JPH0121164B2 - - Google Patents

Info

Publication number
JPH0121164B2
JPH0121164B2 JP56073947A JP7394781A JPH0121164B2 JP H0121164 B2 JPH0121164 B2 JP H0121164B2 JP 56073947 A JP56073947 A JP 56073947A JP 7394781 A JP7394781 A JP 7394781A JP H0121164 B2 JPH0121164 B2 JP H0121164B2
Authority
JP
Japan
Prior art keywords
water
absorption rate
water absorption
organic solvent
hydrophilic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073947A
Other languages
Japanese (ja)
Other versions
JPS57187306A (en
Inventor
Fumio Fujita
Kazumoto Murase
Toshihiro Oonishi
Toshibumi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7394781A priority Critical patent/JPS57187306A/en
Publication of JPS57187306A publication Critical patent/JPS57187306A/en
Publication of JPH0121164B2 publication Critical patent/JPH0121164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多量の水を吸収する能力を有する吸水
性のすぐれた高分子材料(以下ヒドロゲルと称
す)の製造法に関し、その目的とするところは水
と接触して短時間の間にできるだけ多量の水を吸
収することができるヒドロゲルを提供することに
ある。 近年、親水性高分子材料の医療産業、食品工業
あるいは農芸分野への利用が進むにつれて、特に
水不溶性で、かつ親水性または吸収性を有するヒ
ドロゲルが各種のメンブランや液体クロマト担体
などの分離精製材料、酵素固定担体、微生物や植
物の培地、コンタクトレンズや縫合部被覆などの
医療用材料あるいは吸水性や保水性を利用する
種々の用途に用いられるようになつた。 これらの用途のうち、特に吸水性や保水性を利
用する用途分野に用いられるヒドロゲルとしては
水と接触して短時間の間にできるだけ多量の水を
吸収する能力を有することが望まれている。特に
生理用品やオムツなどの衛生用品に用いられるヒ
ドロゲルには水と接触して吸水速度の速いものが
求められている。 ヒドロゲルを製造する代表的な方法としては、
水溶性高分子物質に架橋剤を用いて架橋したり親
水基の一部を親油基で置換して水不溶性に変性す
る方法その他の方法が知られており、これまでに
もポリエチレンオキシド、ポリアクリル酸、ポリ
ビニルピロリドン、スルホン化ポリスチレン、ポ
リアクリル酸ソーダなどを架橋せしめたもの、セ
ルロース誘導体、ポリアクリロニトリルケン化
物、デンプン−アクリロニトリルグラフト共重合
体のケン化物あるいはビニルエステルとエチレン
系不飽和カルボン酸またはその誘導体との共重合
体ケン化物など天然あるいは合成高分子物質を用
いたいくつかの材料が提案されている。 これらのヒドロゲルの吸水速度は、その表面積
に影響をうける。すなわち一定の体積(重量)で
あればヒドロゲルの粒子が大きいと、細かい粒子
に比べて表面積の和は小さくなり、水と接触した
時、接触する面積が小さいので一定の重量のヒド
ロゲルが一定の重量の水を吸水する時間は遅くな
る。逆にヒドロゲルの粒子が細かくなるほど、そ
の表面積の和は大きくなり、水と接触した時接触
する面積が大きくなり、吸水する速度は速くな
る。また同程度の大きさの粒子のもので比較する
と球状のものより不定形でポーラスなものの方が
表面積が大きくなり吸水速度が速くなる。 しかし、ヒドロゲルの粒子が細かいと水と接触
したとき所謂″ままこ″現象が起こり必ずしも吸水
速度が速くならない場合がある。 本発明者らは上記の実情に鑑みヒドロゲルの吸
水速度を速くするために鋭意検討し、本発明に到
つたのである。 本発明の目的はヒドロゲルの粒径が細かくても
水と接触した時、ままこ現象を起こさずに、すみ
やかに水を膨潤することができる吸水速度の速い
ヒドロゲルを提供することにある。 本発明によればポリアクリル酸または/および
ポリアクリル酸アルカリ金属塩またはそれらの共
重合体の架橋物を親水性有機溶媒と水との混合溶
媒に接触させたのち、溶媒を除去し乾燥して得ら
れる塊状物を顆粒状に粉砕するか、あるいはポリ
アクリル酸または/およびポリアクリル酸アルカ
リ金属塩またはそれらの共重合体の架橋物を水で
膨潤させ親水性有機溶媒に接触させたのち溶媒を
除去し、乾燥して得られる塊状物を顆粒状に粉砕
するかして得られる。さらに該有機溶媒にポリエ
チレンオキシドもしくはポリエチレングリコール
もしくはポリオキシエチレン誘導体もしくはジア
ルキルスルホコハク酸塩またはそれらと常温固体
の高級脂肪酸もしくは高級脂肪酸エステルとの混
合物を溶解あるいは分散させておき、塊状物を同
様の処理をするとさらに吸水速度の速いものが得
られる。 本発明について以下詳しく説明する。 本発明で用いられるポリアクリル酸または/お
よびポリアクリル酸アルカリ金属塩またはそれら
の共重合体の架橋物は水を吸収して数倍から千数
百倍に膨潤するが水には溶解しないものである。
そのポリアクリル酸アルカリ金属塩としては、ポ
リアクリル酸ナトリウム、ポリアクリル酸カリウ
ムなどが挙げられる。架橋物を作るためには公知
の架橋手段がとられる。例えば2個以上の重合性
不飽和結合を有する架橋剤をアクリル酸または/
およびアクリル酸アルカリ金属塩を重合させる時
添加して共重合させると同時に架橋反応を行わせ
てもいい。架橋剤の具体例としては、ジアリルフ
タレート、ジアリルマレート、ジアリルテレフタ
レート、トリアリルシアヌレート、トリアリルホ
スフエートのごときポリアリル化合物、ジビニル
ベンゼン、N,N′−メチレンビスアクリルアミ
ド、エチレングリコールジアクリレート、ポリエ
チレングリコールアクリレート、エチレングリコ
ールジアクリレート、ポリエチレングリコールジ
アクリレート、エチレングリコールジメタクリレ
ート、ポリエチレングリコールジメタクリレー
ト、グリセリントリメタクリレートのごときポリ
ビニル化合物などが挙げられる。また架橋剤を用
いずに重合中に自己架橋を行なわせてもよい。ま
た、放射線照射などを行なつて架橋反応を行なわ
せてもよい。 また、アクリル酸または/およびアクリル酸ア
ルカリ金属塩を重合する方法としては、公知の方
法が適用される。すなわち通常は、水溶液重合、
乳化重合(逆相エマルジヨン重合)、懸濁重合
(逆相懸濁重合)あるいは塊状重合によるラジカ
ル重合によつて合成される。とくに水に溶解しな
い有機溶媒(例えばヘキサン、トルエンなど)中
にアクリル酸または/およびアクリル酸アルカリ
金属塩の水溶液を分散させて重合させる場合に
は、小さな球状のものができる。その際、有機溶
媒に溶解する分散安定剤、界面活性剤を用いるこ
とにより重合中の分散安定化をはかることができ
る。この重合法と本発明の製造法と組み合わせる
ととくに吸水速度の速いヒドロゲルが得られる。 また本発明で用いられるポリアクリル酸また
は/およびポリアクリル酸アルカリ金属塩または
それらの共重合体の架橋物の重合度には特に制限
はない。また粒径においても特に制限はないが、
前述のように吸水速度を速くするには粒径を小さ
くする必要があり、しかし粒径を小さくすると″
ままこ″現象が起こり吸水速度を却つて遅くする
場合があり、その際本発明を適用すると効果が著
しい。それ故粒径は500μ以下が好ましい。さら
に350μ以下がとくに効果が著しい。 本発明に用いられる親水性有機溶媒とは水との
相溶性がある有機溶媒であり、メタノール、エタ
ノール、プロパノールおよびアセトンなどが挙げ
られる。使用される親水性有機溶媒と水との割合
は90〜40:10〜60(重量)の範囲であり、好まし
くは75〜50:25〜50(重量)の範囲である。非水
溶性の有機溶媒を一部混合することも可能である
が、混合後の溶媒が親水性を示す範囲、すなわち
上記の混合割合で水と混合しても二層分離が生じ
ない範囲でなければならない。またこの水の量
は、ポリアクリル酸または/およびポリアクリル
酸アルカリ金属塩またはそれらの共重合体の架橋
物に対し同量〜4倍量(重量)であることが好ま
しい。 また本発明で用いられるポリエチレンオキシド
は分子量150000以上のものであり、またポリエチ
レングリコールは分子量が600以上のものが挙げ
られる。ポリオキシエチレン誘導体としてはポリ
オキシエチレンラウリルエーテル、ポリオキシエ
チレンセチルエーテル、ポリオキシエチレンステ
アリルエーテル、ポリオキシエチレンオレイルエ
ーテルなどのポリオキシエチレンアルキルエーテ
ル、ポリオキシエチレンオクチルフエノールエー
テル、ポリオキシエチレンノニルフエノールエー
テルなどのポリオキシエチレンアルキルフエノー
ルエーテル、ポリオキシエチレンソルビタンモノ
ラウレート、ポリオキシエチレンソルビタンモノ
ステアレート、ポリオキシエチレンソルビタンモ
ノオレエートなどのポリオキシエチレンアシルエ
ステルなどが挙げられる。 またジアルキルスルホコハク酸塩としてはソジ
ウムジ(2−エチルヘキシル)スルホサクシネー
トが挙げられる。 また常温固体の高級脂肪酸としてはステアリン
酸またはパルミチン酸などが挙げられる。 また常温固体の高級脂肪酸エステルとしてはロ
ウやグリセリンモノステアレートなどが挙げられ
る。 それらの使用量は、該架橋物に対し0.001重量
%〜50重量%の範囲である。好ましくは0.01重量
%〜20重量%の範囲である。さらに好ましくは、
0.01重量%〜10重量%の範囲である。 以上の如き方法で得られる本発明の吸水速度の
速いヒドロゲルは、はじめにも述べたように水と
接触した時ままこ現象を起こさずにすみやかに水
を吸収して膨潤することができるものである。ま
たヒドロゲルが本来もつている吸水率を損なうも
のではない。吸水速度を特に重要とされる種々の
衛生材料、例えば使い捨ておしめ、タンポン、衛
生綿、ほうたい、ナプキンなどの用途分野に重宝
される。その他の分野においても吸水速度が速い
ことはヒドロゲルとして好ましいことであるの
で、油中の水の分離剤、その他の脱水または乾燥
剤として、あるいは植物や土壌などの保水剤、液
体クロマト担体その他吸水性、保水性を利用する
種々の用途に好適に用いられる。 本発明の吸水速度の速いヒドロゲルには、その
性質に悪影響を及ぼさない範囲において着色剤、
香料、その他の添加剤や無機、有機の種々の充て
ん剤などを加えることができる。さらに本発明の
ヒドロゲルは紙、繊維、布、その他の異種材料と
組み合わせて用いることもできる。 次に実施例により本発明をさらに詳細に説明す
るが、本発明はこれらによつてなんら限定される
ものではない。 なお、実施例中における吸水率は吸水率=吸収
後のゲル重量/乾燥ゲル重量で表わした。 また、部は重量部を表わす。 また、吸水速度は100c.c.のビーカーに水50c.c.を
入れ、撹拌しながら0.5gのヒドロゲルを加え、
すべての水を吸収し水の流動性がなくなるまでに
要する時間を測定し、それで表わした。 実施例 1 重合槽中に水30部を仕込み、水酸化ナトリウム
6.7部を加えて撹拌しながら溶解させた。氷冷し
ながらアクリル酸15部を徐々に加え、撹拌しなが
ら中和させた。過硫酸カリウム0.0522部および
N,N′−メチレンビスアクリルアミド0.0085部を
加える。 さらにソルビタンモノラウレート(HLB8.0)
0.9部およびノルマルヘキサン66部を加え、撹拌
しながら60℃で3時間重合させた。重合後静置
し、ヘキサン層を除去し、撹拌しながらポリオキ
シエチレンノニルフエノールエーテル
(HLB14.5)0.5部とメタノール50部の溶液へ加え
るとヒドロゲルが沈でんする。溶媒を過して除
き、80℃で15時間乾燥すると塊状物が得られる。
それを顆粒状に粉砕してふるいにかけ整粒し
177μ〜250μの粉末を得た。その吸水率は620g/
gであつた。吸水速度は10秒であつた。 実施例 2 重合槽中に水30部を仕込み、水酸化ナトリウム
6.7部を加えて撹拌しながら溶解させた。氷冷し
ながらアクリル酸15部を徐々に加え、撹拌しなが
ら中和させた。過流酸カリウム0.0522部および
N,N′−メチレンビスアクリルアミド0.0085部を
加える。 さらにソルビタンモノラウレート(HLB8.0)
0.9部およびノルマルヘキサン66部を加え、撹拌
しながら60℃で3時間重合させた。重合後、静置
し、ヘキサン層を除去し撹拌しながらメタノール
50部へ加えるとヒドロゲルが沈でんする。溶媒を
過して除き80℃で15時間乾燥すると塊状物が得
られる。それを顆粒状に粉砕してふるいにかけ整
粒し、177μ〜250μの粉末を得た。その吸水率は
620g/gであつた。吸水速度は13秒でつた。 比較例 1 重合槽中に水30部を仕込み、水酸化ナトリウム
6.7部を加えて撹拌しながら溶解させた。氷冷し
ながらアクリル酸15部を徐々に加え、撹拌しなが
ら中和させた。過流酸カリウム0.0522部および
N,N′−メチレンビスアクリルアミド0.0085部を
加える。 さらにソルビタンモノラウレート(HLB8.0)
0.9部およびノルマルヘキサン66部を加え撹拌し
ながら60℃で3時間重合させた。重合終了後固液
分離して80℃で15時間減圧乾燥することによつて
乾燥ヒドロゲル粉末を得た。吸水率は620g/g
であり、吸水速度は16秒であつた。 実施例 3 実施例1においてポリオキシエチレンノニルフ
エノールエーテル0.5部の代わりにポリエチレン
オキシドもしくはポリエチレングリコールもしく
はポリオキシエチレン誘導体もしくはジアルキル
スルホコハク酸塩またはそれらと高級脂肪酸もし
くは高級脂肪酸エステルとの混合物を用いた。吸
水率、吸水速度を第1表に示す。
The present invention relates to a method for producing a highly water-absorbing polymeric material (hereinafter referred to as hydrogel) that has the ability to absorb a large amount of water. The objective is to provide a hydrogel capable of absorbing water. In recent years, as the use of hydrophilic polymer materials in the medical industry, food industry, and agricultural fields has progressed, hydrogels that are particularly water-insoluble and have hydrophilic or absorbent properties are being used as separation and purification materials such as various membranes and liquid chromatography carriers. It has come to be used as an enzyme-immobilized carrier, a culture medium for microorganisms and plants, a medical material such as contact lenses and suture coverings, and a variety of other uses that utilize water absorption and water retention. Among these applications, hydrogels used particularly in fields that utilize water absorption or water retention are desired to have the ability to absorb as much water as possible in a short period of time upon contact with water. In particular, hydrogels used in sanitary products such as sanitary products and diapers are required to have a high water absorption rate upon contact with water. Typical methods for producing hydrogels include:
Methods of crosslinking water-soluble polymeric substances using a crosslinking agent, substituting some of the hydrophilic groups with lipophilic groups to make them water-insoluble, and other methods are known. Crosslinked products of acrylic acid, polyvinylpyrrolidone, sulfonated polystyrene, sodium polyacrylate, etc., cellulose derivatives, saponified polyacrylonitrile products, saponified products of starch-acrylonitrile graft copolymers, or vinyl esters and ethylenically unsaturated carboxylic acids or Several materials using natural or synthetic polymeric substances, such as saponified copolymers with derivatives thereof, have been proposed. The water absorption rate of these hydrogels is influenced by their surface area. In other words, for a given volume (weight), if the hydrogel particles are large, the sum of their surface areas will be smaller than that of smaller particles. The time it takes to absorb water becomes slower. Conversely, the finer the hydrogel particles, the larger the sum of their surface areas, the larger the contact area when they come into contact with water, and the faster the rate of water absorption. Also, when comparing particles of similar size, amorphous and porous particles have a larger surface area and a faster water absorption rate than spherical particles. However, if the hydrogel particles are small, a so-called "sticky" phenomenon occurs when they come into contact with water, and the water absorption rate may not necessarily increase. In view of the above-mentioned circumstances, the present inventors conducted extensive studies to increase the water absorption rate of hydrogels, and arrived at the present invention. An object of the present invention is to provide a hydrogel with a high water absorption rate that can quickly swell with water without causing a lump phenomenon when it comes into contact with water even if the hydrogel has a small particle size. According to the present invention, a crosslinked product of polyacrylic acid and/or an alkali metal salt of polyacrylic acid or a copolymer thereof is brought into contact with a mixed solvent of a hydrophilic organic solvent and water, and then the solvent is removed and dried. The resulting lumps are pulverized into granules, or a crosslinked product of polyacrylic acid and/or an alkali metal salt of polyacrylic acid or a copolymer thereof is swollen with water, brought into contact with a hydrophilic organic solvent, and then the solvent is removed. It is obtained by removing and drying the resulting lumps and pulverizing them into granules. Furthermore, polyethylene oxide, polyethylene glycol, polyoxyethylene derivatives, dialkyl sulfosuccinates, or mixtures of these and higher fatty acids or higher fatty acid esters that are solid at room temperature are dissolved or dispersed in the organic solvent, and the lumps are treated in the same manner. This results in a product with even faster water absorption. The present invention will be explained in detail below. The crosslinked products of polyacrylic acid and/or alkali metal salts of polyacrylic acid or their copolymers used in the present invention absorb water and swell from several times to several thousand times, but do not dissolve in water. be.
Examples of the alkali metal salt of polyacrylate include sodium polyacrylate and potassium polyacrylate. In order to produce a crosslinked product, known crosslinking means are used. For example, a crosslinking agent having two or more polymerizable unsaturated bonds may be added to acrylic acid or
Alternatively, an alkali metal salt of acrylic acid may be added at the time of polymerization to carry out the crosslinking reaction at the same time as the copolymerization. Specific examples of crosslinking agents include polyallyl compounds such as diallyl phthalate, diallyl maleate, diallyl terephthalate, triallyl cyanurate, and triallyl phosphate, divinylbenzene, N,N'-methylenebisacrylamide, ethylene glycol diacrylate, and polyethylene. Examples include polyvinyl compounds such as glycol acrylate, ethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, and glycerin trimethacrylate. Further, self-crosslinking may be carried out during polymerization without using a crosslinking agent. Alternatively, the crosslinking reaction may be carried out by irradiation with radiation or the like. Further, as a method for polymerizing acrylic acid and/or an alkali metal salt of acrylic acid, a known method can be applied. That is, usually aqueous solution polymerization,
It is synthesized by radical polymerization using emulsion polymerization (reverse-phase emulsion polymerization), suspension polymerization (reverse-phase suspension polymerization), or bulk polymerization. In particular, when an aqueous solution of acrylic acid or/and an alkali metal salt of acrylic acid is dispersed and polymerized in an organic solvent that does not dissolve in water (for example, hexane, toluene, etc.), small spherical particles are formed. At that time, dispersion stabilization during polymerization can be achieved by using a dispersion stabilizer or surfactant that dissolves in an organic solvent. When this polymerization method is combined with the production method of the present invention, a hydrogel with particularly high water absorption rate can be obtained. Further, there is no particular restriction on the degree of polymerization of the crosslinked product of polyacrylic acid and/or alkali metal salt of polyacrylic acid or a copolymer thereof used in the present invention. There is also no particular restriction on particle size, but
As mentioned above, in order to increase the water absorption rate, it is necessary to reduce the particle size, but if the particle size is reduced,
In some cases, the "mamako" phenomenon occurs and the water absorption rate is rather slowed down, and in such cases, applying the present invention has a significant effect.Therefore, the particle size is preferably 500μ or less.Furthermore, 350μ or less is particularly effective.In the present invention The hydrophilic organic solvent used is an organic solvent that is compatible with water, and examples include methanol, ethanol, propanol, and acetone.The ratio of the hydrophilic organic solvent and water used is 90 to 40:10. -60 (by weight), preferably 75-50:25-50 (by weight).It is also possible to partially mix a water-insoluble organic solvent, but if the solvent after mixing is It must be in a range that shows hydrophilicity, that is, a range that does not cause two-layer separation even when mixed with water at the above mixing ratio.Also, the amount of water must be within the range where polyacrylic acid or/and alkali metal salt of polyacrylic acid or polyacrylic acid alkali metal salt or The amount is preferably the same to 4 times the amount (weight) of the crosslinked copolymer.Also, the polyethylene oxide used in the present invention has a molecular weight of 150,000 or more, and the polyethylene glycol has a molecular weight of 600 or more. Examples of polyoxyethylene derivatives include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, Examples include polyoxyethylene alkyl phenol ethers such as polyoxyethylene nonyl phenol ether, polyoxyethylene acyl esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, and polyoxyethylene sorbitan monooleate. Examples of dialkyl sulfosuccinates include sodium di(2-ethylhexyl) sulfosuccinate. Examples of higher fatty acids that are solid at room temperature include stearic acid and palmitic acid. Examples of higher fatty acid esters that are solid at room temperature include wax and glycerin. Examples include monostearate. The amount used thereof is in the range of 0.001% to 50% by weight based on the crosslinked product. Preferably, it is in the range of 0.01% to 20% by weight. More preferably,
It ranges from 0.01% to 10% by weight. As mentioned in the introduction, the hydrogel of the present invention obtained by the method described above can quickly absorb water and swell without causing the swelling phenomenon when it comes into contact with water. . Moreover, it does not impair the water absorption rate that hydrogel originally has. It is useful in various sanitary materials where water absorption speed is especially important, such as disposable diapers, tampons, sanitary cotton, hot towels, and napkins. A high water absorption rate is also desirable for hydrogels in other fields, so they can be used as water separation agents in oil, other dehydration or drying agents, water retention agents for plants and soil, liquid chromatography carriers, and other water absorbing agents. , is suitably used in various applications that utilize water retention. The hydrogel with a high water absorption rate of the present invention may contain a coloring agent as long as it does not adversely affect its properties.
Flavors, other additives, and various inorganic and organic fillers can be added. Additionally, the hydrogels of the present invention can be used in combination with paper, fibers, cloth, and other dissimilar materials. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In addition, the water absorption rate in the examples was expressed as water absorption rate=gel weight after absorption/dry gel weight. Moreover, parts represent parts by weight. In addition, the water absorption rate is as follows: Put 50 c.c. of water in a beaker with a water absorption rate of 100 c.c., add 0.5 g of hydrogel while stirring,
The time required for all the water to be absorbed and the fluidity of the water to disappear was measured and expressed as such. Example 1 Put 30 parts of water into a polymerization tank and add sodium hydroxide.
6.7 parts were added and dissolved while stirring. While cooling with ice, 15 parts of acrylic acid was gradually added and neutralized with stirring. Add 0.0522 parts of potassium persulfate and 0.0085 parts of N,N'-methylenebisacrylamide. Plus sorbitan monolaurate (HLB8.0)
0.9 parts and 66 parts of n-hexane were added, and polymerization was carried out at 60°C for 3 hours while stirring. After polymerization, let stand, remove the hexane layer, and add to a solution of 0.5 parts of polyoxyethylene nonylphenol ether (HLB14.5) and 50 parts of methanol while stirring, and the hydrogel will precipitate. The solvent is filtered off and a mass is obtained after drying at 80° C. for 15 hours.
Grind it into granules and sieve it to size it.
A powder of 177μ to 250μ was obtained. Its water absorption rate is 620g/
It was hot at g. The water absorption rate was 10 seconds. Example 2 Put 30 parts of water into a polymerization tank and add sodium hydroxide.
6.7 parts were added and dissolved while stirring. While cooling with ice, 15 parts of acrylic acid was gradually added and neutralized with stirring. Add 0.0522 parts of potassium persulfate and 0.0085 parts of N,N'-methylenebisacrylamide. Plus sorbitan monolaurate (HLB8.0)
0.9 parts and 66 parts of n-hexane were added, and polymerization was carried out at 60°C for 3 hours while stirring. After polymerization, let it stand, remove the hexane layer, and add methanol while stirring.
When added to 50 parts, the hydrogel precipitates. After filtering off the solvent and drying at 80° C. for 15 hours, a mass is obtained. It was ground into granules and sized through a sieve to obtain a powder of 177μ to 250μ. Its water absorption rate is
It was 620g/g. Water absorption speed reached 13 seconds. Comparative example 1 Add 30 parts of water to a polymerization tank and add sodium hydroxide.
6.7 parts were added and dissolved while stirring. While cooling with ice, 15 parts of acrylic acid was gradually added and neutralized with stirring. Add 0.0522 parts of potassium persulfate and 0.0085 parts of N,N'-methylenebisacrylamide. Plus sorbitan monolaurate (HLB8.0)
0.9 parts and 66 parts of n-hexane were added, and the mixture was polymerized at 60°C for 3 hours with stirring. After completion of polymerization, solid-liquid separation was performed and dry hydrogel powder was obtained by drying under reduced pressure at 80°C for 15 hours. Water absorption rate is 620g/g
The water absorption rate was 16 seconds. Example 3 In Example 1, polyethylene oxide, polyethylene glycol, a polyoxyethylene derivative, a dialkyl sulfosuccinate, or a mixture thereof with a higher fatty acid or higher fatty acid ester was used in place of 0.5 part of polyoxyethylene nonylphenol ether. Table 1 shows the water absorption rate and water absorption rate.

【表】 実施例 4 比較例1において合成した乾燥ヒドロゲル10部
をとり、メタノール30部と水20部とからなる混合
溶媒に加える。室温で10分間放置し上澄液を除去
して80℃で15時間乾燥すると塊状物が得られる。
それを顆粒状に粉砕してふるいにかけ整粒し
177μ〜250μの粉末を得た。その吸水率は600g/
gであつた。吸水速度は12秒であつた。
[Table] Example 4 10 parts of the dry hydrogel synthesized in Comparative Example 1 was taken and added to a mixed solvent consisting of 30 parts of methanol and 20 parts of water. Leave to stand at room temperature for 10 minutes, remove the supernatant, and dry at 80°C for 15 hours to obtain a lump.
Grind it into granules and sieve it to size it.
A powder of 177μ to 250μ was obtained. Its water absorption rate is 600g/
It was hot at g. The water absorption rate was 12 seconds.

Claims (1)

【特許請求の範囲】 1 ポリアクリル酸または/およびポリアクリル
酸アルカリ金属塩またはそれらの共重合体の架橋
物を親水性有機溶媒と水との混合溶媒に接触させ
たのち溶媒を除去し、乾燥して得られる塊状物を
顆粒状に粉砕することを特徴とする吸水速度の速
い高吸水性高分子材料の製造法。 2 親水性有機溶媒がポリエチレンオキシド、ポ
リエチレングリコール、ポリオキシエチレン誘導
体もしくはジアルキルスルホコハク酸塩またはこ
れらの少なくとも一種と常温固体の高級脂肪酸も
しくは高級脂肪酸エステルとの混合物を溶解ある
いは分散せしめた親水性有機溶媒である特許請求
の範囲第1項記載の吸水速度の速い高吸水性高分
子材料の製造法。 3 ポリアクリル酸または/およびポリアクリル
酸アルカリ金属塩のまたはそれらの共重合体架橋
物を水で膨潤させ、親水性有機溶媒に接触させた
のち溶媒を除去し、乾燥して得られる塊状物を顆
粒状に粉砕することを特徴とする吸水速度の速い
高吸水性高分子材料の製造法。 4 親水性有機溶媒がポリエチレンオキシド、ポ
リエチレングリコール、ポリオキシエチレン誘導
体もしくはジアルキルスルホコハク酸塩またはこ
れらの少なくとも一種と常温固体の高級脂肪酸も
しくは高級脂肪酸エステルとの混合物を溶解ある
いは分散せしめた親水性有機溶媒である特許請求
の範囲第3項記載の吸水速度の速い高吸水性高分
子材料の製造法。
[Claims] 1. A crosslinked product of polyacrylic acid or/and an alkali metal salt of polyacrylic acid or a copolymer thereof is brought into contact with a mixed solvent of a hydrophilic organic solvent and water, and then the solvent is removed and dried. A method for producing a highly water-absorbing polymeric material with a high water absorption rate, which comprises pulverizing the obtained lump into granules. 2. The hydrophilic organic solvent is a hydrophilic organic solvent in which polyethylene oxide, polyethylene glycol, polyoxyethylene derivatives, dialkyl sulfosuccinates, or a mixture of at least one of these and higher fatty acids or higher fatty acid esters that are solid at room temperature are dissolved or dispersed. A method for producing a super absorbent polymer material having a high water absorption rate according to claim 1. 3 A crosslinked product of polyacrylic acid and/or an alkali metal salt of polyacrylic acid or a copolymer thereof is swollen with water, brought into contact with a hydrophilic organic solvent, the solvent is removed, and the resulting mass is dried. A method for producing a highly water-absorbing polymeric material that has a high water absorption rate and is characterized by pulverizing it into granules. 4. The hydrophilic organic solvent is a hydrophilic organic solvent in which polyethylene oxide, polyethylene glycol, polyoxyethylene derivatives, dialkyl sulfosuccinates, or a mixture of at least one of these and higher fatty acids or higher fatty acid esters that are solid at room temperature are dissolved or dispersed. A method for producing a super absorbent polymeric material having a high water absorption rate according to claim 3.
JP7394781A 1981-05-15 1981-05-15 Production of highly water-absorbing polymer material having high water absorption rate Granted JPS57187306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7394781A JPS57187306A (en) 1981-05-15 1981-05-15 Production of highly water-absorbing polymer material having high water absorption rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7394781A JPS57187306A (en) 1981-05-15 1981-05-15 Production of highly water-absorbing polymer material having high water absorption rate

Publications (2)

Publication Number Publication Date
JPS57187306A JPS57187306A (en) 1982-11-18
JPH0121164B2 true JPH0121164B2 (en) 1989-04-20

Family

ID=13532792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7394781A Granted JPS57187306A (en) 1981-05-15 1981-05-15 Production of highly water-absorbing polymer material having high water absorption rate

Country Status (1)

Country Link
JP (1) JPS57187306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2256644A (en) * 1991-06-11 1992-12-16 Sigma Prod Chim Thickening agents

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101536A (en) * 1984-10-23 1986-05-20 Nippon Shokubai Kagaku Kogyo Co Ltd Granulation of highly water-absorptive resin powder
JPS6197333A (en) * 1984-10-17 1986-05-15 Nippon Shokubai Kagaku Kogyo Co Ltd Granulation of highly water-absorptive resin powder
FR2665903B1 (en) * 1990-08-14 1992-12-04 Hoechst France NOVEL POWDERED SUPERABSORBENTS CONTAINING SILICA, THEIR PREPARATION PROCESS AND THEIR APPLICATION.
GB9210034D0 (en) * 1992-05-09 1992-06-24 Gel Chem Ltd Improvements in acid thickeners
US6589444B2 (en) 1997-11-10 2003-07-08 Honeywell International Inc. Process for separating water from chemical mixtures
US6101818A (en) * 1997-11-10 2000-08-15 Alliedsignal Inc. Process for separating water from chemical mixtures
BG855Y1 (en) * 2003-10-16 2007-01-31 Институт По Инженерна Химия При Бан Means for preservation of moisture and the initial soil structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693716A (en) * 1979-12-27 1981-07-29 Seitetsu Kagaku Co Ltd Production of highly water-absorptive acrylic acid polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693716A (en) * 1979-12-27 1981-07-29 Seitetsu Kagaku Co Ltd Production of highly water-absorptive acrylic acid polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2256644A (en) * 1991-06-11 1992-12-16 Sigma Prod Chim Thickening agents
GB2256644B (en) * 1991-06-11 1994-11-09 Sigma Prod Chim Improved thickening agents

Also Published As

Publication number Publication date
JPS57187306A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
US6335406B1 (en) Method for production of absorbent resin excelling in durability
EP0497623B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
JP2574032B2 (en) Water-absorbing resin particles and method for producing the same
US6300275B1 (en) Resilient superabsorbent compositions
US4286082A (en) Absorbent resin composition and process for producing same
US6060557A (en) Absorbing agents for water and aqueous liquids and process for their production and use
JP4496225B2 (en) Super absorbent polymer
US4914170A (en) Superabsorbent polymeric compositions and process for producing the same
JP2003518150A (en) High permeability and low absorption capacity polymer
JPS6136763B2 (en)
JPH0710923B2 (en) Super absorbent polymer granulation method
JP3175790B2 (en) Method for producing particulate hydrogel polymer and water absorbent resin
US4342858A (en) Polymeric polyelectrolytes
JPH0710922B2 (en) Granulation method of super absorbent polymer
JPH0121164B2 (en)
JPH02153903A (en) Production of highly hygroscopic resin
JPH01292004A (en) Production of highly water-absorbable resin
JPH0230336B2 (en)
JPS61157513A (en) Production of polymer having high water absorption property
JPH0323574B2 (en)
JP7291686B2 (en) Water-absorbing resin particles and method for producing the same
JPH0931203A (en) Hydrophilic highly swellable hydrogel
JPH01156304A (en) Manufacture of water-absorptive fine particle
AU618757B2 (en) Process for preparing absorbent polymers
JPS62135553A (en) Water-absorbing polymer composition