sanitary products, controlled release agents for drugs, and deodorizing agents. EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples. In the examples, unless otherwise specified, % means % by weight, and parts represent parts by weight. Example 1 956 g of 37% sodium acrylate aqueous solution, 113 g of 80% acrylic acid aqueous solution, 0.8 g of methylene bisacrylamide, and 9 g of carbon black (Columbia Carbon Co., Ltd. "Neo Spectra Mark") were charged into a double-arm kneader with a total capacity of 2.5 g. . Heat to 40℃ under a nitrogen atmosphere at a stirring speed of approximately 50 rpm, and add 50 g of a 10% ammonium persulfate aqueous solution and 10%
20 g of sodium bisulfite aqueous solution was added to polymerize. Heat is generated with the start of polymerization, and about 10 minutes after the start of polymerization.
The temperature reached 80°C after minutes. At the same time, the aqueous monomer solution turned into a hydrogel, which was gradually divided into smaller pieces by stirring.
After 80 minutes from the start, stirring was stopped, and the finely divided black water-containing gel polymer (average particle size of about 3 mm) was taken out and dried in a hot air dryer at 180°C to obtain water retention agent (1). . This water retention agent (1) was in the form of black particles with an average particle size of about 2 mm, and had a water absorption rate of 270 times. The method for measuring water absorption capacity is as follows. (The same applies to Example 2 and below) After immersing 1 g of water-absorbing resin in 1000 ml of deionized water for 24 hours, passing it through a 200-mesh wire mesh and draining for 10 minutes, the weight of the water-absorbing gel present on the 200-mesh wire mesh is measured, and the number of grams is taken as the water absorption capacity. Example 2 154 parts of isobutylene-maleic anhydride copolymer,
Mix 64 parts of caustic soda and 398 parts of water at 90°C.
The mixture was heated and stirred for 2 hours to prepare a homogeneous aqueous solution.
Next, powdered activated carbon (Takeda Pharmaceutical Co., Ltd.) was added to this aqueous solution.
20 parts of Shirasagi M (manufactured by Shirasagi M) and 2.5 parts of glycerin diglycidyl ether were added, mixed, poured into a vat, caused a crosslinking reaction in a hot air dryer at 110°C, and dried to form a black water retention agent (2). Obtained. Water retention agent (2)
The water absorption capacity was 200 times. Example 3 100 parts of starch and 600 parts of water were charged into a polymerization reaction vessel, stirred at 55°C for 30 minutes under a nitrogen stream, cooled to 30°C, and mixed with 200 parts of acrylic acid, trimethylolpropane triacrylate, and carbon black (Mitsubishi). "Mitsubishi Carbon Black #600" manufactured by Kasei Kogyo Co., Ltd.) 2
g, and 2 parts of ammonium persulfate and 0.5 part of l-ascorbic acid as polymerization initiators,
When polymerized by stirring at ℃ for 3 hours, the reaction solution became an elastic black solid. The obtained black solid was dried and ground to obtain a black water retention agent (3). The water absorption capacity of the water retention agent (3) was 220 times. Comparative Example 1 Example 1 except that carbon black was not added
Polymerization and drying were carried out in the same manner as above. The water absorption capacity of the pale yellow granules (comparative water retention agent (1)) obtained is
It was 280 times hotter. Comparative Example 2 A crosslinking reaction was carried out in the same manner as in Example 2, except that activated carbon was not added, to obtain a comparative water retention agent (2). The water absorption capacity of comparative water retention agent (2) was 250 times. Comparative Example 3 Example 3 except that carbon black was not added
Polymerization, drying and pulverization were carried out in the same manner as above to obtain a comparative water retention agent (3). The water absorption capacity of comparative water retention agent (3) was 200 times. Example 4 (Durability test) After adding 100 g of deionized water to 1 g of each water retention agent obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and allowing it to absorb water,
This was placed in a glass bottle, covered with a lid, and placed in a constant temperature bath at 70°C, and the state of the water-absorbing gel was observed over time. The results are shown in Table 1 in the following four stages. A: Hard gel-like B: Soft gel-like C: Partially dissolved (soft gel-like remains) D: Totally dissolved

【表】 実施例 5 (耐光性テスト) 実施例1〜3及び比較例1〜3で得た各保水剤
1gに脱イオン水100gを加えて吸水させたのち、
これを厚さ0.02mmの透明なポリエチレン製袋に入
れて日光に曝した。そして吸水ゲルの様子を経時
的に観察した。その結果を第2表に実施例4と同
様の表示で示した。
[Table] Example 5 (Light resistance test) After adding 100 g of deionized water to 1 g of each water retention agent obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and allowing it to absorb water,
This was placed in a transparent polyethylene bag with a thickness of 0.02 mm and exposed to sunlight. The state of the water-absorbing gel was then observed over time. The results are shown in Table 2 in the same way as in Example 4.

【表】 第1表及び第2表から明らかな様に、本発明の
保水剤は優れた耐久性及び耐光性を有している。
[Table] As is clear from Tables 1 and 2, the water retention agent of the present invention has excellent durability and light resistance.

Claims (1)

【特許請求の範囲】 1 カーボンブラツク及び/又は活性炭を含有す
る吸水性樹脂からなる保水剤。 2 吸水倍率が10倍以上である特許請求の範囲第
1項記載の保水剤。 3 カーボンブラツク及び/又は活性炭の含有量
が0.01〜70重量%である特許請求の範囲第1項記
載の保水剤。
[Claims] 1. A water retaining agent made of a water-absorbing resin containing carbon black and/or activated carbon. 2. The water retention agent according to claim 1, which has a water absorption rate of 10 times or more. 3. The water retention agent according to claim 1, wherein the content of carbon black and/or activated carbon is 0.01 to 70% by weight.
JP57147583A 1982-08-27 1982-08-27 Water-holding agent Granted JPS5938271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147583A JPS5938271A (en) 1982-08-27 1982-08-27 Water-holding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147583A JPS5938271A (en) 1982-08-27 1982-08-27 Water-holding agent

Publications (2)

Publication Number Publication Date
JPS5938271A JPS5938271A (en) 1984-03-02
JPH0248292B2 true JPH0248292B2 (en) 1990-10-24

Family

ID=15433627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147583A Granted JPS5938271A (en) 1982-08-27 1982-08-27 Water-holding agent

Country Status (1)

Country Link
JP (1) JPS5938271A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171537A (en) * 1985-01-24 1986-08-02 Shigekazu Nakano Gel-like adsorbent
US5849816A (en) * 1994-08-01 1998-12-15 Leonard Pearlstein Method of making high performance superabsorbent material
US5807494A (en) * 1994-12-15 1998-09-15 Boes; Ralph Ulrich Gel compositions comprising silica and functionalized carbon products
US7595428B2 (en) 2000-11-22 2009-09-29 Nippon Shokubai Co., Ltd. Water-absorbing agent composition and method for production thereof, absorptive article and absorbing material
US6787029B2 (en) 2001-08-31 2004-09-07 Cabot Corporation Material for chromatography
JP4936871B2 (en) * 2005-12-14 2012-05-23 ハウス食品株式会社 Plastic container
JPWO2009072232A1 (en) * 2007-12-07 2011-04-21 三洋化成工業株式会社 Water-retaining agent and water-absorbing gel composition excellent in light resistance
JP2010022377A (en) * 2009-10-30 2010-02-04 Akamatsu Kasei Kogyo Kk Packaged filled bean curd

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125683A (en) * 1975-04-23 1976-11-02 Sanyo Chem Ind Ltd Method of adding water absorbring power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125683A (en) * 1975-04-23 1976-11-02 Sanyo Chem Ind Ltd Method of adding water absorbring power

Also Published As

Publication number Publication date
JPS5938271A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
CA2584916C (en) Water-absorbent polymers for producing flame-retardant compositions
JP4210432B2 (en) Postcrosslinking of hydrogels with 2-oxazolidinone
JP4395531B2 (en) Method for post-crosslinking a water-absorbing polymer
US6657015B1 (en) Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
US6559239B1 (en) Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
CA2319453A1 (en) Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
JPH02191604A (en) Water-absorbing resin and production thereof
CA1262004A (en) Process for producing highly absorptive resin
CA2370380A1 (en) Hydrogel-forming polymer mixture
JPH0710922B2 (en) Granulation method of super absorbent polymer
JPH01113406A (en) Manufacture of highly water-absorptive polymer
JPS63260907A (en) Manufacture of highly water-absorptive polymer
JPH0248292B2 (en)
JPH0639487B2 (en) Super absorbent resin manufacturing method
JP2862357B2 (en) Water absorbing agent and method for producing the same
JP4550256B2 (en) Manufacturing method of water absorbent resin
JPH0967522A (en) Production of water-absorbing resin
JP2000230129A (en) Water-absorbent composition
JP2555159B2 (en) Method for producing water absorbent resin
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JP2008531807A (en) Water-absorbing crosslinked polymer
JP2002504580A (en) Postcrosslinking of hydrogels using borate esters
JPH05320270A (en) Production of water-absorptive polymer
JPH02135263A (en) Water absorbing gel composition having excellent light resistance and heat resistance
JPS6256888B2 (en)