JPH0645651B2 - Method for producing high expansion water-absorbent polymer - Google Patents

Method for producing high expansion water-absorbent polymer

Info

Publication number
JPH0645651B2
JPH0645651B2 JP63038638A JP3863888A JPH0645651B2 JP H0645651 B2 JPH0645651 B2 JP H0645651B2 JP 63038638 A JP63038638 A JP 63038638A JP 3863888 A JP3863888 A JP 3863888A JP H0645651 B2 JPH0645651 B2 JP H0645651B2
Authority
JP
Japan
Prior art keywords
weight
polymer
water
group
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63038638A
Other languages
Japanese (ja)
Other versions
JPH01213307A (en
Inventor
泰二 上林
英幸 目片
寛行 片岡
繁章 松本
忠蔵 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemicals Ind.,Ltd.
Original Assignee
Osaka Organic Chemicals Ind.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemicals Ind.,Ltd. filed Critical Osaka Organic Chemicals Ind.,Ltd.
Priority to JP63038638A priority Critical patent/JPH0645651B2/en
Publication of JPH01213307A publication Critical patent/JPH01213307A/en
Publication of JPH0645651B2 publication Critical patent/JPH0645651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高膨張型吸水性ポリマーの製造方法に関す
る。本発明により製造されるポリマーは、吸水すると高
い膨張性と流動性を示し、通気性が良く、吸水後のゲル
のベタつきも無い事から、農園芸土壌用保水材、汚泥の
凝固材、結露防止材、止水材、油類の脱水剤、衛生材料
(紙オムツ、生理ナプキン)等に用いることができる。
TECHNICAL FIELD The present invention relates to a method for producing a highly expansive water-absorbing polymer. The polymer produced by the present invention exhibits high expandability and fluidity when absorbing water, has good air permeability, and has no stickiness of gel after water absorption, therefore, it is used as a water retention material for agricultural and horticultural soil, a coagulant of sludge, and prevention of dew condensation. It can be used as a material, a waterproof material, a dehydrating agent for oils, a sanitary material (paper diaper, sanitary napkin), and the like.

[従来の技術] 吸水性ポリマーは生理用品、紙オムツなどの衛生材料、
保水材として農園芸関係などに使用される他、汚泥の凝
固、油類の脱水などの種々の用途に用いられ、さらに新
しい用途が開発されつつある有用な合成ポリマーであ
る。これらのポリマーは、 デンプン−アクリロニトリルグラフト重合体の加水分
解物(特公昭53-48199号公報、特開昭55-4820号公報) セルロース変性体(特開昭50-80376号公報) 逆相懸濁法によるポリアクリル酸ソーダ(特公昭54-3
0710号、特開昭58-26909号公報) 水溶液重合法(断熱重合、薄膜重合)により得られる
ポリアクリル酸ソーダ(特開昭55-133413号) 水溶性高分子の架橋物(特公昭43-23482号公報) デンプン−アクリル酸ソーダグラフト重合体(特公昭
53-48199号公報) 等が知られている。
[Prior Art] Water-absorbent polymers are used for sanitary products, sanitary materials such as disposable diapers,
It is a useful synthetic polymer that is used as a water retention material for agriculture and horticulture, and for various other purposes such as coagulation of sludge and dehydration of oils, and new applications are being developed. These polymers are hydrolyzates of starch-acrylonitrile graft polymer (Japanese Patent Publication No. 53-48199, Japanese Patent Publication No. 55-4820), modified cellulose (Japanese Patent Publication No. 50-80376), reverse phase suspension. Sodium polyacrylate by method (Japanese Patent Publication No. 54-3
No. 0710, JP-A-58-26909) Sodium polyacrylate obtained by an aqueous solution polymerization method (adiabatic polymerization, thin film polymerization) (JP-A-55-133413) Cross-linked product of water-soluble polymer (JP-B-43- 23482) Starch-sodium acrylate graft polymer (Japanese Examined Patent Publication)
No. 53-48199) and the like are known.

[発明が解決しようとする問題点] しかしながら、上記の方法には以下の如き問題点が有っ
た。
[Problems to be Solved by the Invention] However, the above method has the following problems.

吸水能の不足、たとえ吸水能が高くても、吸水速度が
遅い、あるいは水への分散性が悪い等の欠点を有してい
る。
It has drawbacks such as insufficient water absorption capacity, low water absorption speed even if water absorption capacity is high, and poor dispersibility in water.

吸水後のゲルがベタつき、衛生材料を考えた場合、肌
への影響が心配される。
After absorbing water, the gel becomes sticky, and when considering sanitary materials, there is concern about the effect on the skin.

吸水膨潤状態のポリマー粒子相互間の凝集により通気
性が悪く、土壌用保水材を考えた場合、根が腐敗する危
険性がある。
The air permeability is poor due to the aggregation of the polymer particles in a water-swelling state, and there is a risk that the roots will rot when considering a water retaining material for soil.

[問題点を解決するための手段] 本発明者等は従来の欠点を改良すべく鋭意研究を重ねた
結果、吸水すると高い膨張性と流動性を示し、通気性が
良く、脱水後のゲルのベタつきも無い高膨張型ポリマー
を製造できる事を見い出し、完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to improve the conventional drawbacks, and as a result, exhibit high swelling property and fluidity when absorbing water, have good air permeability, and have good gel properties after dehydration. We have found that we can manufacture a high expansion type polymer without stickiness, and have completed the process.

本発明によれば、高分子分散剤を溶解した脂肪族炭化水
素溶媒中で、アクリル酸とそのアルカリ金属塩水溶液を
分散し、逆相懸濁重合させ、さらに共沸脱水時2個以上
の官能基を有する架橋剤で架橋せしめることを特徴とす
る高膨張型吸水性ポリマーの製造法が提供される。
According to the present invention, acrylic acid and an aqueous solution of an alkali metal salt thereof are dispersed in an aliphatic hydrocarbon solvent in which a polymer dispersant is dissolved, and reverse phase suspension polymerization is performed. Provided is a method for producing a highly expansive water-absorbing polymer, which comprises crosslinking with a crosslinking agent having a group.

本発明の製造方法で用いられる高分子分散剤はアクリル
共重合体であり、その好ましい例は、 A)アクリル酸アルキルエステルまたはメタクリル酸ア
ルキルエステルで、アルキル基の炭素数が8以上の単量
体(以下A成分と称する)40〜95重量% B)カルボキシル基、アミノ基、第4級アンモニウム
基、ヒドロキシル基から選ばれる1種を有する、アクリ
ル酸、メタクリル酸、アクリルアミド、メタクリルアミ
ドの各誘導体から選ばれる1種または2種以上の単量体
(以下B成分と称する)5〜40重量% C)上記A及びB成分と共重合し得る不飽和単量体(以
下C成分と称する)0〜40重量% を構成成分とする共重合体である。
The polymer dispersant used in the production method of the present invention is an acrylic copolymer, and preferred examples thereof include: A) alkyl acrylate or methacrylic acid alkyl ester, in which the alkyl group has 8 or more carbon atoms. (Hereinafter referred to as component A) 40 to 95% by weight B) From each derivative of acrylic acid, methacrylic acid, acrylamide and methacrylamide having one selected from a carboxyl group, an amino group, a quaternary ammonium group and a hydroxyl group. 5 to 40% by weight of one or more selected monomers (hereinafter referred to as component B) C) Unsaturated monomer (hereinafter referred to as component C) copolymerizable with the above components A and B 0 to It is a copolymer having 40% by weight as a constituent component.

上記A成分のアクリル酸またはメタクリル酸アルキルエ
ステルとしては、アルキル基の炭素数が8以上であれば
良く、市販され容易に入手できる単量体として、アクリ
ル酸2−エチルヘキシル、メタクリル酸2−エチルヘキ
シル、アクリル酸ラウリル、メタクリル酸ラウリル、ア
クリル酸トリデシル、メタクリル酸トリデシル、アクリ
ル酸ラウリル・トリデシル混合エステル、アクリル酸ス
テアリル、メタクリル酸ステアリルなどが有る。A成分
を選択する場合、ガラス転移点ができるだけ高い程、水
系懸濁重合で分散剤を合成する際、ビーズのブロッキン
グが起こりにくく、都合が良い。各単量体のガラス転移
点を表−1に示す。
As the acrylic acid or methacrylic acid alkyl ester as the component A, it is sufficient that the alkyl group has 8 or more carbon atoms, and commercially available and easily available monomers include 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate. Examples include lauryl acrylate, lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, lauryl acrylate / tridecyl mixed ester, stearyl acrylate, stearyl methacrylate. When the component A is selected, it is convenient that the glass transition point is as high as possible because beads are less likely to be blocked when the dispersant is synthesized by the aqueous suspension polymerization. Table 1 shows the glass transition points of the respective monomers.

上記の条件で好ましい単量体としては、メタクリル酸2
−エチルヘキシル、アクリル酸ラウリル、アクリル酸ラ
ウリル・トリデシル混合エステル、アクリル酸トリデシ
ル、アクリル酸ステアリル、メタクリル酸ステアリル等
である。
Methacrylic acid 2 is a preferred monomer under the above conditions.
-Ethylhexyl, lauryl acrylate, lauryl acrylate / tridecyl mixed ester, tridecyl acrylate, stearyl acrylate, stearyl methacrylate and the like.

次にB成分としてはアクリル酸、メタクリル酸、イタコ
ン酸、アクリル酸ジメチルアミノエチル、メタクリル酸
ジメチルアミノエチル、アクリル酸ジエチルアミノエチ
ル、メタクリル酸ジエチルアミノエチル、アクリル酸ト
リメチルアミノエチルクロライド、メタクリル酸トリメ
チルアミノエチルクロライド、アクリル酸2−ヒドロキ
シエチル、メタクリル酸2−ヒドロキシエチル、アクリ
ル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロ
キシプロピル、アクリルアミド、ジメチルアクリルアミ
ド、ジメチルアミノプロピルアクリルアミド、ジメチル
アミノプロピルメタクリルアミド、トリメチルアミノプ
ロピルアクリルアミドクロライド、トリメチルアミノプ
ロピルメタクリルアミドクロライド等である。
Next, as component B, acrylic acid, methacrylic acid, itaconic acid, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, trimethylaminoethyl acrylate, trimethylaminoethyl methacrylate , 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, acrylamide, dimethylacrylamide, dimethylaminopropylacrylamide, dimethylaminopropylmethacrylamide, trimethylaminopropylacrylamide chloride , Trimethylaminopropyl methacrylamide chloride, and the like.

C成分の単量体としては、ガラス転移点が高く、脂肪族
系炭化水素溶媒に親和性の有るメタクリル酸アルキルエ
ステルでアルキル基の炭素数が4以下のものや酢酸ビニ
ル、スチレン等が挙げられる。例えばメタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸イソプロピル、
メタクリル酸n−ブチル、メタクリル酸イソブチル、酢
酸ビニルなどが有り、好ましくは、メタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸イソブチルが適
当である。
Examples of the C component monomer include methacrylic acid alkyl esters having a high glass transition point and an affinity for an aliphatic hydrocarbon solvent and having an alkyl group having 4 or less carbon atoms, vinyl acetate, styrene and the like. . For example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate,
There are n-butyl methacrylate, isobutyl methacrylate, vinyl acetate and the like, and methyl methacrylate, ethyl methacrylate and isobutyl methacrylate are preferable.

これらA,B,C成分を含有する共重合体は、農園芸土
壌用や衛生材料用途の吸水性樹脂分散剤として安全であ
り、何ら使用にさしつかえがない。
The copolymer containing these components A, B, and C is safe as a water-absorbent resin dispersant for agricultural and horticultural soils and sanitary materials, and can be used at all.

A,B,C成分の構成比は、脂肪族系炭化水素溶媒への
分散溶解性、重合のコロイド分散性、吸水性樹脂の物
性、例えば膨張性、流動性、べとつき、ゲル強度、粒径
等に大きな影響を与える。
The constituent ratios of the components A, B, and C are dispersion solubility in an aliphatic hydrocarbon solvent, colloidal dispersibility in polymerization, physical properties of the water-absorbent resin such as expandability, fluidity, stickiness, gel strength, particle size, etc. Have a great influence on.

通常A成分40〜95重量%、B成分5〜40重量%、C成分
0〜40重量%が良く、より好ましくはA成分45〜70重量
%、B成分5〜25重量%、C成分20〜40重量%が適当で
ある。A成分が40重量%未満の場合、溶媒への分散溶解
性が低下し、95重量%を超える場合相対的にB成分が5
重量%未満になり、コロイド分散性が悪くなり、共に逆
相懸濁重合の継続が困難となる。40〜95重量%の範囲内
ではその量が多い程、溶媒への分散溶解性が良くなり、
吸水性樹脂の膨張性や流動性が良くなり、べとつきが少
なくなる傾向が有る。B成分が5重量%未満の場合、前
述の通りコロイド分散性が悪くなり、40重量%を超える
場合溶媒への分散溶解性が低下し、共に逆相懸濁重合の
継続が困難となる。5〜40重量%の範囲内では多い程、
重合のコロイド分散性が良くなり、吸水性樹脂の膨張性
や流動性が低下し、べとつきが増加、粒径が細かくなる
傾向が有る。C成分が40重量%を超える場合、相対的に
A成分の比率が低下し、溶媒の分散溶解性が悪くなる。
0〜40重量%の範囲内では多い程、吸水性樹脂のゲル強
度が高くなる。
Usually, component A is 40 to 95% by weight, component B is 5 to 40% by weight, component C is 0 to 40% by weight, and more preferably component A is 45 to 70% by weight, component B is 5 to 25% by weight, component C is 20 to 20% by weight. 40% by weight is suitable. When the amount of the component A is less than 40% by weight, the solubility in dispersion in the solvent is lowered, and when the amount of the component A exceeds 95% by weight, the amount of the component B is relatively 5%.
It becomes less than 10% by weight, colloid dispersibility deteriorates, and it becomes difficult to continue reverse phase suspension polymerization. In the range of 40 to 95% by weight, the larger the amount, the better the dispersion and solubility in the solvent,
The water-absorbent resin tends to have good expandability and fluidity and less stickiness. When the content of the component B is less than 5% by weight, the colloidal dispersibility is deteriorated as described above, and when it exceeds 40% by weight, the dispersibility in the solvent is lowered, and it is difficult to continue the reverse phase suspension polymerization. The larger the range is from 5 to 40% by weight,
There is a tendency that the colloidal dispersibility of polymerization is improved, the expandability and fluidity of the water absorbent resin are lowered, the stickiness is increased, and the particle size is fine. When the content of the component C exceeds 40% by weight, the ratio of the component A is relatively decreased, and the dispersion solubility of the solvent is deteriorated.
The higher the amount is in the range of 0 to 40% by weight, the higher the gel strength of the water absorbent resin.

本発明では分散剤として用いる共重合体は、水系懸濁重
合法により合成される。溶液重合では溶剤が残留した
り、低分子量の重合体が、分散剤としての機能を低下さ
せる場合が有る。水系懸濁重合法としては例えば、イオ
ン交換水中に部分ケン化ポリビニルアルコールを加温溶
解させ、窒素置換後、A,B,C成分の単量体にアゾ系
またはパーオキサイド系の重合開始剤を溶かした溶液を
滴下分散し、加温保持して重合を終了させる。冷却後、
固形物を過水洗した後、減圧乾燥し、ビーズ状の重合
体、すなわち本発明の高分子分散剤を得る。
The copolymer used as the dispersant in the present invention is synthesized by an aqueous suspension polymerization method. In solution polymerization, a solvent may remain or a low molecular weight polymer may deteriorate the function as a dispersant. As the aqueous suspension polymerization method, for example, partially saponified polyvinyl alcohol is dissolved in ion-exchanged water under heating, the atmosphere is replaced with nitrogen, and then an azo or peroxide type polymerization initiator is added to the monomers of components A, B and C. The dissolved solution is dropped and dispersed, and the mixture is kept warm to terminate the polymerization. After cooling
The solid matter is washed with water and dried under reduced pressure to obtain a bead-like polymer, that is, the polymer dispersant of the present invention.

上記方法で得られる分散剤は、逆相懸濁重合の脂肪族炭
化水素溶媒に分散溶解される。分散剤の量は、アクリル
酸とそのアルカリ金属塩単量体に対し0.1〜10重量%、
好ましくは0.5〜5重量%の範囲で用いられる。分散剤
の量が0.1重量%未満では重合のコロイド分散性が不安
定となり、10重量%を超える場合粒径が細かくなり過
ぎ、経済的にもデメリットである。
The dispersant obtained by the above method is dispersed and dissolved in an aliphatic hydrocarbon solvent for reverse phase suspension polymerization. The amount of the dispersant is 0.1 to 10% by weight with respect to acrylic acid and its alkali metal salt monomer,
It is preferably used in the range of 0.5 to 5% by weight. If the amount of the dispersant is less than 0.1% by weight, the colloidal dispersibility of polymerization becomes unstable, and if it exceeds 10% by weight, the particle size becomes too fine, which is economically disadvantageous.

本発明で用いられるアクリル酸とそのアルカリ金属塩水
溶液は、アクリル酸単量体を水酸化ナトリウム、水酸化
カリウムなどの水溶液で部分中和する事により調製され
る。中和度は吸水能、安全性を考慮して60〜85%が好ま
しい。また水溶液中の単量体濃度は35〜75重量%、好ま
しくは40〜70重量%が良い。
The aqueous solution of acrylic acid and its alkali metal salt used in the present invention is prepared by partially neutralizing the acrylic acid monomer with an aqueous solution of sodium hydroxide, potassium hydroxide or the like. The degree of neutralization is preferably 60 to 85% in consideration of water absorption capacity and safety. The monomer concentration in the aqueous solution is 35 to 75% by weight, preferably 40 to 70% by weight.

本発明では、吸水性樹脂の性能を損なわない範囲で、ア
クリル酸とアクリル酸アルカリ金属塩単量体と共重合し
得る不飽和単量体を共重合させても良く、その量は単量
体全体の25重量%以下である。
In the present invention, as long as the performance of the water absorbent resin is not impaired, an unsaturated monomer copolymerizable with acrylic acid and an alkali metal acrylate monomer may be copolymerized, and the amount of the monomer is It is 25% by weight or less of the whole.

本発明でアクリル酸とそのアルカリ金属水溶液を逆相懸
濁重合させる際、重合開始剤としては、架橋剤単量体を
用いない自己架橋型であるため、過硫酸カリウム、過硫
酸アンモニウムの如き水溶性過硫酸塩や、過酸化水素が
好ましい。重合開始剤の使用量は単量体に対し0.1〜2.0
重量%、好ましくは0.2〜1.0重量%が良い。
When reverse phase suspension polymerization of acrylic acid and an aqueous solution of an alkali metal thereof in the present invention, the polymerization initiator is a self-crosslinking type that does not use a crosslinking agent monomer, and therefore water-soluble such as potassium persulfate and ammonium persulfate. Persulfate and hydrogen peroxide are preferred. The amount of the polymerization initiator used is 0.1 to 2.0 with respect to the monomer.
%, Preferably 0.2 to 1.0% by weight.

本発明における逆相懸濁重合の脂肪族炭化水素溶媒とし
ては、n−ペンタン、n−ヘキサン、n−ヘプタン、n
−オクタン等の脂肪族炭化水素、シクロヘキサン、メチ
ルシクロヘキサン、デカリン等の脂環式炭化水素などが
あげられるが、好ましくはn−ヘキサン、n−ヘプタ
ン、シクロヘキサンであり、これらは1種または2種以
上を混合して用いる。
Examples of the aliphatic hydrocarbon solvent for reverse phase suspension polymerization in the present invention include n-pentane, n-hexane, n-heptane and n.
Examples thereof include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and decalin, and preferably n-hexane, n-heptane, and cyclohexane, which are one kind or two or more kinds. Are mixed and used.

本発明の方法において特に重要なもう一つの要件は、逆
相懸濁重合終了後そのまま共沸脱水により水を留去する
際、2個以上の官能基を有する架橋剤で架橋反応行なわ
しめる事である。
Another particularly important requirement in the method of the present invention is that when water is distilled off by azeotropic dehydration as it is after completion of the reverse phase suspension polymerization, a crosslinking reaction is carried out with a crosslinking agent having two or more functional groups. is there.

本発明に用いる架橋剤は、カルボキシル基(またはカル
ボキシレート基)と反応しうる官能基を2個以上有する
化合物であれば良い。かかる架橋剤としては、例えばエ
チレングリコールジクリシジルエーテル、ポリエチレン
グリコールジグリシジルエーテル、グリセリントリグリ
シジルエーテル等のポリグリシジルエーテル;エピクロ
ルヒドリン、α−メチルクロルヒドリン等のハロエポキ
シ化合物;グルタールアルデヒド、グリオキザール等の
ポリアルデヒド類などがあげられるが、好ましくはエチ
レングリコールジグリシジルエーテルが適当である。
The crosslinking agent used in the present invention may be a compound having two or more functional groups capable of reacting with a carboxyl group (or a carboxylate group). Examples of such a cross-linking agent include polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether; haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin; polyglutaraldehyde and glyoxal. Examples thereof include aldehydes, but ethylene glycol diglycidyl ether is preferable.

架橋剤の添加量は架橋剤の種類及び分散剤の種類によっ
ても異なるが、通常モノマーに対して0.05〜2重量%が
適切な範囲である。さらに好ましくはモノマーに対して
0.2〜1.0重量%である。前記架橋剤使用量が0.05重量%
未満では継粉現象が生じ、高膨張型ポリマーは得られ
ず、2重量%より多くなると架橋密度が高くなり過ぎ、
吸水能の著しい低下が生ずる。
The addition amount of the cross-linking agent varies depending on the type of the cross-linking agent and the type of the dispersant, but is usually in the range of 0.05 to 2% by weight based on the monomer. More preferably for the monomer
It is 0.2 to 1.0% by weight. The amount of the crosslinking agent used is 0.05% by weight
If the amount is less than 2, a sieving phenomenon occurs, a high expansion type polymer cannot be obtained, and if it exceeds 2% by weight, the crosslinking density becomes too high.
A significant decrease in water absorption capacity occurs.

本発明の共沸脱水で大半の水を留去されたポリマーはさ
らに過後乾燥してビーズ状の吸水性樹脂として回収さ
れる。乾燥時、無機物質や界面活性剤を添加すると吸水
速度が速くなり一層の膨張性と流動性を示す。無機物質
としては、ホワイトカーボン、タルク、ハイドロタルサ
イト、微粉シリカ(アエロジル)などが有り、界面活性
剤としては従来公知のノニオン系界面活性剤などが挙げ
られる。
The polymer from which most of the water has been distilled off by the azeotropic dehydration of the present invention is further dried after being collected and recovered as a bead-shaped water absorbent resin. At the time of drying, if an inorganic substance or a surfactant is added, the rate of water absorption will be increased, and further expandability and fluidity will be exhibited. Examples of the inorganic substance include white carbon, talc, hydrotalcite, and finely divided silica (aerosil). Examples of the surfactant include conventionally known nonionic surfactants.

本発明で得られる吸水性ポリマーが脱水すると高い膨張
性と流動性を示す理由は明らかではないが、高分子分散
剤のA成分が多い程、また架橋剤が多い程効果的な事か
ら、吸水したポリマーの滑りが関係していると推定され
る。すなわち、分散剤のA成分は吸水ポリマーの撥水性
を上げ、架橋剤はポリマーの架橋度を上げる事で吸水速
度の向上と表面のベタつきを減少させる。従って吸水し
たビーズ状のポリマーはバインダーとしての水が少ない
ため、お互いに滑り合い、空隙が発生し、高い膨張性と
流動性を発現しているのである。
It is not clear why the water-absorbent polymer obtained in the present invention exhibits high swelling property and fluidity when dehydrated. However, the more the component A of the polymer dispersant and the more the cross-linking agent, the more effective it is. It is presumed that the slip of the polymer is involved. That is, the component A of the dispersant increases the water repellency of the water-absorbing polymer, and the cross-linking agent increases the cross-linking degree of the polymer to improve the water-absorption rate and reduce surface stickiness. Therefore, the water-absorbed bead-like polymer has a small amount of water as a binder, so that it slides on each other to form voids, and high expandability and fluidity are exhibited.

[実施例] 次に本発明の方法を実施例によって具体的に説明する
が、本発明はこの実施例に限定されるものではない。
Example Next, the method of the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

尚、以下の実施例及び比較例における吸水能、膨張倍率
は次の操作によって求められる値である。
The water absorption capacity and expansion coefficient in the following examples and comparative examples are values obtained by the following operations.

イオン交換水の吸水能の場合は、乾燥ポリマー0.5gを
1のイオン交換水に分散し、1昼夜静置後、60メッシュ
の金網で過し得られた膨潤ポリマー重量(W)を測定
し、この値を初めの乾燥ポリマー重量(W0)で割って得ら
れた値である。つまりイオン交換水吸水能(g/g)=W/W0
とした。
In the case of water absorption capacity of ion-exchanged water, 0.5 g of dried polymer is dispersed in 1 ion-exchanged water, left standing for 1 day and then, the swelling polymer weight (W) obtained by passing through a 60 mesh wire net is measured, It is the value obtained by dividing this value by the initial dry polymer weight (W 0 ). That is, water absorption capacity of ion-exchanged water (g / g) = W / W 0
And

生理食塩水の吸水能の場合は、乾燥ポリマー0.2gを40
gの0.9%食塩水に分散し、20分静置後、100メッシュの
金網で過し膨潤ポリマー重量(W)を測定し、この値を
初めの乾燥ポリマー重量(W0)で割って得られた値であ
る。つまり生理食塩水吸水能(g/g)=W/W0とした。
For saline water absorption capacity, dry polymer 0.2 g 40
g, dispersed in 0.9% saline, allowed to stand for 20 minutes, passed through a 100-mesh wire net to measure the swollen polymer weight (W), and this value was divided by the initial dry polymer weight (W 0 ). It is a value. That is, the physiological saline absorption capacity (g / g) = W / W 0 .

膨張倍率は、乾燥ポリマー0.2gをネスラー管にとり、
イオン交換水2.0ccを加えて得られた膨潤ポリマーの体
積(V)を測定し、この値を加えた水の体積で割って得ら
れた値である。つまり膨張倍率 とした。
For the expansion ratio, take 0.2 g of dry polymer in a Nessler tube,
It is a value obtained by measuring the volume (V) of the swollen polymer obtained by adding 2.0 cc of ion-exchanged water and dividing this value by the volume of added water. That is, expansion ratio And

流動性は、乾燥ポリマー1.0gにイオン交換水50cc加えて
吸水し切った後、形状を観察し、流動性を◎、〇、△、
×で示した。
Flowability is determined by adding 50 cc of ion-exchanged water to 1.0 g of dry polymer and absorbing water completely, observing the shape, and checking the flowability by ◎, ○, △,
It is shown by x.

次に、高分子分散剤の合成例を示す。Next, a synthesis example of the polymer dispersant will be shown.

合成例1 攪拌機、還流冷却管、滴下漏斗、温度計及び窒素ガス導
入管を付した500mlセパラブルフラスコにイオン交換水1
50gを仕込み、分散剤として部分ケン化ポリビニルアル
コール(日本合成化学(株)製GH-23)0.2gを添加し、加
熱溶解させたのち、窒素置換した。
Synthesis Example 1 A 500 ml separable flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer and a nitrogen gas inlet tube was charged with ion-exchanged water 1
50 g was charged, 0.2 g of partially saponified polyvinyl alcohol (GH-23 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was added as a dispersant, and the mixture was heated and dissolved, and then the atmosphere was replaced with nitrogen.

一方、あらかじめ、三角フラスコ中でアクリル酸ラウリ
ル、トリデシル混合エステル(大阪有機化学(株)製LT
A)22.5g、メタクリル酸ヒドロキシエチル10.0g、メタク
リル酸メチル17.5gにアゾビスジメチルバレロニトリル
1.0gを加えて溶解し、上記のセパラブルフラスコに窒素
気流バブリング下に1時間かけて滴下した。65゜Cで5時
間保持し、反応を終了させ、冷却後固形物を過し、水
洗したのち、減圧乾燥してビーズ状の分散剤1を得た。
On the other hand, in advance, in an Erlenmeyer flask, lauryl acrylate and tridecyl mixed ester (LT manufactured by Osaka Organic Chemical Co., Ltd.
A) 22.5 g, hydroxyethyl methacrylate 10.0 g, methyl methacrylate 17.5 g to azobis dimethyl valeronitrile
1.0 g was added and dissolved, and the solution was added dropwise to the above separable flask under bubbling with a nitrogen stream over 1 hour. The mixture was kept at 65 ° C. for 5 hours to terminate the reaction, and after cooling, the solid matter was filtered off, washed with water and dried under reduced pressure to obtain a beaded dispersant 1.

合成例2 アクリル酸ラウリル、トリデシル混合エステル22.5g、
メタクリル酸5.0g、メタクリル酸ジメチルアミノエチル
5.0g、メタクリル酸メチル17.5gを用いる以外は、合成
例と同様に操作し、ビース状の分散剤2を得た。
Synthetic Example 2 Lauryl acrylate, tridecyl mixed ester 22.5 g,
Methacrylic acid 5.0g, dimethylaminoethyl methacrylate
A bead-like dispersant 2 was obtained in the same manner as in Synthesis Example except that 5.0 g and 17.5 g of methyl methacrylate were used.

合成例3 メタクリル酸ステアリル30g、ジメチルアミノプロピル
メタクリルアミド10.0g、メタクリル酸メチル10.0gを用
いる以外は、合成例1と同様に操作し、ビーズ状の分散
剤3を得た。
Synthesis Example 3 A beaded dispersant 3 was obtained in the same manner as in Synthesis Example 1 except that 30 g of stearyl methacrylate, 10.0 g of dimethylaminopropyl methacrylamide and 10.0 g of methyl methacrylate were used.

実施例1 攪拌機、還流冷却管、滴下漏斗、温度計及び窒素ガス導
入管を付した1セパラブルフラスコにn−ヘキサン360.
7g、分散剤(1)4.32gを仕込み、50゜Cまで昇温し分散溶解
したのち、窒素置換した。
Example 1 n-hexane 360 was placed in a separable flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer and a nitrogen gas inlet tube.
7 g and 4.32 g of Dispersant (1) were charged, the temperature was raised to 50 ° C to disperse and dissolve, and then the atmosphere was replaced with nitrogen.

一方、あらかじめ、三角フラスコ中でアクリル酸72.0g
をイオン交換水103.6gに溶解した水酸化ナトリウム32.2
gで部分中和し、さらに室温下で過硫酸カリウム0.24gを
溶解した。この単量体水溶液を上記のセパラブルフラス
コに300rpmの攪拌速度で窒素気流パブリング下に1時間
かけて滴下し、2時間還流後、30%過酸化水素水0.1gを
添加し、さらに還流を1時間続け重合を完結させた。そ
の後、エチレングリコールジグリシジルエーテル0.73g
を添加し、共沸脱水を行ない過後減圧乾燥して白色の
ビーズ状重合体を得た。またセパラブルフラスコ内には
重合体の付着物がほとんど無かった。
On the other hand, in advance, in an Erlenmeyer flask, 72.0 g of acrylic acid
Sodium hydroxide 32.2 dissolved in 103.6 g of deionized water
It was partially neutralized with g, and 0.24 g of potassium persulfate was further dissolved at room temperature. This monomer aqueous solution was added dropwise to the above separable flask at a stirring speed of 300 rpm under nitrogen gas pulsing over 1 hour, and after refluxing for 2 hours, 0.1 g of 30% hydrogen peroxide solution was added, and further refluxing was performed for 1 hour. The polymerization was completed for a period of time. Then 0.73 g of ethylene glycol diglycidyl ether
Was added, azeotropic dehydration was carried out, and the residue was dried under reduced pressure to obtain a white beaded polymer. Also, there was almost no polymer deposit in the separable flask.

得られた乾燥ポリマーは、イオン交換水に対する吸水能
が125(g/g)、生理食塩水に対する吸水能が33(g/g)、体
積倍率3.0(cm3/cm3)(水2.0g添加)であった。流動性◎
を示した。
The obtained dry polymer has a water absorption capacity for ion-exchanged water of 125 (g / g), a water absorption capacity for physiological saline of 33 (g / g), and a volume ratio of 3.0 (cm 3 / cm 3 ) (2.0 g of water added. )Met. Liquidity ◎
showed that.

実施例2,3 実施例1の分散剤1の代わりに合成例2,3で得た分散
剤2,3を用いる以外、実施例1と同様に操作し、白色
のビーズ状重合体を得た。またセパラブルフラスコ内に
は重合体の付着物がほとんど無かった。
Examples 2 and 3 The procedure of Example 1 was repeated except that the dispersants 2 and 3 obtained in Synthesis Examples 2 and 3 were used in place of the dispersant 1 of Example 1, to obtain a white beaded polymer. . Also, there was almost no polymer deposit in the separable flask.

実施例4 実施例1のn−ヘキサンの代わりにシクロヘキサンを用
いる以外、実施例1と同様に操作し、白色のビーズ状重
合体を得た。またセパラブルフラスコ内には重合体の付
着物がほとんど無かった。
Example 4 A white beaded polymer was obtained in the same manner as in Example 1 except that cyclohexane was used instead of n-hexane in Example 1. Also, there was almost no polymer deposit in the separable flask.

実施例5,6 実施例1のエチレングリコールジグリシジルエーテル0.
73gをそれぞれ0.18g、1.46gに変える以外、実施例1と同
様に操作し、白色のビーズ状重合体を得た。またセパラ
ブルフラスコ内には重合体の付着物がほとんど無かっ
た。
Examples 5 and 6 Ethylene glycol diglycidyl ether of Example 1
A white beaded polymer was obtained in the same manner as in Example 1 except that 73 g was changed to 0.18 g and 1.46 g, respectively. Also, there was almost no polymer deposit in the separable flask.

比較例1 実施例1のエチレングリコールジグリシジルエーテルを
加えない以外、実施例1と同様に操作し、白色のビーズ
状重合体を得た。またセパラブルフラスコ内には重合体
の付着物がほとんど無かった。
Comparative Example 1 A white beaded polymer was obtained in the same manner as in Example 1 except that the ethylene glycol diglycidyl ether of Example 1 was not added. Also, there was almost no polymer deposit in the separable flask.

比較例2 実施例1の分散剤1の代わりにソルビタンモノラウレー
トを用いて、実施例1と同様に操作し、白色の粉末重合
体を得た。またセパラブルフラスコ内には壁面や攪拌翼
に重合体付着物が見られた。
Comparative Example 2 A white powder polymer was obtained in the same manner as in Example 1, except that sorbitan monolaurate was used instead of the dispersant 1 in Example 1. In addition, polymer deposits were found on the walls and stirring blades in the separable flask.

比較例3 市販品アクアリックCA-W(日本触媒化学(株)製) 実施例1〜6、比較例1〜3の評価結果は表−2に示す
通りである。
Comparative Example 3 Commercially-available product Aqualic CA-W (manufactured by Nippon Shokubai Kagaku Co., Ltd.) The evaluation results of Examples 1 to 6 and Comparative Examples 1 to 3 are as shown in Table 2.

[発明の効果] 本発明の製造方法を用いて得られる吸水性ポリマーは、
吸水すると高い膨張性と流動性を示し、通気性が良く吸
水後のゲルのベタつきも無い特性を有するため、農園芸
土壌用保水材、汚泥の凝固材、結露防止材、止水材、油
類の脱水剤、衛生材料用に最適である。また本発明の吸
水性ポリマーでは、逆相懸濁重合時、重合釜ヘポリマー
がほとんど付着せず、乾燥時の流動性が良く、吸湿も少
ないため粉体の取扱いが容易であり、効率よく生産でき
る。
[Effects of the Invention] The water-absorbent polymer obtained using the production method of the present invention is
It exhibits high expandability and fluidity when absorbing water, and has good air permeability and no sticky gel after water absorption. Therefore, it is a water retention material for agricultural and horticultural soils, a sludge coagulating material, a dew condensation preventing material, a water blocking material, and oils. Most suitable for dehydrating agents and sanitary materials. Further, in the water-absorbent polymer of the present invention, during reverse phase suspension polymerization, the polymer hardly adheres to the polymerization kettle, has good fluidity during drying, and has little moisture absorption, so that powder handling is easy and efficient production is possible. .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高分子分散剤を溶解した脂肪族炭化水素溶
媒中で、アクリル酸とそのアルカリ金属塩水溶液を分散
し、逆相懸濁重合させ、さらに共沸脱水時、2個以上の
官能基を有する架橋剤で架橋せしめることを特徴とする
高膨張型吸水性ポリマーの製造方法。
1. A dispersion of acrylic acid and an aqueous solution of an alkali metal salt thereof in an aliphatic hydrocarbon solvent in which a polymer dispersant is dissolved, reverse phase suspension polymerization is carried out, and at the time of azeotropic dehydration, two or more functional groups are added. A method for producing a highly expansive water-absorbent polymer, which comprises crosslinking with a crosslinking agent having a group.
【請求項2】高分子分散剤として A)アクリル酸アルキルエステルまたはメタクリル酸ア
ルキルエステルで、アルキル基の炭素数が8以上の単量
体40〜95重量% B)カルボキシル基、アミノ基、第4級アンモニウム
基、ヒドロキシル基から選ばれる1種を有する、アクリ
ル酸、メタクリル酸、アクリルアミド、メタクリルアミ
ドの各誘導体から選ばれる1種または2種以上の単量体
5〜40重量% C)上記A及びB成分と共重合し得る不飽和単量体0〜
40重量% を構成成分とする共重合体である請求項1記載の製造方
法。
2. As a polymer dispersant, A) alkyl acrylate or methacrylic acid alkyl ester, in which 40 to 95% by weight of a monomer having an alkyl group having 8 or more carbon atoms B) a carboxyl group, an amino group, a fourth group 5 to 40% by weight of one or more monomers selected from each derivative of acrylic acid, methacrylic acid, acrylamide, and methacrylamide having one selected from a primary ammonium group and a hydroxyl group C) The above A and Unsaturated monomer that can be copolymerized with component B
The production method according to claim 1, which is a copolymer having 40% by weight as a constituent component.
【請求項3】架橋剤がエチレングリコールジグリシジル
エーテルである請求項1記載の製造方法。
3. The method according to claim 1, wherein the crosslinking agent is ethylene glycol diglycidyl ether.
【請求項4】架橋剤がモノマーに対して0.05〜2重量%
用いられる請求項1記載の製造方法。
4. The cross-linking agent is 0.05 to 2% by weight based on the monomer.
The manufacturing method according to claim 1, which is used.
【請求項5】脂肪族炭化水素溶媒がn−ヘキサン,n−
ヘプタン,シクロヘキサンから選ばれる1種または2種
以上の混合物である請求項1記載の製造方法。
5. The aliphatic hydrocarbon solvent is n-hexane, n-
The production method according to claim 1, which is one kind or a mixture of two or more kinds selected from heptane and cyclohexane.
JP63038638A 1988-02-23 1988-02-23 Method for producing high expansion water-absorbent polymer Expired - Lifetime JPH0645651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038638A JPH0645651B2 (en) 1988-02-23 1988-02-23 Method for producing high expansion water-absorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038638A JPH0645651B2 (en) 1988-02-23 1988-02-23 Method for producing high expansion water-absorbent polymer

Publications (2)

Publication Number Publication Date
JPH01213307A JPH01213307A (en) 1989-08-28
JPH0645651B2 true JPH0645651B2 (en) 1994-06-15

Family

ID=12530784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038638A Expired - Lifetime JPH0645651B2 (en) 1988-02-23 1988-02-23 Method for producing high expansion water-absorbent polymer

Country Status (1)

Country Link
JP (1) JPH0645651B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926120A1 (en) * 1989-08-08 1991-02-14 Basf Ag METHOD FOR PRODUCING FINE-PART POLYMER POWDER
US5492962A (en) * 1990-04-02 1996-02-20 The Procter & Gamble Company Method for producing compositions containing interparticle crosslinked aggregates
DK0533192T3 (en) * 1991-09-20 1997-06-30 Lucky Ltd Process for producing a highly water-absorbing resin
AU718417B2 (en) * 1995-11-14 2000-04-13 Stockhausen Gmbh & Co. Kg Water additive and method for fire prevention and fire extinguishing
US8003210B2 (en) 2005-05-16 2011-08-23 Sumitomo Seika Chemicals Co., Ltd. Process for producing water-absorbing resin particles, water-absorbing resin particles made by the process, and absorbent materials and absorbent articles made by using the particles
JP5256590B2 (en) 2006-08-04 2013-08-07 東亞合成株式会社 Method for producing polymer fine particles
US10737259B2 (en) * 2018-08-31 2020-08-11 Pall Corporation Salt tolerant anion exchange medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018690A (en) * 1984-06-08 1985-01-30 松下電器産業株式会社 Piping joint
JPS60147475A (en) * 1984-01-11 1985-08-03 Arakawa Chem Ind Co Ltd Manufacture of water-absorptive resin
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147475A (en) * 1984-01-11 1985-08-03 Arakawa Chem Ind Co Ltd Manufacture of water-absorptive resin
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer
JPS6018690A (en) * 1984-06-08 1985-01-30 松下電器産業株式会社 Piping joint

Also Published As

Publication number Publication date
JPH01213307A (en) 1989-08-28

Similar Documents

Publication Publication Date Title
JP3119900B2 (en) Method for producing superabsorbent polymer
US4758617A (en) Process for preparing water-absorbing resin
US4340706A (en) Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
EP0083022B1 (en) Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same
JP3155294B2 (en) Method for producing superabsorbent polymer
JP2530668B2 (en) Method for producing improved water absorbent resin
JPH06345819A (en) Production of highly water absorbing resin
JPH01207327A (en) Surface treating method of water absorbing resin
JPH02300210A (en) Production of highly water-absorptive polymer
US4647636A (en) Process for preparing highly water-absorbent resin
US4524186A (en) Process for producing water-absorbing resins
JPH04501877A (en) Manufacturing method of super absorbent resin
JPH0617394B2 (en) Method for producing super absorbent polymer
JPH03195713A (en) Production of polymer having high water absorption
JPH0639487B2 (en) Super absorbent resin manufacturing method
JPH0645651B2 (en) Method for producing high expansion water-absorbent polymer
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JPH03287604A (en) Production of water-absorptive resin of excellent porousness
JPS63297408A (en) Production of improved highly water-absorbing polymer
JPH03137129A (en) Pelletizing method of granular material
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JPH0555523B2 (en)
JP2917418B2 (en) Method for producing superabsorbent polymer
JPH0121164B2 (en)
JP2967952B2 (en) Method for producing porous polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14