JPS61212826A - Polarization compensating element - Google Patents

Polarization compensating element

Info

Publication number
JPS61212826A
JPS61212826A JP5368785A JP5368785A JPS61212826A JP S61212826 A JPS61212826 A JP S61212826A JP 5368785 A JP5368785 A JP 5368785A JP 5368785 A JP5368785 A JP 5368785A JP S61212826 A JPS61212826 A JP S61212826A
Authority
JP
Japan
Prior art keywords
light
voltage
electrode pairs
polarization
polarization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5368785A
Other languages
Japanese (ja)
Inventor
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5368785A priority Critical patent/JPS61212826A/en
Publication of JPS61212826A publication Critical patent/JPS61212826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled element which is small in size and can be driven with a low voltage and to make easy the production thereof by providing two electrode pairs on the opposite side faces of a (Pb, La) (Zr, Ti)O3 member in such a manner that the voltage impressing directions incline at 45 deg. with each other. CONSTITUTION:The 1st and 2nd electrode pairs 2, 3 of which the voltage impressing directions incline at 45 deg. with each other are provided on the side faces, in parallel with the light propagating direction, of a light transmittable ceramic member 1 consisting essentially of (Pb, La) (Zr, Ti)O3 and having a rhombic section. Light in a polarized state is made incident from a fiber 7 through a lens system 6 on the member 1. The voltage is impressed between the electrode pairs 2 and 2' to double diffract the light. The voltage is impressed to the electrode pairs 3, 3' with 45 deg. inclination with the polarized state. The polarized state of the propagation light is therefore made to the desired linearly polarized light, elliptically polarized light, circularly polarized light, etc. always in the specified direction. The element which is small in size, can be driven with the low voltage and can be easily produced is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は任意の偏光された入射光を所望の偏光状態に変
換する偏光補償素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a polarization compensation element that converts arbitrary polarized incident light into a desired polarization state.

(従来技術とその問題点) 近年、光通信システム、特に長距離大容量光通信におい
ては、元ファイバ伝送系として単一モードファイバを用
いた元ヘテロダイン通信の研究開発が活発化している。
(Prior art and its problems) In recent years, in optical communication systems, particularly in long-distance, high-capacity optical communications, research and development of original heterodyne communication using a single mode fiber as an original fiber transmission system has become active.

元ヘテロダイン通信においては、局部発振の出力光(局
発光)と単一モードファイバの長距離伝送後の出射光と
の偏光状態が一致していることが必要である。しかし、
単一モードファイバにおいては、温度や圧力等によシフ
ァイバ内の複屈折が変化するため、ファイバ出射端にお
ける偏光状態は複雑に変化し、局発光の偏光状態と常に
は一致せず、受信感度の大幅な低下を招く問題があった
In original heterodyne communication, it is necessary that the polarization states of the output light of the local oscillation (local oscillation light) and the output light after long-distance transmission of the single mode fiber match. but,
In a single-mode fiber, the birefringence inside the fiber changes depending on temperature, pressure, etc., so the polarization state at the fiber output end changes in a complicated manner and does not always match the polarization state of the local light, which may affect reception sensitivity. There was a problem that caused a significant decline.

このため、光ヘテロダイン通信においては、単一モード
ファイバの出射端または、局部発振光源側に常に所望の
偏光状態を得る偏光補償装置を挿入する必要があった。
For this reason, in optical heterodyne communication, it is necessary to insert a polarization compensator to always obtain a desired polarization state at the output end of a single mode fiber or at the local oscillation light source side.

一方、小形化、集積化、高性能化、高信頼化が図れるの
で最近盛んに研究開発か進められている元スイッチや光
変調器などの導波形光素子においても、その導波光の偏
光状態によってその機能の効果が異なるため、導波形光
素子間に単一モードファイバを接続して用いる場合、偏
光補償装置が必要となる◇ 、従ネ、このような偏光補償素子を構成する偏光補償素
子は、例えけ貨堂らにより、雑誌「アイ・イーーイーΦ
イー拳ジャーナルーオブ・カンタム・エレクトロニクス
(I EBE  Journal ofQuantur
n Electronics)J 17巻、1981年
On the other hand, even in waveguide optical devices such as switches and optical modulators, which have been actively researched and developed recently because they can be made smaller, more integrated, have higher performance, and higher reliability, the polarization state of the guided light Because the effects of their functions are different, a polarization compensator is required when connecting a single mode fiber between waveguide optical elements. , for example, by Kando et al., published in the magazine “I-EeeeeΦ
I EBE Journal of Quantum Electronics
n Electronics) J vol. 17, 1981.

991〜994頁に報告されでいる。これは、2枚のニ
オブ酸リチウム(LiNbO3)のバルクを用いた位相
変調器を2つ、互いに45°傾けて組み合わせた構成で
、LiNbO3の電気光学効果を利用して、LiNbO
3に電圧を印加して伝搬光の位相差を変化させて出射光
の偏光状態を変えるものである。しかし、この偏光補償
素子は、厚さ05間。
It is reported on pages 991-994. This is a configuration in which two phase modulators using two bulk sheets of lithium niobate (LiNbO3) are combined and tilted at 45 degrees to each other.
3 to change the phase difference of the propagating light and change the polarization state of the emitted light. However, this polarization compensation element has a thickness of 0.5 mm.

長さ40 mm 、半波長を圧66(V)であるため、
駆動電圧が高く、寸法も太きいという欠点を有していた
。筺た、この偏光補償素子は位相変調器を互いに45°
傾けて配置する必要かあるため、製作か難かしいという
欠点を有していた。
Since the length is 40 mm and the pressure at half wavelength is 66 (V),
It has the disadvantages of high driving voltage and large size. This polarization compensation element aligns the phase modulators at 45° with respect to each other.
It has the disadvantage that it is difficult to manufacture because it needs to be placed at an angle.

(発明の目的) 本発明の目的は、これらの欠点を除去し、小形で低電圧
で駆動でき、製作が谷筋万偏光袖償累子を提供すること
にある。
(Object of the Invention) An object of the present invention is to eliminate these drawbacks and to provide a polarizing sleeve compensator which is small in size, can be driven at a low voltage, and can be easily manufactured.

(発明の構成) 本発明の偏光補償素子の構成は、(Pb、La)(Zr
、Tr)Osを主成分とし柱軸が光の伝搬方向となる角
柱軸の透光性セラミックス部材と、この部材の柱軸と平
行な互に対向する側面に、電圧の印加方向が互いに45
°傾くように縦続して設けた第1および第2の電極対と
を備えたことを特徴とする。
(Structure of the invention) The structure of the polarization compensation element of the invention is (Pb, La) (Zr
, Tr)Os as a main component and has a prismatic shaft whose pillar axis is in the propagation direction of light, and a side surface of this member that is parallel to the pillar axis and faces each other, the direction of voltage application is 45
It is characterized by comprising a pair of first and second electrodes arranged in series so as to be tilted.

(発明の作用、原理) 本発明に用いる(Pb、La)(Zr、Tr)O3部材
の一次および二次の電気光学効果は、非常に大きく、例
えは印加電圧に対する材料の屈折率変化は、従来のLi
NbO5の材料に比べて、1桁以上太きい。したかって
この(Pb、La)(Zr、Ti)O!+材料に伝搬光
を入射させ、駆動電圧を印加することによシ大きな複屈
折を生じさせ、そのことによシ伝搬光の位相差を変化さ
せ、出射光の偏光状態を従来より容易に変化させること
ができる。このため、駆動電圧の低電圧化か可能となる
。まに1(Pb、La)(Zr、’[”1)O3材料は
、多結晶であるため、従来のLiNbO3材料と異なシ
目j7JIl電圧の方向の違いによ多、電気光学効果の
大きさか変わらない。したがって、従来の偏光補償素子
のように2つの位相変調器を互いに45°傾は子装置す
不必要゛がなくなシ、1 ツ(7) (’Pb、Da)
(Z’r、Ti)O’3部材で、′電圧の同訓方向が互
いに45°傾く上りに電極対をM1続に設ければ良く製
作が非常に容易になる。このように偏光状態を低い駆動
電圧でiえることができ、寸法も小さく、捷だ製作が容
易な偏光□補償素子が得られる。
(Operation and principle of the invention) The primary and secondary electro-optic effects of the (Pb, La) (Zr, Tr) O3 member used in the present invention are very large, and for example, the change in the refractive index of the material with respect to the applied voltage is Conventional Li
It is more than an order of magnitude thicker than NbO5 material. This (Pb, La) (Zr, Ti) O! +By injecting propagating light into the material and applying a driving voltage, large birefringence is produced, which changes the phase difference of the propagating light, making it easier to change the polarization state of the emitted light than before. can be done. Therefore, it is possible to lower the driving voltage. Since the 1 (Pb, La) (Zr, '["1) O3 material is polycrystalline, it differs from the conventional LiNbO3 material in that the direction of the voltage is different, and the magnitude of the electro-optic effect may be different. Therefore, there is no need for a device that tilts two phase modulators at 45 degrees to each other, as in conventional polarization compensation elements.
With the (Z'r, Ti)O'3 member, it is sufficient to provide the electrode pairs in an M1 series in the upward direction where the voltage directions are inclined at 45 degrees with respect to each other, and manufacturing becomes very easy. In this way, a polarization compensating element that can change the polarization state with a low driving voltage, has small dimensions, and is easy to fabricate can be obtained.

(実施例) 以下本発明について図面を用いて詳細に説明する。  
      “  ゛ ゛第1図、第2図は本発明の二鼻施例を示す゛斜視図お
よび部材1のm1面図である。図中、1は(’pb。
(Example) The present invention will be described in detail below with reference to the drawings.
1 and 2 are a perspective view and a plane view of a member 1 showing a two-nosed embodiment of the present invention. In the figures, 1 is ('pb.

L’a’)”(Z’r 、”T i )’ 03を主成
分とする透光性セラミックス部側、2”、 2 ’ 、
3.”3”’は電極対、4.5は1ノード端ギ、’6’
、6′はレンズ系、7,7′は単一モードファイバを示
す。この(Pb、La)(Zr。
Translucent ceramic part side containing L'a')"(Z'r,"T i)'03 as a main component, 2", 2',
3. ``3'' is an electrode pair, 4.5 is 1 node end gear, ``6''
, 6' are lens systems, and 7 and 7' are single mode fibers. This (Pb, La) (Zr.

Ti)O3部材1は、断面形状が菱形でその光の伝搬方
向と平行な側面に電圧を印加する方向か互いに45°傾
くように、縦続に第1の電極2,2′および第2の電極
対3.3′を設けている。これら誂1および第2の電極
対2.2′および3.3′にそれぞれリード端子4 、
4’ 卦よび5,5′か接続されている。この(Pb、
L’a)(Zr’、Ti)O3部材1の光の伝搬方向に
垂直な入出射端面側には、レンズ系6゜6′がそれぞれ
配置されておシ、′そのレンズ系6゜6′の(Pb、L
a)(Zr、’l”1)O3部材1に面していない側に
それぞれ単一モードファイバ7.7′が接続されている
The Ti)O3 member 1 has a rhombic cross-sectional shape, and the first electrodes 2, 2' and the second electrode are connected in series so that the side surfaces parallel to the light propagation direction are inclined at 45 degrees to each other in the direction in which a voltage is applied. A pair 3.3' is provided. Lead terminals 4 are connected to these first and second electrode pairs 2.2' and 3.3', respectively.
4' and 5,5' are connected. This (Pb,
L'a)(Zr',Ti)O3 Lens systems 6°6' are arranged on the entrance/exit end face side perpendicular to the light propagation direction of the O3 member 1, and 'the lens systems 6°6' of (Pb, L
a) (Zr,'l''1)O3 A single mode fiber 7,7' is connected to the side facing away from the component 1, respectively.

こノjfu成で、(P’b、La)(Zr’、’l’1
)O3部材1は、−辺が180μm、二辺の挾む角か4
5°の菱形の断面形状で長さが10闘のもの□である。
In this jfu formation, (P'b, La) (Zr', 'l'1
) O3 member 1 has a − side of 180 μm and a corner between the two sides.
It has a 5° rhombic cross-sectional shape and a length of 10 mm.

また、この部材1の組成は、−次の電気光学効果の比較
的大きいPbZrC)、/PbTi01=65/35.
La=8atomチのものであり、第1および第2の電
極対2.2′および3.′3′はアルミニウムで形成さ
れる。そして、レンズ系6,6′には集束型ロンドL/
7ズを用いて、(Pb、La)(Zr、Ti)O3部材
1の中央部分で伝搬光が最小ビーム径になるように配置
されている。丑だ、単一モードファイバ7゜7′は外径
125μm、コア径9μmのものである。
Further, the composition of this member 1 is PbZrC, which has a relatively large electro-optic effect as follows: /PbTi01=65/35.
La = 8 atoms, and the first and second electrode pairs 2.2' and 3. '3' is made of aluminum. The lens systems 6 and 6' include a focusing type Rondo L/
7 lenses are used so that the propagating light has a minimum beam diameter at the center of the (Pb, La) (Zr, Ti) O3 member 1. The single mode fiber 7°7' has an outer diameter of 125 μm and a core diameter of 9 μm.

このよりな構成において、任意の偏光状態の光る。ここ
で、リード端子4,4′間1−なわち第1の電極対2,
2′間に電圧を印加すると、(Ph 、 La )(Z
r、’T、’1)Os部材1は一次の電気光学効果によ
り複屈折を生じ、その伝搬光の互いに直交する2つの偏
光モード間の位相差を変化させる。このことにまり伝搬
光の偏光状態は変化し、直線偏光。
In this flexible configuration, light of any polarization state is emitted. Here, between the lead terminals 4 and 4' 1-, that is, the first electrode pair 2,
When a voltage is applied between 2', (Ph, La) (Z
r, 'T, '1) The Os member 1 causes birefringence due to the first-order electro-optic effect, and changes the phase difference between two mutually orthogonal polarization modes of the propagating light. Due to this, the polarization state of the propagating light changes and becomes linearly polarized light.

楕円偏光2円偏光のいずれかとなる。It becomes either elliptically polarized light or bicircularly polarized light.

また、第2の電極対3.3′の電圧印加方向は先に得ら
れた偏光状態の偏光方向に対し145°傾いているため
、リード端子5.5′間に必要な電圧を印加することに
よシ、伝搬光の偏光状態を常に一定方向の所望の偏光状
態、たとえば直線偏光、楕円偏光9円偏光などにするこ
とができる。このように有られた偏光状態の伝搬光はレ
ンズ糸6′を介して単一モードファイバ7′に結合され
る。
In addition, since the voltage application direction of the second electrode pair 3.3' is inclined by 145 degrees with respect to the polarization direction of the previously obtained polarization state, the necessary voltage can be applied between the lead terminals 5.5'. Alternatively, the polarization state of the propagating light can always be set to a desired polarization state in a fixed direction, such as linear polarization, elliptically polarized light, or 9-circularly polarized light. The propagating light having such a polarization state is coupled to the single mode fiber 7' via the lens thread 6'.

この構成で伝搬光の偏光状態を、たとえは直線偏光から
、この直線偏光と隼1波面が直交したつぎの直線偏光に
変化させる場合、直交する2つの偏光モード間の伝相差
をπ(rad)変化させる必要がある。このπ(rad
)変化させる半波長電圧を測定した結果、約5〔V〕と
低電圧であった。また、コノ時c7’) (P b 、
 L a ) (Z r 、 T i ) 03部材1
内の最大ビーム直径は、63μm程度で、厚さに比べて
十分に小さく、その回折損失は無視でき、挿入損失とし
て約0.5〔dll)が伯られた。
With this configuration, when changing the polarization state of propagating light from linearly polarized light to the next linearly polarized light in which this linearly polarized light and the Hayabusa 1 wavefront are orthogonal, the phase difference between the two orthogonal polarization modes is π (rad). It needs to change. This π(rad
) As a result of measuring the half-wave voltage to be changed, it was found to be a low voltage of about 5 [V]. Also, when c7') (P b ,
L a ) (Z r , T i ) 03 member 1
The maximum beam diameter within was approximately 63 μm, which was sufficiently small compared to the thickness, and its diffraction loss was negligible, and the insertion loss was approximately 0.5 [dll].

また、この構成に偏光補償素子で得られた伝搬光の偏光
状態を検出して、その信号により第1および第2の電極
対2,2′および3,3′間に必要な駆動電圧を印加す
るフィールドバック制御系を備えることによシ、伝搬光
の偏光状態の自動制御が可能とがる。
In addition, in this configuration, the polarization state of the propagating light obtained by the polarization compensation element is detected, and the necessary driving voltage is applied between the first and second electrode pairs 2, 2' and 3, 3' using the detected signal. By providing a feedback control system, automatic control of the polarization state of propagating light becomes possible.

ナオ、本実施例では、(Pb、La)(Zr、’I’i
 )O3部材1の断面形状を菱形としたが、電圧を印加
する方向が互いに45°傾くように、縦続に第1および
第2の電極対2.2′および3.3′がそれぞれ配置さ
れていれは良く、例えは六角形、六角形等でも良い。−
また、本実施例では、−次の電気光学効果を使用したが
、二次の電気光学効果を利用しても良く、そして、その
時の組成は限定されない。
In this example, (Pb, La) (Zr, 'I'i
) The cross-sectional shape of the O3 member 1 is rhombic, but the first and second electrode pairs 2.2' and 3.3' are arranged in series so that the directions in which voltage is applied are inclined at 45 degrees to each other. For example, it may be a hexagon, a hexagon, etc. −
Further, in this embodiment, a -order electro-optic effect is used, but a second-order electro-optic effect may be used, and the composition at that time is not limited.

例えは、比較的二次電気光学効果の大きいPbZrO3
/PbTi03=65/35.La=9atomq6の
組成等を用いても良い。
For example, PbZrO3 has a relatively large secondary electro-optic effect.
/PbTi03=65/35. A composition such as La=9 atomq6 may be used.

捷た、本実施例の(P b 、 L a ) (Z r
 、 T + ) 03部材の組成PbZrO3/Pb
Tit3=65/35.La=8atom%は、これに
限定されず、例えはPbZrO3/PbTi03= 6
2/38.La=7atom%とか、PbZr01/P
bTiO3=40/60.La=12atomチさらに
は他の元素による変成で(Pb(La、Li))(Zr
、’[’1)Os、PLZT−(Pb、La)(Zn、
Nb)O3等でも良い。
(P b , L a ) (Z r
, T + ) 03 Member composition PbZrO3/Pb
Tit3=65/35. La=8atom% is not limited to this, for example, PbZrO3/PbTi03=6
2/38. La=7atom%, PbZr01/P
bTiO3=40/60. La = 12 atoms and further metamorphosis with other elements (Pb (La, Li)) (Zr
,'['1)Os,PLZT-(Pb,La)(Zn,
Nb)O3 or the like may also be used.

さらに、(Pb 、 La ) (Zr 、 T i 
)O3部材の光入射端面および出射端面を平担面とした
が、伝搬光をよシ効率良く入射および出射させるために
、光入射端面および出射端面に曲面を形成し、レンズ効
果をあわせもたせても良い。この場合にはレンズ系6,
6′が不要となる利点がある。ここで(pb。
Furthermore, (Pb, La) (Zr, Ti
) The light input end face and the output end face of the O3 member were made flat, but in order to make the propagating light enter and exit more efficiently, the light input end face and the output end face were formed with curved surfaces to have a lens effect. Also good. In this case, the lens system 6,
There is an advantage that 6' is not necessary. Here (pb.

La)(Zr、Ti )O3部材の光入出射端面や単一
モードファイバの端面に無反射コートを施せば端面反射
損失が除去できる。
If an anti-reflection coating is applied to the light input/output end face of the La)(Zr, Ti)O3 member or the end face of a single mode fiber, the end face reflection loss can be eliminated.

また、伝搬光が(PJLa)(Zr、’I’1)O3部
材の中央部分で最小ビーム径になるようにレンズ系6.
6′を配置したが、伝搬光が(Pb、La)(Zr。
In addition, the lens system 6.
6', but the propagating light is (Pb, La) (Zr.

Ti)O3部材1内で平行ビームになるようにレンズ系
6.6′を配置しても良い。
The lens system 6,6' may be arranged to form a parallel beam within the Ti)O3 member 1.

なお、電極の材料としてアルミニウムを用いたがこれに
限定されず、例えば透明電極ITO,クロム、ニッケル
等であっても良い。
Note that although aluminum is used as the material for the electrode, it is not limited thereto; for example, transparent electrodes such as ITO, chromium, nickel, etc. may be used.

(発明の効果) 以上述べた通り、本発明によれば、(Pb 、 La 
)(Zr、Ti)O3を主成分とする透光性セラミック
スを用いるので、小形で低電圧駆動ができ、壕だ1個の
(Pb、La)(Zr、Ti)O3部材で構成できるの
で製作が容易な偏九袖償累子を得られることが出来る。
(Effect of the invention) As described above, according to the present invention, (Pb, La
) (Zr, Ti) O3 is the main component, so it is small and can be driven at low voltage, and the groove can be constructed from a single (Pb, La) (Zr, Ti) O3 member, making it easy to manufacture. It is possible to obtain a simple nine-sleeved compensation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による一実施例の斜視図および
部拐1の断面図である。図において、1・・・・・・(
Pb、La)(Zr、Ti)O3部材、2,2′$ミよ
び3,3′・・・・・・第1および第2の電極対、4゜
4′および5.5′・・・・・・リード端子、6.6’
・・・・・・レンズ系、7.7’・・・・・・単一モー
ドファイバである。 第10 筋Z図
FIGS. 1 and 2 are a perspective view of an embodiment of the present invention and a sectional view of a part 1. FIG. In the figure, 1......(
Pb, La) (Zr, Ti) O3 member, 2,2'$mi and 3,3'...First and second electrode pair, 4°4' and 5.5'... ...Lead terminal, 6.6'
. . . Lens system, 7.7' . . . Single mode fiber. 10th muscle Z diagram

Claims (1)

【特許請求の範囲】[Claims] (Pb、La)(Zr、Ti)O_3を主成分とし柱軸
が光の伝搬方向となる角柱状の透光性セラミック部材と
、この部材の柱軸と平行な互に対向する側面に、電圧の
印加方向が互いに45°傾くように縦続して設けた第1
および第2の電極対とを備えたことを特徴とする偏光補
償素子。
A prismatic translucent ceramic member whose main components are (Pb, La) (Zr, Ti) O_3 and whose column axis is in the propagation direction of light, and a voltage applied to the mutually opposing side surfaces parallel to the column axis of this member. The first
and a second electrode pair.
JP5368785A 1985-03-18 1985-03-18 Polarization compensating element Pending JPS61212826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5368785A JPS61212826A (en) 1985-03-18 1985-03-18 Polarization compensating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5368785A JPS61212826A (en) 1985-03-18 1985-03-18 Polarization compensating element

Publications (1)

Publication Number Publication Date
JPS61212826A true JPS61212826A (en) 1986-09-20

Family

ID=12949722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5368785A Pending JPS61212826A (en) 1985-03-18 1985-03-18 Polarization compensating element

Country Status (1)

Country Link
JP (1) JPS61212826A (en)

Similar Documents

Publication Publication Date Title
JP2774467B2 (en) Polarization independent optical isolator
JP4740994B2 (en) Light modulator
EP0310634A1 (en) Fiber optic polarizer
JPH0758375B2 (en) Polarization independent photoelectron directional coupler
WO1987006356A1 (en) Optical power splitter and polarization splitter
US6404537B1 (en) Polarization transformer
US7565040B2 (en) Optical device using variable polarization element
CN107037539B (en) Single polarization transmission type photonic crystal fiber resonant cavity
JPS61212826A (en) Polarization compensating element
JPS627021A (en) Polarizing compensation element
US6549686B2 (en) Reflective optical circulator
JP3077554B2 (en) Optical isolator
JP2534703B2 (en) Polarization control device
JPS59228610A (en) Polarizing prism
JPH026425Y2 (en)
JP2003066450A (en) Liquid crystal element and optical attenuator
JPS62148923A (en) Polarization control device
JPS63309906A (en) Optical waveguide coupler
JPS6283731A (en) Optical switch
JP2792306B2 (en) Polarization separation element
JPS60113214A (en) Fiber type optical switch
JPS6039849Y2 (en) optical switch
JPS60198880A (en) Laser device
JPS63246720A (en) Polarization control device
JPS6123530B2 (en)