WO2013125407A1 - Moisture absorptive and desorptive polymer and material containing such polymer - Google Patents

Moisture absorptive and desorptive polymer and material containing such polymer Download PDF

Info

Publication number
WO2013125407A1
WO2013125407A1 PCT/JP2013/053338 JP2013053338W WO2013125407A1 WO 2013125407 A1 WO2013125407 A1 WO 2013125407A1 JP 2013053338 W JP2013053338 W JP 2013053338W WO 2013125407 A1 WO2013125407 A1 WO 2013125407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
vinyl
resin
hygroscopic
group
Prior art date
Application number
PCT/JP2013/053338
Other languages
French (fr)
Japanese (ja)
Inventor
小見山拓三
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to JP2014500669A priority Critical patent/JP5979215B2/en
Priority to CN201380010412.7A priority patent/CN104144952B/en
Priority to KR1020147021574A priority patent/KR101981697B1/en
Publication of WO2013125407A1 publication Critical patent/WO2013125407A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile

Definitions

  • the present invention provides a moisture absorbing / releasing weight capable of providing a coating film or a resin molded body having high moisture absorption and moisture permeation performance and excellent water resistance by being added to a coating film or a resin molded body.
  • the present invention relates to a coalescence and a molded body containing the polymer.
  • inorganic moisture absorbents such as lithium chloride, calcium chloride, magnesium chloride, and phosphorus pentoxide have been used as a means for removing moisture in the air, but these inorganic moisture absorbents have a high moisture absorption rate and a moisture absorption rate.
  • hygroscopic agents such as silica gel, zeolite, sodium sulfate, activated alumina, activated carbon and the like have a drawback in that they have a small amount of moisture absorption and a low moisture absorption rate and require a high temperature for regeneration.
  • Patent Document 1 describes organic high moisture absorbing / releasing fibers, but in the case of a fiber, the processability of itself is good, but in addition to paints, resins, etc., it should be mixed uniformly. Is difficult to use as an additive. Further, when trying to obtain fibers industrially, a certain degree of fiber diameter is required, and therefore there is a problem that the surface area cannot be increased so much that the moisture absorption and desorption rate is also reduced. Furthermore, when the reaction is carried out in a fibrous form, there is a problem that the reaction tends to be non-uniform and the production cost is increased.
  • Patent Document 2 describes hygroscopic fine particles, which is more desirable in terms of uniformity in addition to paints, resins, and the like.
  • the coating film and resin molded product obtained by adding the fine particles have an appearance that becomes whitish or changes shape when wet with water.
  • durability that is, water resistance.
  • An object of the present invention is to provide a polymer capable of giving high moisture absorption / release properties and high moisture permeability when blended in a material, a polymer capable of giving excellent water resistance, and a material containing such a polymer. Is to provide.
  • a moisture-absorbing / releasing polymer characterized in that it is a vinyl polymer containing 1 to 7 mmol / g of salt-type carboxyl groups and 0.01 to 10 mmol / g of hydroxyl groups and having a crosslinked structure.
  • (2) Contains a vinyl monomer having a structure capable of generating a salt-type carboxyl group by hydrolysis, a vinyl monomer having a structure capable of generating a hydroxyl group by hydrolysis, and a crosslinkable vinyl monomer
  • the hygroscopic polymer as described in (1) which is obtained by hydrolyzing a copolymer obtained by polymerizing a monomer mixture.
  • the hygroscopic polymer of the present invention has high hygroscopic performance, and a material having excellent hygroscopic performance and moisture permeability can be obtained by adding to the raw material. Furthermore, since the hygroscopic polymer of the present invention contains a hydroxyl group, it can react with an electrophilic functional group such as an isocyanate group to form a bond. By utilizing this property, it is possible to obtain a material in which the hygroscopic polymer is chemically bonded. The material of the present invention has excellent moisture absorption performance and moisture permeability performance and also has excellent water resistance.
  • the hygroscopic polymer of the present invention contains a salt-type carboxyl group in an amount of 1 to 7 mmol / g, preferably 3 to 7 mmol / g.
  • the salt-type carboxyl group is a polar group having high hydrophilicity for expressing hygroscopicity, and when it is intended to obtain high hygroscopic performance, it is preferable to contain as much of the group as possible. However, it is necessary to take an appropriate balance with respect to the ratio of the hydroxyl group and the crosslinked structure described later. Especially when the amount of the polar group exceeds 7 mmol / g, the ratio of the crosslinked structure that can be introduced becomes too small, and the superabsorbent resin. As a result, there are problems such as stickiness and volume change due to water swelling.
  • the amount of the polar group decreases.
  • the amount of the polar group is preferably 1 mmol / g or more and more preferably 3 mmol / g or more in terms of moisture absorption performance.
  • Examples of the salt type of the carboxyl group, that is, the counter cation include, for example, alkali metals such as Li, Na, K, Rb, and Cs, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, Cu, Other metals such as Zn, Al, Mn, Ag, Fe, Co, and Ni, NH4, amine, and the like can be given.
  • the carboxyl group which uses H as a counter cation coexists with these salt-type carboxyl groups.
  • the ratio of the total carboxyl group to the salt-type carboxyl group is not particularly limited, but the ratio of the salt-type carboxyl group is preferably higher from the viewpoint of moisture absorption / release rate.
  • the hygroscopic polymer of the present invention contains a hydroxyl group in an amount of 0.01 to 10 mmol / g, more preferably 0.01 to 9 mmol / g, still more preferably 0.05 to 1 mmol / g.
  • the key to exhibiting excellent water resistance, which is the greatest point of the present invention, is that the hygroscopic polymer has a hydroxyl group.
  • a polymer having a salt-type carboxyl group and a moisture absorption / release performance has been seen in the prior art, but there is no report of one having a hydroxyl group, let alone an electrophilic functional group such as an isocyanate group.
  • the present inventors have introduced a hydroxyl group into the moisture-absorbing / releasing polymer, and when such a polymer is added to a resin or the like having a component having an electrophilic functional group such as an isocyanate group such as a urethane resin, it has excellent water resistance.
  • the present inventors have found that a resin molded body having properties can be obtained. This is thought to be due to the formation of covalent bonds by reaction with electrophilic functional groups such as isocyanate groups contained in resin constituents, as well as the formation of hydrogen bonds and ionic bonds by the hydroxyl groups themselves. .
  • the mechanism of water resistance expression is not clear, it is considered that the affinity of the interface between the polymer of the present invention and the resin is improved by these bonds.
  • the affinity of the interface is increased, so that the interface does not dissociate even when there is a volume change accompanying water absorption drying, and whitening and deformation are suppressed. Further, according to this mechanism, when the moisture-absorbing / releasing polymer of the present invention is blended with a resin, a binder, a matrix, or the like, an improvement in strength, wear resistance and the like can be expected.
  • the hydroxyl group is a functional group that exhibits water resistance as described above, it is preferable to contain as much of the group as possible in order to obtain high water resistance.
  • the amount of hydroxyl groups is less than 0.01 mmol / g, sufficient water resistance cannot be obtained.
  • the selection range of the salt-type carboxyl group amount is widened, which is more preferable.
  • the hygroscopic polymer of the present invention has a crosslinked structure.
  • a polymer containing a large amount of a salt-type carboxyl group or hydroxyl group having a high affinity with water such as the hygroscopic polymer of the present invention, is in contact with water and becomes sticky or swells violently in water. In some cases, the polymer may be dissolved in water. When such a polymer is blended with a resin or the like, the characteristics may be adversely affected. In the hygroscopic polymer of the present invention, such a problem is prevented by introducing a crosslinked structure.
  • the cross-linked structure employed in the present invention is not particularly limited as long as it is not physically or chemically modified in accordance with moisture absorption or moisture release.
  • Cross-linking by covalent bond, ionic cross-linking, polymer intermolecular interaction or crystal structure Any structure such as cross-linking may be used.
  • a crosslinked structure by a covalent bond is most preferable from the viewpoint of strength and stability.
  • the hygroscopic polymer of the present invention is made of a vinyl polymer. Since vinyl-based polymers are composed of carbon-carbon bonds in the main chain, they are more chemically active than polyamide-based polymers containing carbon-nitrogen bonds in the main chain and polyester-based polymers having carbon-oxygen bonds. It is not easily affected, and has an advantage that it can be easily subjected to hydrolysis or neutralization when introducing a salt-type carboxyl group or hydroxyl group.
  • the form of the hygroscopic polymer itself in the present invention is not limited, but in the case of particles such as emulsions and powders, it can be used as an additive for various materials in various applications. Its application range is wide and useful. In the case of such particles, the size of the particles can be appropriately selected according to the use and is not particularly limited. However, when the average particle size is preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less, various additives As the range of application as a widening, it has a large practical value. Also, there is no particular limitation on the lower limit. In the case of an emulsion, it is preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more from the viewpoint of ease of production. In the case of producing by suspension polymerization, the average particle size is about 1 to 5 ⁇ m at the smallest.
  • the saturated moisture absorption rate in an atmosphere of 20 ° C. and a relative humidity of 65% is preferably 10% by weight or more, more preferably 20% by weight or more. If the saturated moisture absorption is less than 10% by weight, it is inferior to general moisture-absorbing materials such as rayon and wool, so the practical value is halved.
  • the upper limit is not particularly limited. However, the higher the saturated moisture absorption rate, the larger the water swellable characteristic. From this viewpoint, the saturated moisture absorption rate at 20 ° C. and relative humidity 65% is preferably 70% by weight. % Or less, more preferably 65% by weight or less.
  • the hygroscopic polymer of the present invention is a vinyl polymer having a salt-type carboxyl group, a hydroxyl group, and a crosslinked structure as essential structures. Methods for introducing these essential structures are roughly divided into methods introduced during a polymerization reaction. And introducing after the polymerization reaction. The introduction method will be described in detail below for each structure. These introduction methods may be implemented so that each structure is introduced sequentially, but in practice, the introduction methods for each structure are appropriately combined, and manufacturing is performed so that each structure is introduced in parallel. Is more desirable.
  • the method for introducing a salt-type carboxyl group into a vinyl polymer is not particularly limited.
  • a method for obtaining a polymer using a monomer having a salt-type carboxyl group as a copolymerization component, a carboxyl group, A monomer obtained by using a monomer having a structure having a structure that can be converted into a carboxyl group by chemical modification after obtaining a polymer using the monomer as a copolymerization component examples thereof include a method in which a carboxyl group is introduced into the coalescence by chemical modification and changed into a salt form as required, or a method in which the above three methods are carried out by graft polymerization.
  • Examples of a method for obtaining a polymer using a monomer having a salt-type carboxyl group as a copolymerization component include vinyl containing a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinyl propionic acid, and the like. And / or a method using a vinylidene-based salt monomer as a copolymerization component.
  • a method for converting a salt form after using a monomer having a carboxyl group as a copolymerization component to obtain a polymer for example, vinyl and / or vinylidene-based monomers containing a carboxyl group as described above can be used.
  • the copolymer obtained using the monomer as a copolymerization component is converted into a salt form.
  • the method for converting the carboxyl group into a salt form is not particularly limited, and the obtained copolymer may be an alkaline metal ion such as Li, Na, K, Rb, or Cs, or an alkaline earth such as Be, Mg, Ca, Sr, or Ba.
  • Examples of a method for introducing a carboxyl group by chemical modification include, for example, subjecting a polymer obtained by using a monomer having a structure that can be obtained by hydrolysis to a carboxyl group as a copolymerization component to hydrolysis.
  • a method of forming a salt type by the method as described above can be mentioned.
  • Monomers having a structure capable of obtaining a carboxyl group by hydrolysis treatment include monomers having a cyano group such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, etc.
  • Anhydrides and derivatives thereof such as methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, isopropyl (meth) acrylate, normal butyl (meth) acrylate, (meth) Ester compounds such as normal octyl acrylate, 2-ethylhexyl (meth) acrylate, hydroxylethyl (meth) acrylate, (meth) acrylamide, dimethyl (meth) acrylamide, monoethyl (meth) acrylamide, normal-t-butyl (meth) ) Such as acrylamide Bromide and the like.
  • Other methods for introducing a carboxyl group by chemical modification include oxidation of alkenes, alkyl halides, alcohols, aldehydes, and the like.
  • the method for introducing a hydroxyl group into the vinyl polymer is not particularly limited.
  • a method of obtaining a polymer using a monomer having a hydroxyl group as a copolymerization component, or conversion into a hydroxyl group by chemical modification is possible.
  • Examples thereof include a method of introducing a hydroxyl group by chemical modification into a polymer obtained using a monomer having a simple structure as a copolymerization component, or a method of carrying out the above two methods by graft polymerization.
  • Examples of a method for obtaining a polymer by using a monomer having a hydroxyl group as a copolymerization component include vinyl and / or vinylidene containing a hydroxyl group such as 4-hydroxylbutyl acrylate, hydroxylethyl (meth) acrylate, and hydroxypropyl methacrylate.
  • the method of using a monomer of a system for a copolymerization component is mentioned.
  • a copolymer obtained by using vinyl acetate, vinyl propionate, vinyl t-butanoate, vinyloxytrimethylsilane or the like as a copolymerization component is subjected to hydrolysis treatment.
  • the method for introducing a crosslinked structure into the vinyl polymer is not particularly limited, and a method of polymerizing by adding a crosslinkable vinyl monomer as a copolymerization component in the polymerization stage, or a reaction after polymerization. It is possible to use a generally used method such as post-crosslinking with a functional compound or introduction of a crosslinked structure with physical energy.
  • the method using a crosslinkable monomer in the polymerization stage and the method using post-crosslinking using a reactive compound after obtaining a polymer are preferable because it is possible to introduce strong cross-linking by a covalent bond.
  • a monomer having a plurality of vinyl groups can be used as a monomer used in the method using a crosslinkable vinyl monomer.
  • examples include glycidyl methacrylate, N-methylol acrylamide, hydroxyethyl methacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylenebisacrylamide, divinylbenzene, and the like. it can.
  • a crosslinkable vinyl monomer it is desirable to select in consideration of the above-described method for introducing a salt-type carboxyl group or a hydroxyl group.
  • a vinyl monomer containing a carboxyl group it is desirable to select one that can withstand an acidic atmosphere with such a monomer, and when introducing a hydroxyl group or a carboxyl group by a hydrolysis reaction It is desirable to select one that does not hydrolyze. From the viewpoint of being able to withstand such an acidic atmosphere or hydrolysis, a crosslinked structure with divinylbenzene is preferable among the examples described above.
  • a hydrazine compound is contained in a nitrile group contained in a nitrile polymer obtained from a vinyl monomer having a nitrile group.
  • the method etc. which react formaldehyde and introduce
  • the method using a hydrazine-based compound is desirable in that it is stable against acids and alkalis and can contribute to improvement in hygroscopicity because the resulting crosslinked structure itself is hydrophilic.
  • the method for introducing a salt-type carboxyl group, a hydroxyl group and a crosslinked structure is as described above. Needless to say, in polymerization, a vinyl-based unit which is not related to the introduction of these essential structures is used. It is also possible to appropriately select the monomer and use it as a copolymerization component.
  • the vinyl monomer that can be selected as such a copolymer component is not particularly limited, and vinyl halide compounds such as vinyl chloride, vinyl bromide, and vinyl fluoride; vinylidene chloride, vinylidene bromide, vinylidene fluoride, and the like Vinylidene-based monomers of; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid and their salts; methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, methoxyethyl acrylate, Acrylic esters such as phenyl acrylate and cyclohexyl acrylate; Methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate; methyl vinyl ketone, e
  • the hygroscopic polymer employed in the present invention described above include vinyl polymer particles having a crosslinked structure with divinylbenzene and salt-type carboxyl groups and hydroxyl groups.
  • the amount of divinylbenzene used is not particularly limited and may be set so that the intended function can be achieved. However, it should be 3 to 40% by weight based on the total amount of monomers normally used. Is preferred. If the amount is 3% by weight or less, the resulting particles are swelled with water and may become extremely sticky. On the other hand, when the amount is 40% by weight or more, the salt-type carboxyl group amount decreases, so that sufficient moisture absorption performance may not be obtained.
  • the method described above may be adopted, for example, a method in which a vinyl monomer having a vinyl monomer having divinylbenzene and a carboxyl group and a hydroxyl group is graft-polymerized, Examples include a method of copolymerizing divinylbenzene, a vinyl monomer having a carboxyl group and a vinyl monomer having a hydroxyl group, but it is easy to produce, and the crosslinking density, the amount of salt-type carboxyl groups and the amount of hydroxyl groups can be easily set.
  • divinylbenzene a vinyl monomer having a structure capable of generating a salt-type carboxyl group by hydrolysis, a vinyl monomer having a structure capable of generating a hydroxyl group by hydrolysis, and further need
  • a method of hydrolyzing a copolymer obtained by copolymerizing other vinyl monomers can be used.
  • the hygroscopic polymer of the present invention described above is useful as an additive for improving the hygroscopic performance and moisture permeability performance of various materials.
  • the material to which the hygroscopic polymer of the present invention can be applied is not particularly limited.
  • fibers, paper, nonwoven fabrics, yarns, woven fabrics, knitted fabrics, leathers, coating films, films, sheets, foams, rubbers. Etc. can be illustrated.
  • the amount of moisture absorption and moisture transmission and moisture permeation is higher because of its large contact area with gas and excellent shape retention. A lot of material can be obtained.
  • the hygroscopic polymer of the present invention As a method of containing the hygroscopic polymer of the present invention in these materials, as long as the hygroscopic polymer of the present invention is used, there is no particular limitation, kneaded into the material, directly fixed to the material, Or the method of making it adhere to a raw material with binder resin can be taken. Moreover, when the hygroscopic polymer of this invention has a fibrous form, the method of obtaining paper, a nonwoven fabric, etc. using a fibrous hygroscopic polymer for a constituent fiber is also employable.
  • the method of kneading in a raw material can mainly apply to resin moldings, such as a fiber, a coating film, a film, a sheet
  • resin moldings such as a fiber, a coating film, a film, a sheet
  • Specific examples of the method include injection molding, extrusion molding, melt spinning, solution spinning, and coating using a resin mixed with the hygroscopic polymer of the present invention.
  • thermosetting resins such as polyimide, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, ABS resin, AS resin, acrylic resin, and other thermoplastic resins, polyamide, polyacetal, polycarbonate
  • synthetic resins and natural resins such as engineering plastics such as modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, and cyclic polyolefin.
  • resin which comprises a resin molding what has the high water vapor permeability is desirable.
  • contact between the moisture-absorbing / releasing polymer of the present invention and water vapor is limited, so that the moisture-absorbing / releasing performance inherent to the moisture-releasing / releasing polymer of the present invention may not be sufficiently exhibited.
  • the moisture absorbing / releasing polymer of the present invention can easily come into contact with water vapor, and the moisture absorbing / releasing performance can be more easily exhibited.
  • a resin molded body having more excellent moisture permeability can be obtained by adding the moisture absorption / release property of the moisture absorption / release polymer of the present invention to the water vapor permeability inherent in the resin.
  • the resin component has a functional group or structure capable of reacting with a hydroxyl group to form a covalent bond or forming a hydrogen bond or an ionic bond with the hydroxyl group, as described above,
  • the water resistance that decreases due to the addition of the hygroscopic polymer is desirable because it can be suppressed.
  • functional groups and structures that can achieve this effect include isocyanate groups, ester groups, amide groups, halogen groups, epoxy groups, carboxyl groups, hydroxyl groups, amino groups, thiol groups, and the like.
  • suitable resins include urethane resins that form a large number of hydrophilic structures such as urethane bonds and that contain components having isocyanate groups. Can do.
  • the method include a method of impregnating or applying a slurry or emulsion of particulate hygroscopic polymer on paper, non-woven fabric, yarn, woven fabric, knitted fabric, sheet, foam or the like. Further, in the case of paper, a method of incorporating a particulate or fibrous hygroscopic polymer in the production process, or in the case of a nonwoven fabric, it is added in the production process and the thermal adhesiveness constituting the nonwoven fabric. A method of fixing to fibers or the like can also be employed.
  • the method for fixing the moisture-absorbing / releasing polymer of the present invention to the material with the binder resin can be applied to various materials including the materials exemplified above.
  • the binder resin to be used may be appropriately selected according to the material, and examples thereof include the above-described thermosetting resins and thermoplastic resins.
  • the resin used as the binder resin is preferably one having high water vapor permeability.
  • those having a functional group capable of reacting with a hydroxyl group to form a covalent bond and a hydroxyl group capable of forming a hydrogen bond or an ionic bond those having a functional group capable of reacting with a hydroxyl group to form a covalent bond and a hydroxyl group capable of forming a hydrogen bond or an ionic bond.
  • binder resins having an electrophilic functional group such as an isocyanate group, an ester group, an amide group, a halogen group, and an epoxy group that can form a covalent bond are preferable.
  • urethane resin can be used suitably as binder resin which satisfy
  • the binder resin solution containing the hygroscopic polymer of the present invention is applied to fibers, paper, nonwoven fabric, yarn, woven fabric, knitted fabric, leather, coating film, film, sheet, foam, rubber, etc.
  • Examples thereof include a method of applying or spraying the material, a method of immersing these materials in the binder resin solution, and the like.
  • the amount of the hygroscopic polymer of the present invention added to the raw material may be appropriately set according to the required hygroscopic performance, but in the normal case, it is in the range of 1 to 80% by weight with respect to the raw material. It is appropriate to set within. If it exceeds 80% by weight, the moisture-absorbing / releasing polymer tends to fall off and deformation due to water swelling often increases. In particular, when it is kneaded into a resin molding, it becomes difficult to mold. come. In addition, when the amount is less than 1% by weight, there are many cases where the effect of improving the moisture absorption / release performance is not manifested.
  • the hygroscopic polymer of the present invention forms a number of chemical bonds with the material, resulting in a state in which the material components are cross-linked, so that the mechanical strength of the material is improved. The effect can also be expected.
  • ⁇ Saturated moisture absorption rate> About 1.0 g of sample particles are dried with a hot air dryer at 105 ° C. for 16 hours and weighed (Wds [g]). Next, the sample particles are kept at a temperature of 20 ° C. and adjusted to a relative humidity of 65% RH. The sample particles were allowed to stand for 24 hours in a humidifier and the weight of the absorbed sample particles was measured (Wws [g]). Saturated moisture absorption [%] ⁇ (Wws ⁇ Wds) / Wds ⁇ ⁇ 100
  • ⁇ Average particle size> The average particle size of the particles was measured by using a laser diffraction particle size distribution measuring device “SALD2000” manufactured by Shimadzu Corporation and measured using water as a dispersion medium, and the median size was defined as the average particle size.
  • ⁇ Hydroxyl group content> The amount of hydroxyl groups other than Example 6 is obtained by first conducting an elemental analysis of the sample after polymerization and before hydrolysis, and measuring the oxygen atom weight ratio and nitrogen content, whereby the vinyl acetate unit content (A [mmol / g]) And acrylonitrile unit content (B [mmol / g]) was calculated
  • ⁇ Amount of salt-type carboxyl group The amount of salt-type carboxyl groups was determined by subtracting the amount of H-type carboxyl groups from the total amount of carboxyl groups. First, 1 g of a sufficiently dried sample was precisely weighed (X [g]), 200 ml of water was added thereto, and then 1N hydrochloric acid aqueous solution was added to the sample while heating to 50 ° C. to adjust the pH to 2. All the carboxyl groups contained were converted to H-type carboxyl groups, and then a titration curve was determined according to a conventional method using a 0.1N aqueous sodium hydroxide solution.
  • the consumption amount (Y [ml]) of the sodium hydroxide aqueous solution consumed by the H-type carboxyl groups was determined from the titration curve, and the total amount of carboxyl groups contained in the sample was calculated by the following formula.
  • Total carboxyl group content [mmol / g] 0.1 Y / X
  • a sample for water resistance evaluation was prepared by mixing 6.5 g of polyisocyanate (Bernock DN-980K, manufactured by DIC), 5 g of sample particles, and 23.5 g of polyol (Acridic A-801-P, manufactured by DIC) into a PET film. After coating with a bar coater # 50, a product dried at 130 ° C. for 30 minutes was used. In the water resistance evaluation, after immersing the above sample in water for 10 minutes, the moisture on the surface is wiped off, and it is judged visually whether whitening is seen in the coated part. If whitening is seen, x, whitening is seen The case where it did not exist was marked as ⁇ .
  • the hygroscopic expression rate is the saturated moisture absorption rate (A [%]), the sample particle content (B [g / m 2 ]) and the moisture absorption amount (C [g / m 2 ]) in the water resistance evaluation sample. ), The moisture absorption amount (D [g / m 2 ]) of a blank sample obtained by coating in the same manner except that the water resistance evaluation sample and sample particles are not added, and calculated by the following formula: is there. In addition, about the moisture absorption C and D, it measured by the method similar to the term of said saturated moisture absorption.
  • Hygroscopic expression rate (%) [(CD) / B ⁇ 100] / A ⁇ 100
  • Superflex registered trademark
  • E-4800 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 1 A monomer mixture consisting of 74 parts of acrylonitrile, 1 part of vinyl acetate and 25 parts of divinylbenzene is added to 300 parts of an aqueous solution containing 0.5 parts of ammonium persulfate, and then 0.6 part of sodium pyrosulfite is added, followed by polymerization with a stirrer. Polymerize in a bath at 65 ° C. for 2 hours. The polymer obtained is filtered and washed with water. Next, 100 parts of the polymer was added to 567 parts of a 10% aqueous sodium hydroxide solution and subjected to a hydrolysis reaction at 95 ° C. for 48 hours.
  • the obtained polymer was filtered and washed with water to obtain hygroscopic fine particles 1.
  • the evaluation results of the particles are as shown in Table 1, and the water resistance was good.
  • the hygroscopic expression rate was measured about the sample used by water resistance evaluation, it was 90.7% or more.
  • the hygroscopic fine particles 1 were pulverized so as to have an average particle diameter of 5 ⁇ m was used as a sample and the moisture permeability was measured by the above method, it was 91.0 g / m 2 ⁇ h. This is higher than the moisture permeability 45.8 g / m 2 ⁇ h measured in the same manner except that the hygroscopic fine particles 1 are not added, and the moisture permeability improving effect of the hygroscopic polymer of the present invention is improved. It is shown.
  • Example 1 hygroscopic fine particles 2 were obtained in the same manner as in Example 1 except that the monomer mixture was 75 parts of acrylonitrile and 25 parts of divinylbenzene.
  • grain is as Table 1, and it whitened by being immersed in water.
  • Example 2 In Example 1, hygroscopic fine particles 3 were obtained in the same manner as in Example 1 except that the monomer mixture was 64 parts of acrylonitrile, 1 part of vinyl acetate, and 35 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
  • Example 2 A hygroscopic fine particle 4 was obtained in the same manner as in Example 1 except that the monomer mixture solution used was 65 parts of acrylonitrile and 35 parts of divinylbenzene.
  • grain is as Table 1, and it whitened by being immersed in water.
  • Example 3 In Example 1, the hygroscopic fine particles 5 were obtained in the same manner as in Example 1 except that the monomer mixture was composed of 56.7 parts of acrylonitrile, 8.3 parts of vinyl acetate, and 35 parts of divinylbenzene. It was. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
  • Example 4 In Example 1, hygroscopic fine particles 6 were obtained in the same manner as in Example 1 except that the monomer mixture was 5 parts of acrylonitrile, 60 parts of vinyl acetate, and 35 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
  • Example 5 In Example 1, hygroscopic fine particles 7 were obtained in the same manner as in Example 1 except that the monomer mixture was 10 parts of acrylonitrile, 65 parts of vinyl acetate and 25 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
  • Example 6 A monomer mixture consisting of 10 parts of methacrylic acid, 3 parts of 4-hydroxylbutyl acrylate, 62 parts of acrylonitrile and 25 parts of divinylbenzene is added to 300 parts of an aqueous solution containing 0.5 parts of ammonium persulfate, followed by 0. Add 6 parts, and polymerize in a polymerization tank equipped with a stirrer at 65 ° C. for 2 hours. The polymer obtained is filtered and washed with water. The amount of methacrylic acid and 4-hydroxylbutyl acrylate introduced into the polymer was determined by analyzing the cleaning liquid by gas chromatography.
  • Example 7 5 g of hygroscopic fine particles 1, 27.8 g of bisphenol A diglycidyl ether, 2.2 g of dicyandiamide and 0.8 g of dimethylurea were mixed and coated on a PET film with a bar coater, and then dried at 120 ° C. for 30 minutes. A sample prepared by adding the hygroscopic fine particles 1 to the epoxy resin is prepared. Using this measurement sample, water resistance and hygroscopicity were evaluated in the same manner as described above. The sample did not whiten even after being immersed in water and showed good water resistance. Also, the hygroscopic expression rate was as good as 85.1%.
  • the moisture-absorbing / releasing polymer and material of the present invention are used in various fields such as fibers, textile processed products, clothing, sheets, paper, nonwoven fabrics, films, binders, paints, adhesives, sensors, resins, electricity, and electronics. It can be widely used as a material that can impart moisture release performance and moisture permeability performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] When moisture absorptive and desorptive microparticles are added to coatings or resin compacts in order to impart moisture absorptive and desorptive qualities, in cases such as when the material becomes wet with water, problems arise that include the appearance of the material becoming whitish or deformation occurring. As a result of diligent and continued research, the present inventor discovered that a vinyl-based polymer with a salt-type carboxyl group, a hydroxyl group, and a cross-linked structure, when compounded with a coating or resin compact, would provide both strong moisture absorptive and desorptive properties and outstanding water resistance, thus achieving the present invention. The purpose of the present invention is to provide, in a case where compounding is performed with a coating, resin compact, or the like, a polymer that can impart strong moisture absorptive and desorptive properties and strong moisture permeability and a polymer that can impart strong water resistance, as well as a material containing such a polymer. [Solution] A moisture absorptive and desorptive polymer characterized in that it contains 1-7 mmol/g of a salt-type carboxyl group and 0.01-10 mmol/g of a hydroxyl group and is a vinyl-based polymer with a cross-linked structure.

Description

吸放湿性重合体および該重合体を含有させて得られる素材Hygroscopic polymer and material obtained by containing the polymer
本発明は、塗膜や樹脂成形体などに添加されることにより、吸放湿性能や透湿性能が高く、かつ耐水性に優れた塗膜や樹脂成形体を与えることのできる吸放湿性重合体および該重合体を含有する成形体に関する。 The present invention provides a moisture absorbing / releasing weight capable of providing a coating film or a resin molded body having high moisture absorption and moisture permeation performance and excellent water resistance by being added to a coating film or a resin molded body. The present invention relates to a coalescence and a molded body containing the polymer.
従来より空気中の湿気を除去する手段として塩化リチウム、塩化カルシウム、塩化マグネシウム、五酸化リン等の無機吸湿剤が用いられてきたが、これらの無機吸湿剤は、吸湿量が多く、また吸湿速度も速いが、潮解性があるために、吸湿後液状化して他を汚染したり、成形し難く、再生が困難である等の欠点がある。また、シリカゲル、ゼオライト、硫酸ナトリウム、活性アルミナ、活性炭等の吸湿剤は、吸湿量が少なく吸湿速度が遅く再生に高温を要する欠点があり、実用化するには問題がある。また、吸湿性を付与するために塗料や樹脂に配合した場合、得られる塗膜や成形品は、透明性や均一性に乏しくなるなど、外観が少なからず損ねられる。 Conventionally, inorganic moisture absorbents such as lithium chloride, calcium chloride, magnesium chloride, and phosphorus pentoxide have been used as a means for removing moisture in the air, but these inorganic moisture absorbents have a high moisture absorption rate and a moisture absorption rate. However, since it has deliquescence, it has the disadvantages of being liquefied after moisture absorption to contaminate others, difficult to mold, and difficult to regenerate. Further, hygroscopic agents such as silica gel, zeolite, sodium sulfate, activated alumina, activated carbon and the like have a drawback in that they have a small amount of moisture absorption and a low moisture absorption rate and require a high temperature for regeneration. Moreover, when it mix | blends with a coating material and resin in order to provide hygroscopicity, the coating film and molded product which are obtained will be impaired by the appearance, such as becoming poor in transparency and uniformity.
また、特許文献1には有機系の高吸放湿性繊維が記載されているが、繊維状の場合、それ自体の加工性は良いものの、塗料、樹脂等への添加においては均一に混合することが困難であるため、添加剤としては適さない。また工業的に繊維を得ようとする場合、ある程度の繊維径が必要であり、このため表面積はあまり大きくできず、吸放湿速度も遅くなるといった問題がある。さらには、繊維状で反応を行う場合、反応の不均一化が起こり易く、製造コストも高くなるといった問題がある。 In addition, Patent Document 1 describes organic high moisture absorbing / releasing fibers, but in the case of a fiber, the processability of itself is good, but in addition to paints, resins, etc., it should be mixed uniformly. Is difficult to use as an additive. Further, when trying to obtain fibers industrially, a certain degree of fiber diameter is required, and therefore there is a problem that the surface area cannot be increased so much that the moisture absorption and desorption rate is also reduced. Furthermore, when the reaction is carried out in a fibrous form, there is a problem that the reaction tends to be non-uniform and the production cost is increased.
一方、特許文献2には吸放湿性微粒子が記載されており、塗料、樹脂等への添加における均一性などの点について、より望ましいものではある。しかし、その高い親水性のため、該微粒子を添加して得られた塗膜や樹脂成形品については、水に濡れた場合などに外観が白っぽくなったり、形状が変化したりするなど、水に対する耐久性、すなわち耐水性に問題点がある。 On the other hand, Patent Document 2 describes hygroscopic fine particles, which is more desirable in terms of uniformity in addition to paints, resins, and the like. However, because of its high hydrophilicity, the coating film and resin molded product obtained by adding the fine particles have an appearance that becomes whitish or changes shape when wet with water. There is a problem in durability, that is, water resistance.
特開平5-132858号公報JP-A-5-132858 特開平8-225610号公報JP-A-8-225610
本発明者は鋭意研究を続けてきた結果、塩型カルボキシル基を含有し、かつ水酸基を含有し、かつ架橋構造を有するビニル系重合体が、高い吸放湿性を有し、かつ該重合体を配合した塗膜や樹脂成形品がこれまでにない優れた耐水性を有することを見出し、本発明を完成するに至った。本発明の目的は、素材に配合することによって高い吸放湿性や高い透湿性を与えることのできる重合体、さらには優れた耐水性をも与えることのできる重合体およびかかる重合体を含有する素材を提供することである。 As a result of continuous researches, the present inventors have found that a vinyl polymer containing a salt-type carboxyl group and containing a hydroxyl group and having a crosslinked structure has high moisture absorption and desorption properties, and The present inventors have found that the blended coating film and the resin molded product have unprecedented water resistance and have completed the present invention. An object of the present invention is to provide a polymer capable of giving high moisture absorption / release properties and high moisture permeability when blended in a material, a polymer capable of giving excellent water resistance, and a material containing such a polymer. Is to provide.
即ち本発明の上記目的は、以下の手段により達成される。
(1) 塩型カルボキシル基を1~7mmol/g含有し、かつ水酸基を0.01~10mmol/g含有し、かつ架橋構造を有するビニル系重合体であることを特徴とする吸放湿性重合体。
(2) 加水分解により塩型カルボキシル基を生成しうる構造を有するビニル系単量体、加水分解により水酸基を生成しうる構造を有するビニル系単量体及び架橋性ビニル系単量体を含有する単量体混合物を重合して得られる共重合体を加水分解して得られたものであることを特徴とする(1)に記載の吸放湿性重合体。
(3) 形態が粒子状であることを特徴とする(1)または(2)に記載の吸放湿性重合体。
(4) (1)~(3)のいずれかに記載の吸放湿性重合体を含有する素材。
(5) (1)~(3)のいずれかに記載の吸放湿性重合体を添加した樹脂を成形して得られる素材。
(6) (1)~(3)のいずれかに記載の吸放湿性重合体がバインダー樹脂とともに付与された素材。
(7) 樹脂が求電子性官能基を有するものであることを特徴とする(5)または(6)に記載の素材。
(8) 樹脂がウレタン樹脂であることを特徴とする(5)または(6)に記載の素材。
That is, the above object of the present invention is achieved by the following means.
(1) A moisture-absorbing / releasing polymer characterized in that it is a vinyl polymer containing 1 to 7 mmol / g of salt-type carboxyl groups and 0.01 to 10 mmol / g of hydroxyl groups and having a crosslinked structure. .
(2) Contains a vinyl monomer having a structure capable of generating a salt-type carboxyl group by hydrolysis, a vinyl monomer having a structure capable of generating a hydroxyl group by hydrolysis, and a crosslinkable vinyl monomer The hygroscopic polymer as described in (1), which is obtained by hydrolyzing a copolymer obtained by polymerizing a monomer mixture.
(3) The moisture-absorbing / releasing polymer according to (1) or (2), wherein the form is particulate.
(4) A material containing the hygroscopic polymer according to any one of (1) to (3).
(5) A material obtained by molding a resin to which the hygroscopic polymer according to any one of (1) to (3) is added.
(6) A material provided with the hygroscopic polymer according to any one of (1) to (3) together with a binder resin.
(7) The material according to (5) or (6), wherein the resin has an electrophilic functional group.
(8) The material according to (5) or (6), wherein the resin is a urethane resin.
本発明の吸放湿性重合体は高い吸湿性能を有するものであり、素材等に添加することにより、優れた吸湿性能や透湿性を有する素材を得ることができる。さらに本発明の吸放湿性重合体は水酸基を含有するものであるため、イソシアネート基などの求電子性の官能基と反応して結合を形成することができるものである。この性質を利用することによって、吸放湿性重合体が化学的に結合した素材を得ることができる。そして、かかる本発明の素材は優れた吸湿性能や透湿性能を有するとともに、優れた耐水性をも有するものである。 The hygroscopic polymer of the present invention has high hygroscopic performance, and a material having excellent hygroscopic performance and moisture permeability can be obtained by adding to the raw material. Furthermore, since the hygroscopic polymer of the present invention contains a hydroxyl group, it can react with an electrophilic functional group such as an isocyanate group to form a bond. By utilizing this property, it is possible to obtain a material in which the hygroscopic polymer is chemically bonded. The material of the present invention has excellent moisture absorption performance and moisture permeability performance and also has excellent water resistance.
吸湿性微粒子1の赤外吸収スペクトルである。(参考例1)2 is an infrared absorption spectrum of the hygroscopic fine particles 1. (Reference Example 1) 微粒子9の赤外吸収スペクトルである。(参考例1)2 is an infrared absorption spectrum of fine particles 9; (Reference Example 1) 吸湿性微粒子2の赤外吸収スペクトルである。(参考例2)2 is an infrared absorption spectrum of the hygroscopic fine particles 2. (Reference Example 2) 微粒子10の赤外吸収スペクトルである。(参考例2)2 is an infrared absorption spectrum of the fine particles 10. (Reference Example 2)
本発明の吸放湿性重合体は塩型カルボキシル基を1~7mmol/g、好ましくは3~7mmol/g含有するものである。塩型のカルボキシル基は、吸湿性を発現させるための親水性の高い極性基であり、高い吸湿性能を得ようとする場合、できるだけ多くの該基を含有することが好ましい。しかし、後述する水酸基、架橋構造との割合において適当なバランスをとることが必要で、特に該極性基量が7mmol/gを超える場合、導入できる架橋構造の割合が少なくなりすぎ、高吸水性樹脂に近いものとなり、粘着性がでる、水膨潤による体積変化が激しくなるなどといった問題が生じてくる。 The hygroscopic polymer of the present invention contains a salt-type carboxyl group in an amount of 1 to 7 mmol / g, preferably 3 to 7 mmol / g. The salt-type carboxyl group is a polar group having high hydrophilicity for expressing hygroscopicity, and when it is intended to obtain high hygroscopic performance, it is preferable to contain as much of the group as possible. However, it is necessary to take an appropriate balance with respect to the ratio of the hydroxyl group and the crosslinked structure described later. Especially when the amount of the polar group exceeds 7 mmol / g, the ratio of the crosslinked structure that can be introduced becomes too small, and the superabsorbent resin. As a result, there are problems such as stickiness and volume change due to water swelling.
一方、該極性基量が少なくなるほど、吸湿性能は低下してゆき、特に1mmol/gより少ない場合では、十分な吸湿性能を得られない場合が多い。したがって、該極性基量は1mmol/g以上とし、3mmol/g以上とすることが吸湿性能上より好ましい。 On the other hand, as the amount of the polar group decreases, the hygroscopic performance decreases. In particular, when the amount is less than 1 mmol / g, sufficient hygroscopic performance is often not obtained. Therefore, the amount of the polar group is preferably 1 mmol / g or more and more preferably 3 mmol / g or more in terms of moisture absorption performance.
かかる塩型カルボキシル基の塩の型、すなわちカウンターカチオンとしては、例えば、Li、Na、K、Rb、Cs等のアルカリ金属、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等のその他の金属、NH4、アミン等が挙げられる。なお、Hをカウンターカチオンとするカルボキシル基がこれらの塩型カルボキシル基と共存することは本発明を何ら逸脱するものではない。また、この場合の全カルボキシル基における塩型カルボキシル基との比率は特に限定はないが、吸放湿速度という観点より塩型カルボキシル基の割合が高いほうがよい。 Examples of the salt type of the carboxyl group, that is, the counter cation include, for example, alkali metals such as Li, Na, K, Rb, and Cs, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, Cu, Other metals such as Zn, Al, Mn, Ag, Fe, Co, and Ni, NH4, amine, and the like can be given. In addition, it does not deviate from this invention that the carboxyl group which uses H as a counter cation coexists with these salt-type carboxyl groups. In this case, the ratio of the total carboxyl group to the salt-type carboxyl group is not particularly limited, but the ratio of the salt-type carboxyl group is preferably higher from the viewpoint of moisture absorption / release rate.
また、本発明の吸放湿性重合体は水酸基を0.01~10mmol/g、より好ましくは0.01~9mmol/g、さらに好ましくは0.05~1mmol/g含有するものである。本発明の最大のポイントである優れた耐水性が発現する鍵は、吸放湿性重合体が水酸基を有している点である。塩型カルボキシル基を持った吸放湿性能を有する重合体はこれまでの技術の中においても見られたが、水酸基を有しているものの報告は無く、ましてイソシアネート基等の求電子官能基との反応による共有結合の形成ができる吸放湿性重合体は知られていなかった。また、水酸基を導入した吸放湿性重合体をウレタン樹脂等に添加して得られた成形体等の耐水性が著しく向上することはこれまで知られていなかった。 The hygroscopic polymer of the present invention contains a hydroxyl group in an amount of 0.01 to 10 mmol / g, more preferably 0.01 to 9 mmol / g, still more preferably 0.05 to 1 mmol / g. The key to exhibiting excellent water resistance, which is the greatest point of the present invention, is that the hygroscopic polymer has a hydroxyl group. A polymer having a salt-type carboxyl group and a moisture absorption / release performance has been seen in the prior art, but there is no report of one having a hydroxyl group, let alone an electrophilic functional group such as an isocyanate group. No hygroscopic polymer capable of forming a covalent bond by this reaction has been known. Further, it has not been known so far that the water resistance of a molded article obtained by adding a hygroscopic polymer into which a hydroxyl group has been introduced to a urethane resin or the like is remarkably improved.
本発明者は、水酸基を吸放湿性重合体に導入することで、かかる重合体をウレタン樹脂など、イソシアネート基等の求電子官能基を有する構成成分からなる樹脂等に添加した場合、優れた耐水性を有する樹脂成形体が得られることを見出した。これには樹脂の構成成分等に含まれるイソシアネート基等の求電子官能基との反応による共有結合の形成、さらには水酸基そのものによる水素結合の形成やイオン結合の形成が寄与していると考えられる。耐水性の発現メカニズムはあきらかで無いが、本発明の重合体と樹脂等の界面の親和性が、これらの結合により向上するためと考えられる。すなわち、界面の親和性が高まることにより、吸水乾燥に伴う体積変化があっても界面が解離せず、白化や変形が抑制されると考えられる。また、このメカニズムによれば、本発明の吸放湿性重合体を樹脂、バインダー、マトリックス等に配合した際にはその強度、耐磨耗性等の向上も期待できる。 The present inventors have introduced a hydroxyl group into the moisture-absorbing / releasing polymer, and when such a polymer is added to a resin or the like having a component having an electrophilic functional group such as an isocyanate group such as a urethane resin, it has excellent water resistance. The present inventors have found that a resin molded body having properties can be obtained. This is thought to be due to the formation of covalent bonds by reaction with electrophilic functional groups such as isocyanate groups contained in resin constituents, as well as the formation of hydrogen bonds and ionic bonds by the hydroxyl groups themselves. . Although the mechanism of water resistance expression is not clear, it is considered that the affinity of the interface between the polymer of the present invention and the resin is improved by these bonds. That is, it is considered that the affinity of the interface is increased, so that the interface does not dissociate even when there is a volume change accompanying water absorption drying, and whitening and deformation are suppressed. Further, according to this mechanism, when the moisture-absorbing / releasing polymer of the present invention is blended with a resin, a binder, a matrix, or the like, an improvement in strength, wear resistance and the like can be expected.
水酸基は上述したとおり、耐水性を発現させる官能基であるので、高い耐水性を得ようとする場合、できるだけ多くの該基を含有することが好ましい。しかし、前述したように吸湿性能を発現させるための塩型カルボキシル基、架橋構造との割合において適当なバランスをとることが必要で、具体的には水酸基量が10mmol/gを超える場合、導入できる塩型カルボキシル基、架橋構造の割合が少なくなりすぎ、吸湿性能が低下したり、水膨潤が激しくなったりするなどの問題が生じてくる。一方、水酸基量が0.01mmol/gより少ない場合は耐水性を十分に得ることができなくなる。また、実用上は、水酸基量は1mmol/g以下というわずかな量でも耐水性の効果が十分に得られる場合が多く、この場合、塩型カルボキシル基量の選択幅が広くなるので、より好ましい。 Since the hydroxyl group is a functional group that exhibits water resistance as described above, it is preferable to contain as much of the group as possible in order to obtain high water resistance. However, as described above, it is necessary to appropriately balance the ratio of the salt-type carboxyl group and the cross-linked structure for exhibiting the hygroscopic performance. Specifically, when the hydroxyl group amount exceeds 10 mmol / g, it can be introduced. The ratio of the salt-type carboxyl group and the crosslinked structure becomes too small, resulting in problems such as reduced hygroscopic performance and severe water swelling. On the other hand, when the amount of hydroxyl groups is less than 0.01 mmol / g, sufficient water resistance cannot be obtained. Further, in practice, even when the amount of the hydroxyl group is as small as 1 mmol / g or less, a sufficient water resistance effect is often obtained. In this case, the selection range of the salt-type carboxyl group amount is widened, which is more preferable.
また、本発明の吸放湿性重合体は架橋構造を有するものである。本発明の吸放湿性重合体のように水との親和性の高い塩型カルボキシル基や水酸基を多量に含有する重合体は、水に接することで、粘着性を帯びたり、水に激しく膨潤したり、場合によっては水に溶解したりする可能性があり、このような重合体を樹脂等に配合した場合、特性に悪影響を与える場合がある。本発明の吸放湿性重合体においては架橋構造を導入することにより、かかる不具合が起こらないようにしている。 The hygroscopic polymer of the present invention has a crosslinked structure. A polymer containing a large amount of a salt-type carboxyl group or hydroxyl group having a high affinity with water, such as the hygroscopic polymer of the present invention, is in contact with water and becomes sticky or swells violently in water. In some cases, the polymer may be dissolved in water. When such a polymer is blended with a resin or the like, the characteristics may be adversely affected. In the hygroscopic polymer of the present invention, such a problem is prevented by introducing a crosslinked structure.
かかる本発明に採用する架橋構造は、吸湿、放湿に伴い物理的、化学的に変性をうけない限りにおいては特に限定はなく、共有結合による架橋、イオン架橋、ポリマー分子間相互作用または結晶構造による架橋等いずれの構造のものでもよい。中でも、強固で安定という観点から共有結合による架橋構造がもっとも好ましい。 The cross-linked structure employed in the present invention is not particularly limited as long as it is not physically or chemically modified in accordance with moisture absorption or moisture release. Cross-linking by covalent bond, ionic cross-linking, polymer intermolecular interaction or crystal structure Any structure such as cross-linking may be used. Among these, a crosslinked structure by a covalent bond is most preferable from the viewpoint of strength and stability.
また、本発明の吸放湿性重合体は、ビニル系重合体からなるものである。ビニル系重合体は主鎖が炭素-炭素結合からなっているため、主鎖に炭素-窒素結合を含むポリアミド系重合体や炭素-酸素結合を有するポリエステル系重合体などに比べて、化学的な影響を受けにくく、塩型カルボキシル基、水酸基を導入するに当たり、加水分解処理や中和処理などを行いやすいという利点を有している。 The hygroscopic polymer of the present invention is made of a vinyl polymer. Since vinyl-based polymers are composed of carbon-carbon bonds in the main chain, they are more chemically active than polyamide-based polymers containing carbon-nitrogen bonds in the main chain and polyester-based polymers having carbon-oxygen bonds. It is not easily affected, and has an advantage that it can be easily subjected to hydrolysis or neutralization when introducing a salt-type carboxyl group or hydroxyl group.
本発明における吸放湿性重合体自体の形態としては制限されるものでないが、エマルジョンや粉体等の粒子状の場合、各種の用途に、各種の素材の添加剤として使用することができるため、その適応範囲が広く有用である。かかる粒子状の場合、粒子の大きさとしては、用途に応じて適宜選定することができ、特に限定はないが、平均粒子径が好ましくは1000μm以下、より好ましくは100μm以下の場合、各種添加剤としての適応範囲が広がるため実用的価値の大きなものとなる。また、下限についても、特に限定はない。エマルジョン状のものであれば、製造のしやすさの観点から好ましくは0.03μm以上、より好ましくは0.05μm以上である。また、懸濁重合で製造する場合は、小さくても1~5μm程度の平均粒子径となる。 The form of the hygroscopic polymer itself in the present invention is not limited, but in the case of particles such as emulsions and powders, it can be used as an additive for various materials in various applications. Its application range is wide and useful. In the case of such particles, the size of the particles can be appropriately selected according to the use and is not particularly limited. However, when the average particle size is preferably 1000 μm or less, more preferably 100 μm or less, various additives As the range of application as a widening, it has a large practical value. Also, there is no particular limitation on the lower limit. In the case of an emulsion, it is preferably 0.03 μm or more, more preferably 0.05 μm or more from the viewpoint of ease of production. In the case of producing by suspension polymerization, the average particle size is about 1 to 5 μm at the smallest.
本発明の吸放湿性重合体の吸湿性能に関しては、20℃、相対湿度65%の雰囲気下における飽和吸湿率が好ましくは10重量%以上、より好ましくは20重量%以上であることが望ましい。飽和吸湿率が10重量%未満であれば一般的な吸湿素材、例えばレーヨン、羊毛にも劣るため、実用上の価値が半減してしまう。一方、上限については特に制限されないが、飽和吸湿率が高くなるほど、より大きく水膨潤しうる特性を有することになるので、かかる観点から20℃、相対湿度65%の飽和吸湿率は好ましくは70重量%以下、より好ましくは65重量%以下にすることが望ましい。 Regarding the moisture absorption performance of the hygroscopic polymer of the present invention, the saturated moisture absorption rate in an atmosphere of 20 ° C. and a relative humidity of 65% is preferably 10% by weight or more, more preferably 20% by weight or more. If the saturated moisture absorption is less than 10% by weight, it is inferior to general moisture-absorbing materials such as rayon and wool, so the practical value is halved. On the other hand, the upper limit is not particularly limited. However, the higher the saturated moisture absorption rate, the larger the water swellable characteristic. From this viewpoint, the saturated moisture absorption rate at 20 ° C. and relative humidity 65% is preferably 70% by weight. % Or less, more preferably 65% by weight or less.
次に、上述してきた本発明の吸放湿性重合体の製造方法について述べる。本発明の吸放湿性重合体は塩型カルボキシル基、水酸基および架橋構造を必須構造とするビニル系重合体であり、これらの必須構造を導入する方法としては、大きく分けて重合反応時に導入する方法と重合反応後に導入する方法がある。以下に各構造別に導入方法を詳述する。これらの導入方法はそれぞれの構造を逐次導入するように実施してもよいが、実際にはこれら各構造別の導入方法を適宜組み合わせ、並行して各構造が導入されるように製造を行うのがより望ましい。 Next, a method for producing the hygroscopic polymer of the present invention described above will be described. The hygroscopic polymer of the present invention is a vinyl polymer having a salt-type carboxyl group, a hydroxyl group, and a crosslinked structure as essential structures. Methods for introducing these essential structures are roughly divided into methods introduced during a polymerization reaction. And introducing after the polymerization reaction. The introduction method will be described in detail below for each structure. These introduction methods may be implemented so that each structure is introduced sequentially, but in practice, the introduction methods for each structure are appropriately combined, and manufacturing is performed so that each structure is introduced in parallel. Is more desirable.
まず、ビニル系重合体への塩型カルボキシル基の導入の方法としては、特に限定は無く、例えば、塩型カルボキシル基を有する単量体を共重合成分に用いて重合体を得る方法、カルボキシル基を有する単量体を共重合成分に用いて重合体を得た後に塩型に変える方法、化学変性によりカルボキシル基に変換可能な構造を有する単量体を共重合成分に用いて得られた重合体に、化学変性によりカルボキシル基を導入し、必要に応じ塩型に変える方法、あるいはグラフト重合により前記3法を実施する方法等が挙げられる。 First, the method for introducing a salt-type carboxyl group into a vinyl polymer is not particularly limited. For example, a method for obtaining a polymer using a monomer having a salt-type carboxyl group as a copolymerization component, a carboxyl group, A monomer obtained by using a monomer having a structure having a structure that can be converted into a carboxyl group by chemical modification after obtaining a polymer using the monomer as a copolymerization component. Examples thereof include a method in which a carboxyl group is introduced into the coalescence by chemical modification and changed into a salt form as required, or a method in which the above three methods are carried out by graft polymerization.
塩型カルボキシル基を有する単量体を共重合成分に用いて重合体を得る方法としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボキシル基を含有するビニル及び/又はビニリデン系の塩型単量体を共重合成分に用いる方法が挙げられる。 Examples of a method for obtaining a polymer using a monomer having a salt-type carboxyl group as a copolymerization component include vinyl containing a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinyl propionic acid, and the like. And / or a method using a vinylidene-based salt monomer as a copolymerization component.
また、カルボキシル基を有する単量体を共重合成分に用いて重合体を得た後に塩型に変える方法としては、例えば、先に述べたようなカルボキシル基を含有するビニル及び/又はビニリデン系単量体を共重合成分として得られた共重合体を塩型に変える方法である。カルボキシル基を塩型にする方法としても特に限定はなく、得られた共重合体にLi、Na、K、Rb、Cs等のアルカリ金属イオン、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属イオン、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の他の金属イオン、NH4、アミン等の有機の陽イオン等を大量に含む溶液を作用させてイオン交換を行う等の方法により行うことができる。 Further, as a method for converting a salt form after using a monomer having a carboxyl group as a copolymerization component to obtain a polymer, for example, vinyl and / or vinylidene-based monomers containing a carboxyl group as described above can be used. In this method, the copolymer obtained using the monomer as a copolymerization component is converted into a salt form. The method for converting the carboxyl group into a salt form is not particularly limited, and the obtained copolymer may be an alkaline metal ion such as Li, Na, K, Rb, or Cs, or an alkaline earth such as Be, Mg, Ca, Sr, or Ba. Perform ion exchange by acting a solution containing a large amount of metal ions, other metal ions such as Cu, Zn, Al, Mn, Ag, Fe, Co, Ni, and organic cations such as NH4 and amine, etc. The method can be used.
化学変性によりカルボキシル基を導入する方法としては、例えば、加水分解処理すればカルボキシル基を得られる構造を有する単量体を共重合成分に用いて得られた重合体に、加水分解処理を施してカルボキシル基を導入し、塩型でない場合は上記のような方法で塩型にする方法が挙げられる。加水分解処理すればカルボキシル基を得られる構造を有する単量体としてはアクリロニトリル、メタクリロニトリル等のシアノ基を有する単量体;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等の無水物およびその誘導体であり、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ノルマルプロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ノルマルブチル、(メタ)アクリル酸ノルマルオクチル、(メタ)アクリル酸-2-エチルヘキシル、ヒドロキシルエチル(メタ)アクリレート等のエステル化合物、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、モノエチル(メタ)アクリルアミド、ノルマル-t-ブチル(メタ)アクリルアミド等のアミド等が例示できる。化学変性によりカルボキシル基を導入する他の方法として、アルケン、ハロゲン化アルキル、アルコール、アルデヒド等の酸化等も例示できる。 Examples of a method for introducing a carboxyl group by chemical modification include, for example, subjecting a polymer obtained by using a monomer having a structure that can be obtained by hydrolysis to a carboxyl group as a copolymerization component to hydrolysis. In the case where a carboxyl group is introduced and it is not a salt type, a method of forming a salt type by the method as described above can be mentioned. Monomers having a structure capable of obtaining a carboxyl group by hydrolysis treatment include monomers having a cyano group such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, etc. Anhydrides and derivatives thereof, such as methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, isopropyl (meth) acrylate, normal butyl (meth) acrylate, (meth) Ester compounds such as normal octyl acrylate, 2-ethylhexyl (meth) acrylate, hydroxylethyl (meth) acrylate, (meth) acrylamide, dimethyl (meth) acrylamide, monoethyl (meth) acrylamide, normal-t-butyl (meth) ) Such as acrylamide Bromide and the like. Other methods for introducing a carboxyl group by chemical modification include oxidation of alkenes, alkyl halides, alcohols, aldehydes, and the like.
次に、ビニル系重合体への水酸基の導入の方法としては、特に限定は無く、例えば、水酸基を持つ単量体を共重合成分に用いて重合体を得る方法、化学変性により水酸基に変換可能な構造を有する単量体を共重合成分に用いて得られた重合体に、化学変性により水酸基を導入する方法、あるいはグラフト重合により前記2法を実施する方法等が挙げられる。 Next, the method for introducing a hydroxyl group into the vinyl polymer is not particularly limited. For example, a method of obtaining a polymer using a monomer having a hydroxyl group as a copolymerization component, or conversion into a hydroxyl group by chemical modification is possible. Examples thereof include a method of introducing a hydroxyl group by chemical modification into a polymer obtained using a monomer having a simple structure as a copolymerization component, or a method of carrying out the above two methods by graft polymerization.
水酸基を持つ単量体を共重合成分に用いて重合体を得る方法としては、例えば、4-ヒドロキシルブチルアクリレート、ヒドロキシルエチル(メタ)アクリレート、ヒドロキシプロピルメタクリレート等の水酸基を含有するビニル及び/又はビニリデン系の単量体を共重合成分に用いる方法が挙げられる。 Examples of a method for obtaining a polymer by using a monomer having a hydroxyl group as a copolymerization component include vinyl and / or vinylidene containing a hydroxyl group such as 4-hydroxylbutyl acrylate, hydroxylethyl (meth) acrylate, and hydroxypropyl methacrylate. The method of using a monomer of a system for a copolymerization component is mentioned.
化学変性により水酸基を導入する方法としては、例えば、酢酸ビニル、プロピオン酸ビニル、t-ブタン酸ビニル、ビニロキシトリメチルシラン等を共重合成分に用いて得られた共重合体に加水分解処理を施して水酸基を導入する方法、エチルビニルエーテル、メチルビニルエーテル、イソブチルビニルエーテル、プロピルビニルエーテル、t-ペンチルビニルエーテル、2-クロロエチルビニルエーテル、ブチルビニルエーテル2,2,2-トリフルオロエチルビニルエーテル等を共重合成分に用いて得られた共重合体にハロゲン化水素やルイス酸による処理を施して水酸基を導入する方法が挙げられる。 As a method for introducing a hydroxyl group by chemical modification, for example, a copolymer obtained by using vinyl acetate, vinyl propionate, vinyl t-butanoate, vinyloxytrimethylsilane or the like as a copolymerization component is subjected to hydrolysis treatment. A method of introducing a hydroxyl group, ethyl vinyl ether, methyl vinyl ether, isobutyl vinyl ether, propyl vinyl ether, t-pentyl vinyl ether, 2-chloroethyl vinyl ether, butyl vinyl ether 2,2,2-trifluoroethyl vinyl ether, etc. Examples thereof include a method of introducing a hydroxyl group by subjecting the obtained copolymer to treatment with hydrogen halide or Lewis acid.
また、ビニル系重合体への架橋構造の導入の方法としては、特に限定はなく、重合段階での架橋性ビニル系単量体を共重合成分として加えて重合する方法、あるいは重合後での反応性化合物による後架橋や物理的なエネルギーによる架橋構造の導入など一般に用いられる方法によることができる。特に、重合段階で架橋性単量体を用いる方法、および重合体を得た後の反応性化合物を用いた後架橋による方法では、共有結合による強固な架橋を導入することが可能であり好ましい。 The method for introducing a crosslinked structure into the vinyl polymer is not particularly limited, and a method of polymerizing by adding a crosslinkable vinyl monomer as a copolymerization component in the polymerization stage, or a reaction after polymerization. It is possible to use a generally used method such as post-crosslinking with a functional compound or introduction of a crosslinked structure with physical energy. In particular, the method using a crosslinkable monomer in the polymerization stage and the method using post-crosslinking using a reactive compound after obtaining a polymer are preferable because it is possible to introduce strong cross-linking by a covalent bond.
架橋性ビニル系単量体を用いる方法において用いられる単量体としては、複数のビニル基を有する単量体を用いることができる。例えば、グリシジルメタクリレート、N-メチロールアクリルアミド、ヒドロキシエチルメタクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミド、ジビニルベンゼン等を挙げることができる。 As a monomer used in the method using a crosslinkable vinyl monomer, a monomer having a plurality of vinyl groups can be used. Examples include glycidyl methacrylate, N-methylol acrylamide, hydroxyethyl methacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylenebisacrylamide, divinylbenzene, and the like. it can.
なお、架橋性ビニル系単量体の選定にあたっては、上述した塩型カルボキシル基や水酸基の導入方法を勘案して選択することが望ましい。例えば、カルボキシル基を含有するビニル系単量体を用いる場合にはかかる単量体による酸性雰囲気に耐えうるものを選択することが望ましく、また、加水分解反応により水酸基やカルボキシル基を導入する場合には加水分解しないものを選択することが望ましい。このような酸性雰囲気や加水分解に耐えうるという観点においては、上述した例示の中でもジビニルベンゼンによる架橋構造が好適である。 In selecting a crosslinkable vinyl monomer, it is desirable to select in consideration of the above-described method for introducing a salt-type carboxyl group or a hydroxyl group. For example, when using a vinyl monomer containing a carboxyl group, it is desirable to select one that can withstand an acidic atmosphere with such a monomer, and when introducing a hydroxyl group or a carboxyl group by a hydrolysis reaction It is desirable to select one that does not hydrolyze. From the viewpoint of being able to withstand such an acidic atmosphere or hydrolysis, a crosslinked structure with divinylbenzene is preferable among the examples described above.
また、反応性化合物を用いた後架橋による架橋構造の導入方法としても特に限定はなく、例えば、ニトリル基を有するビニルモノマーから得られるニトリル系重合体の含有するニトリル基に対して、ヒドラジン系化合物またはホルムアルデヒドを反応させ、架橋構造を導入する方法等を挙げることができる。なかでもヒドラジン系化合物を用いる方法は酸、アルカリに対して安定で、しかも得られる架橋構造自体が親水性であるので吸湿性の向上に寄与できるという点で望ましい。なお、ニトリル基とヒドラジン系化合物の反応により得られる架橋構造に関しては、その詳細は同定されていないが、トリアゾール環あるいはテトラゾール環構造に基づくものと推定されている。 In addition, there is no particular limitation on the method for introducing a crosslinked structure by post-crosslinking using a reactive compound. For example, a hydrazine compound is contained in a nitrile group contained in a nitrile polymer obtained from a vinyl monomer having a nitrile group. Or the method etc. which react formaldehyde and introduce | transduce a crosslinked structure can be mentioned. In particular, the method using a hydrazine-based compound is desirable in that it is stable against acids and alkalis and can contribute to improvement in hygroscopicity because the resulting crosslinked structure itself is hydrophilic. In addition, although the detail is not identified regarding the crosslinked structure obtained by reaction of a nitrile group and a hydrazine type compound, it is presumed to be based on a triazole ring or a tetrazole ring structure.
本発明の吸放湿性重合体の製造において塩型カルボキシル基、水酸基および架橋構造を導入する方法は以上のとおりであるが、言うまでもなく、重合にあたって、これらの必須構造の導入に関係しないビニル系単量体を適宜選択して共重合成分として用いることも可能である。 In the production of the hygroscopic polymer of the present invention, the method for introducing a salt-type carboxyl group, a hydroxyl group and a crosslinked structure is as described above. Needless to say, in polymerization, a vinyl-based unit which is not related to the introduction of these essential structures is used. It is also possible to appropriately select the monomer and use it as a copolymerization component.
このような共重合成分として選択可能なビニル系単量体としては特に限定はなく、塩化ビニル、臭化ビニル、フッ化ビニル等のハロゲン化ビニル化合物;塩化ビニリデン、臭化ビニリデン、フッ化ビニリデン等のビニリデン系単量体;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびこれらの塩類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチル、アクリル酸メトキシエチル、アクリル酸フェニル、アクリル酸シクロヘキシル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチル、メタクリル酸フェニル、メタクリル酸シクロヘキシル等のメタクリル酸エステル類;メチルビニルケトン、エチルビニルケトン、フェニルビニルケトン、メチルイソブテニルケトン、メチルイソプロペニルケトン等の不飽和ケトン類;蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル、モノクロロ酢酸ビニル、ジクロロ酢酸ビニル、トリクロロ酢酸ビニル、モノフルオロ酢酸ビニル、ジフルオロ酢酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;アクリルアミドおよびそのアルキル置換体;ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、スルホプロピルメタクリレート、ビニルステアリン酸、ビニルスルフィン酸等のビニル基含有酸化合物、またはその塩、その無水物、その誘導体等;スチレン、メチルスチレン、クロロスチレン等のスチレンおよびそのアルキルまたはハロゲン置換体;アリルアルコールおよびそのエステルまたはエーテル類;N-ビニルフタルイミド、N-ビニルサクシノイミド等のビニルイミド類;ビニルピリジン、ビニルイミダゾール、ジメチルアミノエチルメタクリレート、N-ビニルピロリドン、N-ビニルカルバゾール、ビニルピリジン類等の塩基性ビニル化合物;アクロレイン、メタクリロレイン等の不飽和アルデヒド類などを例示することができる。 The vinyl monomer that can be selected as such a copolymer component is not particularly limited, and vinyl halide compounds such as vinyl chloride, vinyl bromide, and vinyl fluoride; vinylidene chloride, vinylidene bromide, vinylidene fluoride, and the like Vinylidene-based monomers of; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid and their salts; methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, methoxyethyl acrylate, Acrylic esters such as phenyl acrylate and cyclohexyl acrylate; Methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate; methyl vinyl ketone, ethyl vinyl Ketones, Unsaturated ketones such as phenyl vinyl ketone, methyl isobutenyl ketone, methyl isopropenyl ketone; vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, vinyl monochloroacetate, vinyl dichloroacetate, vinyl trichloroacetate, Vinyl esters such as vinyl monofluoroacetate, vinyl difluoroacetate and vinyl trifluoroacetate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; acrylamide and alkyl-substituted products thereof; vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene Vinyl group-containing acid compounds such as sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, sulfopropyl methacrylate, vinyl stearic acid, vinylsulfinic acid, or salts thereof, anhydrous Styrene such as styrene, methylstyrene and chlorostyrene and alkyl or halogen substituted products thereof; Allyl alcohol and esters or ethers thereof; Vinylimides such as N-vinylphthalimide and N-vinylsuccinoimide; Vinylpyridine And basic vinyl compounds such as vinylimidazole, dimethylaminoethyl methacrylate, N-vinylpyrrolidone, N-vinylcarbazole and vinylpyridines; and unsaturated aldehydes such as acrolein and methacrylolein.
上述してきた本発明に採用する吸放湿性重合体の好ましい例としては、ジビニルベンゼンによる架橋構造および塩型カルボキシル基及び水酸基を有するビニル系重合体粒子が挙げられる。この場合、ジビニルベンゼンの使用量としては、特に限定はなく、目的の機能が果たせるように設定すればよいが、通常使用する全単量体に対して、3~40重量%となるようにするのが好ましい。3重量%以下では得られた粒子の水膨潤が激しくなり、著しく粘着性がでることがある。一方、40重量%以上では塩型カルボキシル基量が少なくなるため、十分な吸湿性能が得られないことがある。 Preferable examples of the hygroscopic polymer employed in the present invention described above include vinyl polymer particles having a crosslinked structure with divinylbenzene and salt-type carboxyl groups and hydroxyl groups. In this case, the amount of divinylbenzene used is not particularly limited and may be set so that the intended function can be achieved. However, it should be 3 to 40% by weight based on the total amount of monomers normally used. Is preferred. If the amount is 3% by weight or less, the resulting particles are swelled with water and may become extremely sticky. On the other hand, when the amount is 40% by weight or more, the salt-type carboxyl group amount decreases, so that sufficient moisture absorption performance may not be obtained.
かかるビニル系重合体粒子の製造方法としては、上述した方法を採用すればよいが、例えば、ビニル系重合体にジビニルベンゼンおよびカルボキシル基及び水酸基を有するビニル系単量体をグラフト重合させる方法や、ジビニルベンゼン、カルボキシル基を有するビニル系単量体及び水酸基を有するビニル系単量体を共重合させる方法などが挙げられるが、製造しやすく、架橋密度、塩型カルボキシル基量および水酸基量を容易に制御できるという点から、ジビニルベンゼン、加水分解により塩型カルボキシル基を生成しうる構造を有するビニル系単量体、および加水分解により水酸基を生成しうる構造を有するビニル系単量体、さらに必要に応じその他のビニル系単量体を共重合させて得られた共重合体を加水分解する方法が利用しやすい。 As a method for producing such vinyl polymer particles, the method described above may be adopted, for example, a method in which a vinyl monomer having a vinyl monomer having divinylbenzene and a carboxyl group and a hydroxyl group is graft-polymerized, Examples include a method of copolymerizing divinylbenzene, a vinyl monomer having a carboxyl group and a vinyl monomer having a hydroxyl group, but it is easy to produce, and the crosslinking density, the amount of salt-type carboxyl groups and the amount of hydroxyl groups can be easily set. In terms of controllability, divinylbenzene, a vinyl monomer having a structure capable of generating a salt-type carboxyl group by hydrolysis, a vinyl monomer having a structure capable of generating a hydroxyl group by hydrolysis, and further need A method of hydrolyzing a copolymer obtained by copolymerizing other vinyl monomers can be used.
以上に説明してきた本発明の吸放湿性重合体は、各種素材の吸放湿性能や透湿性能を高める添加剤として有用なものである。ここで、本発明の吸放湿性重合体を適用できる素材としては、特に制限されないが、例えば、繊維、紙、不織布、糸、織物、編み物、皮革、塗膜、フィルム、シート、発泡体、ゴムなどを例示することができる。このうち、紙、不織布、糸、織物、編み物、発泡体などの素材に適用した場合、気体との接触面積が大きく、かつ形態保持性が優れていることより、吸放湿量や透湿量の多い素材を得ることができる。 The hygroscopic polymer of the present invention described above is useful as an additive for improving the hygroscopic performance and moisture permeability performance of various materials. Here, the material to which the hygroscopic polymer of the present invention can be applied is not particularly limited. For example, fibers, paper, nonwoven fabrics, yarns, woven fabrics, knitted fabrics, leathers, coating films, films, sheets, foams, rubbers. Etc. can be illustrated. Among these, when applied to materials such as paper, non-woven fabric, yarn, woven fabric, knitted fabric, foam, etc., the amount of moisture absorption and moisture transmission and moisture permeation is higher because of its large contact area with gas and excellent shape retention. A lot of material can be obtained.
これらの素材に本発明の吸放湿性重合体を含有させる方法としては、本発明の吸放湿性重合体を使用する限りにおいては特に限定はなく、素材中に練り込む、素材に直接固着させる、あるいは、バインダー樹脂によって素材に固着させる方法などを採ることができる。また、本発明の吸放湿性重合体が繊維状の形態を有する場合、繊維状の吸放湿性重合体を構成繊維に用いて紙や不織布などを得る方法なども採用することができる。 As a method of containing the hygroscopic polymer of the present invention in these materials, as long as the hygroscopic polymer of the present invention is used, there is no particular limitation, kneaded into the material, directly fixed to the material, Or the method of making it adhere to a raw material with binder resin can be taken. Moreover, when the hygroscopic polymer of this invention has a fibrous form, the method of obtaining paper, a nonwoven fabric, etc. using a fibrous hygroscopic polymer for a constituent fiber is also employable.
素材中に練り込む方法については、主に、繊維、塗膜、フィルム、シート、発泡体、ゴムなどの樹脂成形体に適用することができる。具体的な方法としては、本発明の吸放湿性重合体を混合した樹脂を用いた、射出成形、押出成形、溶融紡糸、溶液紡糸、塗工などを挙げることができる。 About the method of kneading in a raw material, it can mainly apply to resin moldings, such as a fiber, a coating film, a film, a sheet | seat, a foam, rubber | gum. Specific examples of the method include injection molding, extrusion molding, melt spinning, solution spinning, and coating using a resin mixed with the hygroscopic polymer of the present invention.
また、かかる方法を適用できる樹脂成形体を構成する樹脂の種類としては、特に限定はなく、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、熱硬化性ポリイミドなどの熱硬化性樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ABS樹脂、AS樹脂、アクリル樹脂などの熱可塑性樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、環状ポリオレフィンなどのエンジニアリングプラスチックなどの合成樹脂や天然樹脂などを例示することができる。 Moreover, there is no limitation in particular as a kind of resin which comprises the resin molding which can apply this method, A phenol resin, an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a urethane resin, thermosetting Thermosetting resins such as polyimide, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, ABS resin, AS resin, acrylic resin, and other thermoplastic resins, polyamide, polyacetal, polycarbonate Examples thereof include synthetic resins and natural resins such as engineering plastics such as modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, and cyclic polyolefin.
また、樹脂成形体を構成する樹脂としては水蒸気の透過性が高いものが望ましい。樹脂成形体中においては、本発明の吸放湿性重合体と水蒸気との接触を制限されるため、本発明の吸放湿性重合体が本来有する吸放湿性能を十分に発揮できなくなる場合がある。しかし、樹脂として水蒸気の透過性が高いものを採用することにより、本発明の吸放湿性重合体が水蒸気と接触しやすくなり、吸放湿性能がより発揮されやすくすることが可能である。また、この場合、樹脂が本来有する水蒸気透過性に、本発明の吸放湿性重合体の吸放湿性が加わることで、より優れた透湿性能を有する樹脂成形体とすることができる。 Moreover, as resin which comprises a resin molding, what has the high water vapor permeability is desirable. In the resin molded body, contact between the moisture-absorbing / releasing polymer of the present invention and water vapor is limited, so that the moisture-absorbing / releasing performance inherent to the moisture-releasing / releasing polymer of the present invention may not be sufficiently exhibited. . However, by adopting a resin having a high water vapor permeability as the resin, the moisture absorbing / releasing polymer of the present invention can easily come into contact with water vapor, and the moisture absorbing / releasing performance can be more easily exhibited. Further, in this case, a resin molded body having more excellent moisture permeability can be obtained by adding the moisture absorption / release property of the moisture absorption / release polymer of the present invention to the water vapor permeability inherent in the resin.
加えて、樹脂の構成成分が、水酸基と反応して共有結合を形成したり、水酸基と水素結合またはイオン結合を形成したりできる官能基や構造を有するものである場合、上述したように、通常、吸放湿性重合体の添加によって低下してしまう耐水性についても、低下を抑制することが可能となるので望ましい。かかる効果を得られる官能基や構造の具体的な例としては、イソシアネート基、エステル基、アミド基、ハロゲン基、エポキシ基、カルボキシル基、水酸基、アミノ基、チオール基等が挙げられる。このうち、イソシアネート基、エステル基、アミド基、ハロゲン基、エポキシ基等の求電子性を有する官能基は、水酸基と反応して共有結合を形成し、樹脂成形体と強固に結びつき、樹脂成形体との親和性が高まるため、耐水性の低下を抑制する効果も大きくなる。 In addition, when the resin component has a functional group or structure capable of reacting with a hydroxyl group to form a covalent bond or forming a hydrogen bond or an ionic bond with the hydroxyl group, as described above, Also, the water resistance that decreases due to the addition of the hygroscopic polymer is desirable because it can be suppressed. Specific examples of functional groups and structures that can achieve this effect include isocyanate groups, ester groups, amide groups, halogen groups, epoxy groups, carboxyl groups, hydroxyl groups, amino groups, thiol groups, and the like. Among these, functional groups having electrophilicity such as isocyanate groups, ester groups, amide groups, halogen groups, and epoxy groups react with hydroxyl groups to form covalent bonds, and are firmly bonded to the resin molded body. Therefore, the effect of suppressing the decrease in water resistance is also increased.
以上に説明した、水蒸気透過性と耐水性の低下抑制の観点から、好適な樹脂としては、ウレタン結合などの親水性の構造を多く形成し、イソシアネート基を有する構成成分を含むウレタン樹脂を挙げることができる。 From the viewpoint of suppressing water vapor permeability and water resistance reduction as described above, examples of suitable resins include urethane resins that form a large number of hydrophilic structures such as urethane bonds and that contain components having isocyanate groups. Can do.
次に、素材に直接固着させる方法については、素材からの吸放湿性重合体の脱落を抑制する観点などから、当該素材表面に、水酸基と反応して共有結合を形成できる官能基や水酸基と水素結合またはイオン結合を形成できる官能基を有する素材に好適に適用できる。このうち、共有結合を形成できるイソシアネート基、エステル基、アミド基、ハロゲン基、エポキシ基等の求電子性を有する官能基を有する素材が適しており、イソシアネート基を有する素材が特に適している。 Next, with respect to the method of directly fixing to the material, from the viewpoint of suppressing the removal of the hygroscopic polymer from the material, functional groups capable of reacting with hydroxyl groups and forming covalent bonds on the material surface, hydroxyl groups and hydrogen It can be suitably applied to a material having a functional group capable of forming a bond or an ionic bond. Among these, materials having an electrophilic functional group such as an isocyanate group, ester group, amide group, halogen group, epoxy group and the like capable of forming a covalent bond are suitable, and a material having an isocyanate group is particularly suitable.
具体的な方法としては、紙、不織布、糸、織物、編み物、シート、発泡体等に粒子状の吸放湿性重合体のスラリーやエマルジョンを含浸、あるいは塗布する方法が挙げられる。また、紙の場合には、その製造工程において、粒子状あるいは繊維状の吸放湿性重合体を漉き込む方法や、不織布の場合には、その製造工程において添加し、不織布を構成する熱接着性繊維などに固着させる方法も採用しうる。 Specific examples of the method include a method of impregnating or applying a slurry or emulsion of particulate hygroscopic polymer on paper, non-woven fabric, yarn, woven fabric, knitted fabric, sheet, foam or the like. Further, in the case of paper, a method of incorporating a particulate or fibrous hygroscopic polymer in the production process, or in the case of a nonwoven fabric, it is added in the production process and the thermal adhesiveness constituting the nonwoven fabric. A method of fixing to fibers or the like can also be employed.
また、バインダー樹脂によって本発明の吸放湿性重合体を素材に固着させる方法については、上記に例示した素材を含む様々な素材に対して適用することができる。ここで、使用するバインダー樹脂としては、素材に対応して適宜選定すればよく、上述した熱硬化性樹脂や熱可塑性樹脂を例示することができる。また、上述した樹脂成形体の場合と同様に、バインダー樹脂として用いる樹脂については水蒸気透過性が高くなるものが好ましい。さらに、耐水性の低下を抑制する観点や脱落をより抑制する観点などからは、水酸基と反応して共有結合を形成できる官能基や水酸基と水素結合またはイオン結合を形成できる官能基を有するものが好ましく、このうち、共有結合を形成できるイソシアネート基、エステル基、アミド基、ハロゲン基、エポキシ基等の求電子性を有する官能基を有するバインダー樹脂が好適である。そして、これらの好ましい態様をいずれも満たすバインダー樹脂としてウレタン樹脂を好適に用いることができる。 Further, the method for fixing the moisture-absorbing / releasing polymer of the present invention to the material with the binder resin can be applied to various materials including the materials exemplified above. Here, the binder resin to be used may be appropriately selected according to the material, and examples thereof include the above-described thermosetting resins and thermoplastic resins. Further, as in the case of the resin molded body described above, the resin used as the binder resin is preferably one having high water vapor permeability. Furthermore, from the viewpoint of suppressing the decrease in water resistance and the viewpoint of further suppressing the dropping, those having a functional group capable of reacting with a hydroxyl group to form a covalent bond and a hydroxyl group capable of forming a hydrogen bond or an ionic bond. Of these, binder resins having an electrophilic functional group such as an isocyanate group, an ester group, an amide group, a halogen group, and an epoxy group that can form a covalent bond are preferable. And urethane resin can be used suitably as binder resin which satisfy | fills all these preferable aspects.
具体的な方法としては、本発明の吸放湿性重合体を含有するバインダー樹脂溶液を、繊維、紙、不織布、糸、織物、編み物、皮革、塗膜、フィルム、シート、発泡体、ゴムなどの素材に塗布あるいはスプレーする方法や、かかるバインダー樹脂溶液にこれらの素材を浸漬する方法などを挙げることができる。 As a specific method, the binder resin solution containing the hygroscopic polymer of the present invention is applied to fibers, paper, nonwoven fabric, yarn, woven fabric, knitted fabric, leather, coating film, film, sheet, foam, rubber, etc. Examples thereof include a method of applying or spraying the material, a method of immersing these materials in the binder resin solution, and the like.
また、本発明の吸放湿性重合体の素材への添加量としては、求められる吸放湿性能に応じて適宜設定すればよいが、通常の場合、素材に対して1~80重量%の範囲内で設定することが適当である。80重量%を超えると吸放湿性重合体が脱落しやすくなったり、水膨潤による変形が大きくなったりする場合が多くなり、特に樹脂成形体に練りこむ場合においては成形することが困難となってくる。また、1重量%に満たない場合には吸放湿性能の向上効果が顕在化しない場合が多くなる。 Further, the amount of the hygroscopic polymer of the present invention added to the raw material may be appropriately set according to the required hygroscopic performance, but in the normal case, it is in the range of 1 to 80% by weight with respect to the raw material. It is appropriate to set within. If it exceeds 80% by weight, the moisture-absorbing / releasing polymer tends to fall off and deformation due to water swelling often increases. In particular, when it is kneaded into a resin molding, it becomes difficult to mold. come. In addition, when the amount is less than 1% by weight, there are many cases where the effect of improving the moisture absorption / release performance is not manifested.
また、本発明の吸放湿性重合体は素材との間に多数の化学的結合を形成して、結果的に素材成分同士を架橋した状態とするため、素材の力学的強度を向上させるような効果も期待できる。 In addition, the hygroscopic polymer of the present invention forms a number of chemical bonds with the material, resulting in a state in which the material components are cross-linked, so that the mechanical strength of the material is improved. The effect can also be expected.
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。まず、各特性の評価方法について説明する。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, the part and percentage in an Example are shown on a weight basis. First, an evaluation method for each characteristic will be described.
<飽和吸湿率>
試料粒子約1.0gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(Wds[g])、次に試料粒子を温度20℃で相対湿度65%RHに調整された恒温恒湿器に24時間放置し、吸湿した試料粒子の重量を測定する(Wws[g])、以上の結果をもとに、次式により算出した。
飽和吸湿率[%]={(Wws-Wds)/Wds}×100
<Saturated moisture absorption rate>
About 1.0 g of sample particles are dried with a hot air dryer at 105 ° C. for 16 hours and weighed (Wds [g]). Next, the sample particles are kept at a temperature of 20 ° C. and adjusted to a relative humidity of 65% RH. The sample particles were allowed to stand for 24 hours in a humidifier and the weight of the absorbed sample particles was measured (Wws [g]).
Saturated moisture absorption [%] = {(Wws−Wds) / Wds} × 100
<平均粒子径>
粒子の平均粒子径は、島津製作所製レーザー回折式粒度分布測定装置「SALD2000」を使用し、水を分散媒として測定した結果を、体積基準で表し、そのメディアン径をもって平均粒子径とした。
<Average particle size>
The average particle size of the particles was measured by using a laser diffraction particle size distribution measuring device “SALD2000” manufactured by Shimadzu Corporation and measured using water as a dispersion medium, and the median size was defined as the average particle size.
<水酸基量>
実施例6以外の水酸基量は、まず重合後加水分解前のサンプルの元素分析を行い、酸素原子重量比及び窒素含有量を測定することで、酢酸ビニルユニット含有量(A[mmol/g])及びアクリロニトリルユニット含有量(B[mmol/g])を求めた。その後、加水分解後のサンプルの赤外分光測定により、完全に酢酸ビニルユニット及びアクリロニトリルユニットが加水分解されていることを確認し、水酸基(ビニルアルコールユニット)と塩型カルボキシル基(アクリル酸ナトリウムユニット)に完全に変換されたものとして重量変化を求め、これらの数値より算出したものである。
原料ポリマー1gに対する酢酸ビニルユニット分の重量変化[g]
 = 0.044A-0.086A = -0.042A
原料ポリマー1gに対するアクリロニトリルユニット分の重量変化[g]
 = 0.094B-0.053B = 0.041B}
水酸基量[mmol/g] = A/(1-0.042A+0.041B)
<Hydroxyl group content>
The amount of hydroxyl groups other than Example 6 is obtained by first conducting an elemental analysis of the sample after polymerization and before hydrolysis, and measuring the oxygen atom weight ratio and nitrogen content, whereby the vinyl acetate unit content (A [mmol / g]) And acrylonitrile unit content (B [mmol / g]) was calculated | required. After that, by infrared spectroscopic measurement of the sample after hydrolysis, it was confirmed that the vinyl acetate unit and acrylonitrile unit were completely hydrolyzed. Hydroxyl group (vinyl alcohol unit) and salt-type carboxyl group (sodium acrylate unit) The weight change was calculated as having been completely converted into the above and calculated from these numerical values.
Weight change of vinyl acetate unit to 1g of raw material polymer [g]
= 0.044A-0.086A = -0.042A
Change in weight of acrylonitrile unit per gram of raw polymer [g]
= 0.094B-0.053B = 0.041B}
Amount of hydroxyl group [mmol / g] = A / (1-0.042A + 0.041B)
<塩型カルボキシル基量>
塩型カルボキシル基量は、全カルボキシル基量からH型カルボキシル基量を差し引くことによって求めた。まず、十分乾燥した試料1gを精秤し(X[g])、これに200mlの水を加えた後、50℃に加温しながら1N塩酸水溶液を添加してpH2とすることで、試料に含まれるカルボキシル基を全てH型カルボキシル基とし、次いで0.1N水酸化ナトリウム水溶液で常法に従って滴定曲線を求めた。該滴定曲線からH型カルボキシル基に消費された水酸化ナトリウム水溶液消費量(Y[ml])を求め、次式によって試料中に含まれる全カルボキシル基量を算出した。
全カルボキシル基量[mmol/g]=0.1Y/X
別途、上述の全カルボキシル基量測定操作中の1N塩酸水溶液添加によるpH2への調整をすることなく同様に滴定曲線を求め、試料中に含まれるH型カルボキシル基量を求めた。これらの結果から次式により塩型カルボキシル基量を算出した。
塩型カルボキシル基量[mmol/g]=(全カルボキシル基量)-(H型カルボキシル基量)
<Amount of salt-type carboxyl group>
The amount of salt-type carboxyl groups was determined by subtracting the amount of H-type carboxyl groups from the total amount of carboxyl groups. First, 1 g of a sufficiently dried sample was precisely weighed (X [g]), 200 ml of water was added thereto, and then 1N hydrochloric acid aqueous solution was added to the sample while heating to 50 ° C. to adjust the pH to 2. All the carboxyl groups contained were converted to H-type carboxyl groups, and then a titration curve was determined according to a conventional method using a 0.1N aqueous sodium hydroxide solution. The consumption amount (Y [ml]) of the sodium hydroxide aqueous solution consumed by the H-type carboxyl groups was determined from the titration curve, and the total amount of carboxyl groups contained in the sample was calculated by the following formula.
Total carboxyl group content [mmol / g] = 0.1 Y / X
Separately, a titration curve was similarly obtained without adjusting to pH 2 by adding a 1N hydrochloric acid aqueous solution during the above total carboxyl group amount measurement operation, and the amount of H-type carboxyl groups contained in the sample was obtained. From these results, the salt-type carboxyl group amount was calculated by the following formula.
Salt-type carboxyl group amount [mmol / g] = (total carboxyl group amount) − (H-type carboxyl group amount)
<耐水性>
耐水性評価用サンプルは、ポリイソシアネート(バーノックDN-980K、DIC社製)6.5g、試料粒子5g、ポリオール(アクリディックA-801-P、DIC社製)23.5gを混合しPETフィルムにバーコーター#50で塗工した後に、130℃で30分乾燥させたものを用いた。耐水性評価は上記サンプルを水に10分間浸漬させた後に表面の水分を拭き取り、塗工部分に白化が見られるかどうかを目視で判断し、白化が見られた場合を×、白化が見られなかった場合を○とした。
<Water resistance>
A sample for water resistance evaluation was prepared by mixing 6.5 g of polyisocyanate (Bernock DN-980K, manufactured by DIC), 5 g of sample particles, and 23.5 g of polyol (Acridic A-801-P, manufactured by DIC) into a PET film. After coating with a bar coater # 50, a product dried at 130 ° C. for 30 minutes was used. In the water resistance evaluation, after immersing the above sample in water for 10 minutes, the moisture on the surface is wiped off, and it is judged visually whether whitening is seen in the coated part. If whitening is seen, x, whitening is seen The case where it did not exist was marked as ◯.
<吸湿性発現率>
吸湿性発現率は、上記の飽和吸湿率(A[%])、上記の耐水性評価サンプルにおける試料粒子の含有量(B[g/m])及び吸湿量(C[g/m])、耐水性評価サンプルと試料粒子を添加しないこと以外は同様にして塗工して得られたブランクサンプルの吸湿量(D[g/m])を測定し、次式により算出したものである。なお、吸湿量CおよびDについては、上記の飽和吸湿率の項と同様の方法で測定した。
吸湿性発現率(%)=[(C-D)/B×100]/A×100
<Hygroscopic expression rate>
The hygroscopic expression rate is the saturated moisture absorption rate (A [%]), the sample particle content (B [g / m 2 ]) and the moisture absorption amount (C [g / m 2 ]) in the water resistance evaluation sample. ), The moisture absorption amount (D [g / m 2 ]) of a blank sample obtained by coating in the same manner except that the water resistance evaluation sample and sample particles are not added, and calculated by the following formula: is there. In addition, about the moisture absorption C and D, it measured by the method similar to the term of said saturated moisture absorption.
Hygroscopic expression rate (%) = [(CD) / B × 100] / A × 100
<透湿性>
試料粒子40部およびウレタン樹脂(スーパーフレックス(登録商標)E-4800、第一工業製薬社製)100部を混合し、ナイロンメッシュ(200メッシュ)上にガラス棒を用いて50μmの厚さで塗工し、室温で乾燥する。得られた塗工布について、JIS L 1099(A-1法)に基づき透湿度を測定する。
<Moisture permeability>
40 parts of sample particles and 100 parts of urethane resin (Superflex (registered trademark) E-4800, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) are mixed and coated on a nylon mesh (200 mesh) with a thickness of 50 μm using a glass rod. And dry at room temperature. The moisture permeability of the resulting coated fabric is measured based on JIS L 1099 (A-1 method).
[実施例1]
アクリロニトリル74部、酢酸ビニル1部、ジビニルベンゼン25部からなるモノマー混合液を、0.5部の過硫酸アンモニウムを含む水溶液300部に添加し、次いでピロ亜硫酸ナトリウム0.6部を加え、攪拌機つきの重合槽で65℃、2時間重合する。得られたポリマーをろ過して水洗する。次に該ポリマー100部を10%水酸化ナトリウム水溶液567部に添加し、95℃で48時間加水分解反応を行った。次いで、得られたポリマーをろ過、水洗して吸湿性微粒子1を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。また、耐水性評価で用いたサンプルについて吸湿性発現率を測定したところ90.7%以上であった。
[Example 1]
A monomer mixture consisting of 74 parts of acrylonitrile, 1 part of vinyl acetate and 25 parts of divinylbenzene is added to 300 parts of an aqueous solution containing 0.5 parts of ammonium persulfate, and then 0.6 part of sodium pyrosulfite is added, followed by polymerization with a stirrer. Polymerize in a bath at 65 ° C. for 2 hours. The polymer obtained is filtered and washed with water. Next, 100 parts of the polymer was added to 567 parts of a 10% aqueous sodium hydroxide solution and subjected to a hydrolysis reaction at 95 ° C. for 48 hours. Subsequently, the obtained polymer was filtered and washed with water to obtain hygroscopic fine particles 1. The evaluation results of the particles are as shown in Table 1, and the water resistance was good. Moreover, when the hygroscopic expression rate was measured about the sample used by water resistance evaluation, it was 90.7% or more.
また、吸湿性微粒子1を粉砕して平均粒子径を5μmにしたものを試料に用いて、透湿度を上記方法にて測定したところ、91.0g/m・hであった。これは、吸湿性微粒子1を添加しないこと以外は同様にして測定した透湿度45.8g/m・hよりも高いものであり、本発明の吸放湿性重合体の透湿性の向上効果を示すものである。 Further, when the hygroscopic fine particles 1 were pulverized so as to have an average particle diameter of 5 μm was used as a sample and the moisture permeability was measured by the above method, it was 91.0 g / m 2 · h. This is higher than the moisture permeability 45.8 g / m 2 · h measured in the same manner except that the hygroscopic fine particles 1 are not added, and the moisture permeability improving effect of the hygroscopic polymer of the present invention is improved. It is shown.
[比較例1]
実施例1において、モノマー混合液として、アクリロニトリル75部、ジビニルベンゼン25部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子2を得た。該粒子の評価結果は表1のとおりであり、水に浸漬することにより白化した。
[Comparative Example 1]
In Example 1, hygroscopic fine particles 2 were obtained in the same manner as in Example 1 except that the monomer mixture was 75 parts of acrylonitrile and 25 parts of divinylbenzene. The evaluation result of this particle | grain is as Table 1, and it whitened by being immersed in water.
[実施例2]
実施例1において、モノマー混合液として、アクリロニトリル64部、酢酸ビニル1部、ジビニルベンゼン35部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子3を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。
[Example 2]
In Example 1, hygroscopic fine particles 3 were obtained in the same manner as in Example 1 except that the monomer mixture was 64 parts of acrylonitrile, 1 part of vinyl acetate, and 35 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
[比較例2]
実施例1において、モノマー混合液して、アクリロニトリル65部、ジビニルベンゼン35部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子4を得た。該粒子の評価結果は表1のとおりであり、水に浸漬することにより白化した。
[Comparative Example 2]
A hygroscopic fine particle 4 was obtained in the same manner as in Example 1 except that the monomer mixture solution used was 65 parts of acrylonitrile and 35 parts of divinylbenzene. The evaluation result of this particle | grain is as Table 1, and it whitened by being immersed in water.
[実施例3]
実施例1において、モノマー混合液として、アクリロニトリル56.7部、酢酸ビニル8.3部、ジビニルベンゼン35部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子5を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。
[Example 3]
In Example 1, the hygroscopic fine particles 5 were obtained in the same manner as in Example 1 except that the monomer mixture was composed of 56.7 parts of acrylonitrile, 8.3 parts of vinyl acetate, and 35 parts of divinylbenzene. It was. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
[実施例4]
実施例1において、モノマー混合液として、アクリロニトリル5部、酢酸ビニル60部、ジビニルベンゼン35部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子6を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。
[Example 4]
In Example 1, hygroscopic fine particles 6 were obtained in the same manner as in Example 1 except that the monomer mixture was 5 parts of acrylonitrile, 60 parts of vinyl acetate, and 35 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
[実施例5]
実施例1において、モノマー混合液として、アクリロニトリル10部、酢酸ビニル65部、ジビニルベンゼン25部からなるものを用いた以外は実施例1と同様に操作して吸湿性微粒子7を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。
[Example 5]
In Example 1, hygroscopic fine particles 7 were obtained in the same manner as in Example 1 except that the monomer mixture was 10 parts of acrylonitrile, 65 parts of vinyl acetate and 25 parts of divinylbenzene. The evaluation results of the particles are as shown in Table 1, and the water resistance was good.
[実施例6]
メタクリル酸10部、4-ヒドロキシルブチルアクリレート3部、アクリロニトリル62部、ジビニルベンゼン25部からなるモノマー混合液を、0.5部の過硫酸アンモニウムを含む水溶液300部に添加し、次いでピロ亜硫酸ナトリウム0.6部を加え、攪拌機つきの重合槽で65℃、2時間重合する。得られたポリマーをろ過して水洗する。洗浄液をガスクロマトグラフィーで分析することで、ポリマー中のメタクリル酸、4-ヒドロキシルブチルアクリレートの導入量を求めた。次にポリマー100部を2%炭酸ナトリウム水溶液567部に添加し、30℃で4時間カルボキシル基の中和反応を行った。次いで、得られたポリマーをろ過、水洗して吸湿性微粒子8を得た。該粒子の評価結果は表1のとおりであり、耐水性は良好であった。なお、このときの水酸基量に関しては、上記ガスクロマトグラフィー分析で求めたメタクリル酸ユニット(A[mmol/g])の理論的な中和反応による重量変化と、上記ガスクロマトグラフィー分析で求めた4-ヒドロキシルブチルアクリレートユニットの導入量(B[mmol/g])から算出したものである。
原料ポリマー1gあたりのメタクリル酸ユニット分の重量変化[g]
 = 0.108A-0.086A = 0.022A
水酸基量[mmol/g] = B/(1+0.022A)
[Example 6]
A monomer mixture consisting of 10 parts of methacrylic acid, 3 parts of 4-hydroxylbutyl acrylate, 62 parts of acrylonitrile and 25 parts of divinylbenzene is added to 300 parts of an aqueous solution containing 0.5 parts of ammonium persulfate, followed by 0. Add 6 parts, and polymerize in a polymerization tank equipped with a stirrer at 65 ° C. for 2 hours. The polymer obtained is filtered and washed with water. The amount of methacrylic acid and 4-hydroxylbutyl acrylate introduced into the polymer was determined by analyzing the cleaning liquid by gas chromatography. Next, 100 parts of the polymer was added to 567 parts of a 2% aqueous sodium carbonate solution, and the carboxyl group was neutralized at 30 ° C. for 4 hours. Next, the obtained polymer was filtered and washed with water to obtain hygroscopic fine particles 8. The evaluation results of the particles are as shown in Table 1, and the water resistance was good. In addition, regarding the amount of hydroxyl groups at this time, the change in weight due to the theoretical neutralization reaction of the methacrylic acid unit (A [mmol / g]) obtained by the gas chromatography analysis and 4 obtained by the gas chromatography analysis were obtained. -Calculated from the amount of introduced hydroxyl butyl acrylate units (B [mmol / g]).
Change in weight of methacrylic acid unit per gram of raw polymer [g]
= 0.108A-0.086A = 0.022A
Hydroxyl amount [mmol / g] = B / (1 + 0.022A)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例7]
5gの吸湿性微粒子1、ビスフェノールAジグリシジルエーテル27.8g、ジシアンジアミド2.2g、ジメチル尿素0.8gを混合しPETフィルムにバーコーターで塗工した後に、120℃で30分乾燥させることによって、エポキシ樹脂に吸湿性微粒子1に添加したサンプルを作成する。かかる測定サンプルを用い、上記と同様にして耐水性と吸湿性発現率を評価した。該サンプルは水に浸漬した後も白化せず、良好な耐水性を示した。また、吸湿性発現率も85.1%と良好であった。
[Example 7]
5 g of hygroscopic fine particles 1, 27.8 g of bisphenol A diglycidyl ether, 2.2 g of dicyandiamide and 0.8 g of dimethylurea were mixed and coated on a PET film with a bar coater, and then dried at 120 ° C. for 30 minutes. A sample prepared by adding the hygroscopic fine particles 1 to the epoxy resin is prepared. Using this measurement sample, water resistance and hygroscopicity were evaluated in the same manner as described above. The sample did not whiten even after being immersed in water and showed good water resistance. Also, the hygroscopic expression rate was as good as 85.1%.
[参考例1]
またp-シアノイソシアン酸フェニル(和光純薬製)1部を50部のメチルエチルケトンに溶解し、吸湿性微粒子1を2部加えて80℃で12時間攪拌させた後、粒子をろ過、アセトンで3回洗浄し、50℃で12時間乾燥させた微粒子9を得た。該粒子の赤外吸収スペクトルを図2、吸湿性微粒子1の赤外吸収スペクトルを図1に示す。図2には図1に見られないシアノ基に由来する2241cm-1、ウレタン結合を示す1739cm-1に吸収が確認される。すなわち、吸湿性微粒子1とp-シアノイソシアン酸フェニルを反応させて得られた微粒子9にはウレタン結合とシアノ基が導入されており、このことより、吸湿性微粒子1の水酸基がイソシアネート基と反応して共有結合が形成されることが理解される。
[Reference Example 1]
In addition, 1 part of phenyl p-cyanoisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 50 parts of methyl ethyl ketone, 2 parts of hygroscopic fine particles 1 were added and stirred at 80 ° C. for 12 hours, and then the particles were filtered and 3 parts with acetone. Fine particles 9 washed twice and dried at 50 ° C. for 12 hours were obtained. The infrared absorption spectrum of the particles is shown in FIG. 2, and the infrared absorption spectrum of the hygroscopic fine particles 1 is shown in FIG. In FIG. 2, absorption is confirmed at 2241 cm −1 derived from a cyano group not found in FIG. 1 and 1739 cm −1 indicating a urethane bond. That is, a urethane bond and a cyano group are introduced into the fine particles 9 obtained by reacting the hygroscopic fine particles 1 with phenyl p-cyanoisocyanate. From this, the hydroxyl groups of the hygroscopic fine particles 1 react with the isocyanate groups. It is understood that a covalent bond is formed.
[参考例2]
参考例1において、吸湿性微粒子1の代わりに吸湿性微粒子2を用いたこと以外は同様にして操作を行ない、微粒子10を得た。該粒子の赤外吸収スペクトルを図4、吸湿性微粒子2の赤外吸収スペクトルを図3に示す。図3、図4はほぼ同様のスペクトルであり、水酸基を持たない吸湿性微粒子2はイソシアネート基と反応しないことが理解される。
[Reference Example 2]
In the same manner as in Reference Example 1, except that the hygroscopic fine particles 2 were used instead of the hygroscopic fine particles 1, the same operation was performed to obtain fine particles 10. The infrared absorption spectrum of the particles is shown in FIG. 4, and the infrared absorption spectrum of the hygroscopic fine particles 2 is shown in FIG. 3 and 4 show substantially the same spectrum, and it is understood that the hygroscopic fine particles 2 having no hydroxyl group do not react with the isocyanate group.
本発明の吸放湿性重合体ならびに素材は、繊維、繊維加工品、衣料品、シート、紙、不織布、フィルム、バインダー、塗料、接着剤、センサー、樹脂、電気、電子などの各種分野において、吸放湿性能や透湿性能を付与できる材料として幅広く利用することができる。
 
The moisture-absorbing / releasing polymer and material of the present invention are used in various fields such as fibers, textile processed products, clothing, sheets, paper, nonwoven fabrics, films, binders, paints, adhesives, sensors, resins, electricity, and electronics. It can be widely used as a material that can impart moisture release performance and moisture permeability performance.

Claims (8)

  1. 塩型カルボキシル基を1~7mmol/g含有し、かつ水酸基を0.01~10mmol/g含有し、かつ架橋構造を有するビニル系重合体であることを特徴とする吸放湿性重合体。 A hygroscopic polymer containing 1 to 7 mmol / g of a salt-type carboxyl group and 0.01 to 10 mmol / g of a hydroxyl group and having a crosslinked structure.
  2. 加水分解により塩型カルボキシル基を生成しうる構造を有するビニル系単量体、加水分解により水酸基を生成しうる構造を有するビニル系単量体及び架橋性ビニル系単量体を含有する単量体混合物を重合して得られる共重合体を加水分解して得られたものであることを特徴とする請求項1に記載の吸放湿性重合体。 A monomer containing a vinyl monomer having a structure capable of generating a salt-type carboxyl group by hydrolysis, a vinyl monomer having a structure capable of generating a hydroxyl group by hydrolysis, and a crosslinkable vinyl monomer The hygroscopic polymer according to claim 1, wherein the hygroscopic polymer is obtained by hydrolyzing a copolymer obtained by polymerizing the mixture.
  3. 形態が粒子状であることを特徴とする請求項1または2に記載の吸放湿性重合体。 The moisture-absorbing / releasing polymer according to claim 1 or 2, wherein the form is particulate.
  4. 請求項1~3のいずれかに記載の吸放湿性重合体を含有する素材。 A material containing the hygroscopic polymer according to any one of claims 1 to 3.
  5. 請求項1~3のいずれかに記載の吸放湿性重合体を添加した樹脂を成形して得られる素材。 A material obtained by molding a resin to which the hygroscopic polymer according to any one of claims 1 to 3 is added.
  6. 請求項1~3のいずれかに記載の吸放湿性重合体がバインダー樹脂ともに付与された素材。 A material provided with the hygroscopic polymer according to any one of claims 1 to 3 together with a binder resin.
  7. 樹脂が求電子性官能基を有するものであることを特徴とする請求項5または6に記載の素材。 The material according to claim 5 or 6, wherein the resin has an electrophilic functional group.
  8. 樹脂がウレタン樹脂であることを特徴とする請求項5または6に記載の素材。
     
    The material according to claim 5 or 6, wherein the resin is a urethane resin.
PCT/JP2013/053338 2012-02-22 2013-02-13 Moisture absorptive and desorptive polymer and material containing such polymer WO2013125407A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014500669A JP5979215B2 (en) 2012-02-22 2013-02-13 Hygroscopic polymer and material obtained by containing the polymer
CN201380010412.7A CN104144952B (en) 2012-02-22 2013-02-13 Moisture absorptive and desorptive polymer and material containing such polymer
KR1020147021574A KR101981697B1 (en) 2012-02-22 2013-02-13 Moisture absorptive and desorptive polymer and material containing such polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036387 2012-02-22
JP2012-036387 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013125407A1 true WO2013125407A1 (en) 2013-08-29

Family

ID=49005594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053338 WO2013125407A1 (en) 2012-02-22 2013-02-13 Moisture absorptive and desorptive polymer and material containing such polymer

Country Status (4)

Country Link
JP (1) JP5979215B2 (en)
KR (1) KR101981697B1 (en)
CN (1) CN104144952B (en)
WO (1) WO2013125407A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104971A1 (en) * 2014-01-07 2015-07-16 日本エクスラン工業株式会社 Vinyl-based-polymer particles and composition containing said particles
JP2015172191A (en) * 2014-02-24 2015-10-01 東洋紡株式会社 Moisture absorbing/desorbing polyurethane foam, and method of producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234761B1 (en) * 2014-01-27 2021-04-02 닛폰 에쿠스란 고교 가부시키가이샤 Hygroscopic polymer particles, as well as sheet, element, and total heat exchanger having said particles
CN110950980B (en) * 2019-12-06 2022-09-20 万华化学集团股份有限公司 Method for promoting hydrolysis of super absorbent resin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497526A (en) * 1972-05-31 1974-01-23
JPS5214689A (en) * 1975-07-24 1977-02-03 Sumitomo Chem Co Ltd Process for preparing a macromolecular material excellent in water abs orption properties
JPS5265597A (en) * 1975-11-27 1977-05-31 Sumitomo Chem Co Ltd Preparation of high polimeric materials with improved water absorption
JPS57165405A (en) * 1981-04-06 1982-10-12 Fujikura Kasei Kk Water absorbing high polymeric material
JPS61213206A (en) * 1985-03-20 1986-09-22 Mitsubishi Petrochem Co Ltd Production of polymer having high water-absorptivity
JPH01279905A (en) * 1987-12-28 1989-11-10 Nippon Shokubai Kagaku Kogyo Co Ltd Hydrophilic polymer and preparation thereof
JPH0284528A (en) * 1988-06-28 1990-03-26 Japan Exlan Co Ltd Production of flame-retardant fiber
JPH09324119A (en) * 1995-05-31 1997-12-16 Sanyo Chem Ind Ltd Urethane resin composition, water absorbing material and moisture absorbing and reliesing material
JPH10128108A (en) * 1996-05-14 1998-05-19 Sanyo Chem Ind Ltd Water absorbing or retaining agent
JP2001011320A (en) * 1999-06-28 2001-01-16 Japan Exlan Co Ltd Moisture absorbing and releasing polymer and its molded product
WO2005090417A1 (en) * 2004-03-19 2005-09-29 Japan Exlan Company Limited Ultrafine particle capable of moisture absorption and desorption and product utilizing the ultrafine particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196855B2 (en) 1991-11-11 2001-08-06 東洋紡績株式会社 High moisture absorption and release fiber
JP3650977B2 (en) 1994-12-13 2005-05-25 日本エクスラン工業株式会社 Highly moisture-absorbing / releasing material, method for producing the same, and additive comprising the material
JPH097526A (en) * 1995-06-26 1997-01-10 Asahi Glass Co Ltd Partitioning wall forming glass base and manufacture of it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497526A (en) * 1972-05-31 1974-01-23
JPS5214689A (en) * 1975-07-24 1977-02-03 Sumitomo Chem Co Ltd Process for preparing a macromolecular material excellent in water abs orption properties
JPS5265597A (en) * 1975-11-27 1977-05-31 Sumitomo Chem Co Ltd Preparation of high polimeric materials with improved water absorption
JPS57165405A (en) * 1981-04-06 1982-10-12 Fujikura Kasei Kk Water absorbing high polymeric material
JPS61213206A (en) * 1985-03-20 1986-09-22 Mitsubishi Petrochem Co Ltd Production of polymer having high water-absorptivity
JPH01279905A (en) * 1987-12-28 1989-11-10 Nippon Shokubai Kagaku Kogyo Co Ltd Hydrophilic polymer and preparation thereof
JPH0284528A (en) * 1988-06-28 1990-03-26 Japan Exlan Co Ltd Production of flame-retardant fiber
JPH09324119A (en) * 1995-05-31 1997-12-16 Sanyo Chem Ind Ltd Urethane resin composition, water absorbing material and moisture absorbing and reliesing material
JPH10128108A (en) * 1996-05-14 1998-05-19 Sanyo Chem Ind Ltd Water absorbing or retaining agent
JP2001011320A (en) * 1999-06-28 2001-01-16 Japan Exlan Co Ltd Moisture absorbing and releasing polymer and its molded product
WO2005090417A1 (en) * 2004-03-19 2005-09-29 Japan Exlan Company Limited Ultrafine particle capable of moisture absorption and desorption and product utilizing the ultrafine particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104971A1 (en) * 2014-01-07 2015-07-16 日本エクスラン工業株式会社 Vinyl-based-polymer particles and composition containing said particles
KR20160106558A (en) * 2014-01-07 2016-09-12 닛폰 에쿠스란 고교 가부시키가이샤 Vinyl-based-polymer particles and composition containing said particles
JPWO2015104971A1 (en) * 2014-01-07 2017-03-23 日本エクスラン工業株式会社 Vinyl-based polymer particles and composition containing the particles
KR102191690B1 (en) 2014-01-07 2020-12-16 닛폰 에쿠스란 고교 가부시키가이샤 Vinyl-based-polymer particles and composition containing said particles
JP2015172191A (en) * 2014-02-24 2015-10-01 東洋紡株式会社 Moisture absorbing/desorbing polyurethane foam, and method of producing the same

Also Published As

Publication number Publication date
KR20140126704A (en) 2014-10-31
JP5979215B2 (en) 2016-08-24
KR101981697B1 (en) 2019-05-23
CN104144952A (en) 2014-11-12
JPWO2013125407A1 (en) 2015-07-30
CN104144952B (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP4062778B2 (en) Porous hygroscopic particles and method for producing the same
JP4273512B2 (en) Hygroscopic polymer and molded product thereof
JP5979215B2 (en) Hygroscopic polymer and material obtained by containing the polymer
JP3650977B2 (en) Highly moisture-absorbing / releasing material, method for producing the same, and additive comprising the material
CA1257742A (en) Absorbent compositions
JP6578840B2 (en) Hygroscopic millibeads and dehumidifying units and dehumidifiers using hygroscopic millibeads
CN101311196A (en) Method for preparing ethylene-vinyl esters copolymer water-soluble emulsion and ethylene-vinyl ester copolymer water-soluble emulsion
JP5190801B2 (en) Hygroscopic polymer and molded body containing the polymer
KR102191810B1 (en) Functional microparticles and resin product containing same
KR102191690B1 (en) Vinyl-based-polymer particles and composition containing said particles
JP2006096846A (en) Polyvinyl alcohol-based water-containing gel, method for producing the same, and adsorptive separating agent and method of adsorptive separation by using the same
JP3650979B2 (en) Antibacterial / antifungal polymer particles
CN106457134B (en) Hygroscopicity particle
JPH10279817A (en) Deodorizing resin composition
CN110079059A (en) Polyester master particle of hydrophilic soil release and preparation method thereof
JP2005068246A (en) Chelate resin emulsion and method for producing the same
JP5152669B2 (en) Hydrogen sulfide-removable composite and molded body containing the composite
KR20100001790A (en) A material for reducing the production of tvoc and acryl or styren based resin comprising the same
Sudin Synthesis and Swelling Behaviour of Oil Palm Empty Fruit Bunch Based Superabsorbent Polymer Composite
JPS5859204A (en) Production of amidoxime group-containing resin
JP5076935B2 (en) Allergen removal particles and allergen removal products provided with the particles
JPWO2019069630A1 (en) Polymer particles, a method for producing the same, and a coating liquid composition, a sheet, a resin molded product, a fiber, and a viscosity modifier having the particles.
JP2015227417A (en) Polymer composition and thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500669

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021574

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751163

Country of ref document: EP

Kind code of ref document: A1