JPS6039849Y2 - optical switch - Google Patents

optical switch

Info

Publication number
JPS6039849Y2
JPS6039849Y2 JP1977068241U JP6824177U JPS6039849Y2 JP S6039849 Y2 JPS6039849 Y2 JP S6039849Y2 JP 1977068241 U JP1977068241 U JP 1977068241U JP 6824177 U JP6824177 U JP 6824177U JP S6039849 Y2 JPS6039849 Y2 JP S6039849Y2
Authority
JP
Japan
Prior art keywords
transparent body
light
central axis
plane
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977068241U
Other languages
Japanese (ja)
Other versions
JPS53162737U (en
Inventor
茂雄 松下
Original Assignee
日本セルフオツク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本セルフオツク株式会社 filed Critical 日本セルフオツク株式会社
Priority to JP1977068241U priority Critical patent/JPS6039849Y2/en
Publication of JPS53162737U publication Critical patent/JPS53162737U/ja
Application granted granted Critical
Publication of JPS6039849Y2 publication Critical patent/JPS6039849Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【考案の詳細な説明】 本考案は光通信システムに適合する小形で高安定な光切
換器に関するものである。
[Detailed Description of the Invention] The present invention relates to a compact and highly stable optical switch that is suitable for optical communication systems.

通信用光半導体素子および光ファイバの最近の性能向上
は著るしく、光通信システムの実用化のための研究開発
が各所で進められている。
Recent performance improvements in optical semiconductor devices and optical fibers for communication have been remarkable, and research and development for the practical application of optical communication systems is progressing in various places.

光通信システムに欠くことのできない光デバイスの一つ
が光切換器である。
One of the optical devices essential to optical communication systems is an optical switch.

たとえば2本の光ファイバを用いて一方向の通信を行な
う場合、1本の光ファイバが断線等して通信不可能にな
った際に信号発生部では他の1本の光ファイバに伝送信
号光を切換えて伝送させせるために光切換器が用いられ
る。
For example, when performing unidirectional communication using two optical fibers, if one optical fiber becomes disconnected or otherwise unable to communicate, the signal generator will transfer the transmission signal to the other optical fiber. An optical switch is used to switch and transmit the signals.

従来、この種の光切換器として光伝送系への出し入れが
可能な反射鏡が利用されていた。
Conventionally, a reflecting mirror that can be inserted into and removed from an optical transmission system has been used as this type of optical switch.

また実験室的なものとして電気光学効果を利用した光偏
向器や音響光学効果を利用した光スィッチ等が提案され
ていた。
In addition, as laboratory-grade devices, optical deflectors using electro-optic effects and optical switches using acousto-optic effects have been proposed.

しかしながら上述の各種光切換器は機械的な安定性を欠
き、寸法が大きく、製作コストが高価である等の欠点を
有していた。
However, the above-mentioned various optical switching devices lack mechanical stability, are large in size, and have high manufacturing costs.

本考案の目的は、上述の欠点を除去して小形で外部擾乱
に強く、光フアイバ通信系に適した安価な光切換器を提
供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide an inexpensive optical switching device that is small, resistant to external disturbances, and suitable for optical fiber communication systems.

本考案によれば、中心軸に垂直な断面内の屈折率が中心
軸から離れるにしたがって徐々に減少する光集束性透明
体を中心軸を含む平面(第1面)と前記中心軸に垂直な
2つの平行平面(第2面および第3面)で切断した透明
体を2個用意して、これら二つの透明体(第1の透明体
および第2の透明体)の第1面が互いに平行して平行に
対向するとともに中心軸がこの第1面に垂直な同一の平
面内にあるように配置した複合透明体と、この複合透明
体を構成する第1の透明体と第2の透明体の間隙を変え
ることできる間隙可変手段と、第1の透明体の第2面に
近接して配置した偏光選択素子とを含む光切換器が得ら
れる。
According to the present invention, a light-converging transparent body whose refractive index in a cross section perpendicular to the central axis gradually decreases as it moves away from the central axis is used to connect a plane (first surface) including the central axis and a plane perpendicular to the central axis. Prepare two transparent bodies cut on two parallel planes (second surface and third surface), and make sure that the first surfaces of these two transparent bodies (first transparent body and second transparent body) are parallel to each other. a composite transparent body arranged such that they face each other in parallel and have their central axes within the same plane perpendicular to the first surface, and a first transparent body and a second transparent body that constitute this composite transparent body. An optical switching device is obtained that includes a gap variable means capable of changing the gap and a polarization selection element disposed close to the second surface of the first transparent body.

次に図面を用いて本考案を説明する。Next, the present invention will be explained using the drawings.

第1図は本考案の第一の実施例を示し、1及び2は中心
軸に垂直な断面内の屈曲率が前記中心軸から離れるにし
たがって減少する光集束性透明体を前記中心軸を通る平
面で切断した一対の透明体で、それらは切断面が互いに
向い合うように配置された複合透明体を構成している。
FIG. 1 shows a first embodiment of the present invention, and 1 and 2 indicate a light-converging transparent body whose curvature in a cross section perpendicular to the central axis decreases as the distance from the central axis increases. A pair of transparent bodies cut along a plane constitute a composite transparent body arranged so that the cut surfaces face each other.

3は複合透明体1及び2の対向面の間隙の寸法を調整す
るための機械的可変手段、4は複屈折性物質から成るプ
リズムである。
3 is a mechanical variable means for adjusting the size of the gap between opposing surfaces of the composite transparent bodies 1 and 2; 4 is a prism made of a birefringent substance.

また6は入射光、7及び8は出射光である。Further, 6 is incident light, and 7 and 8 are output lights.

この構成において、機械的可変手段を調整して透明体1
及び2の間隙を十分に大きくし入射光6が透明体1の内
部で全反射して進む場合をまず考える。
In this configuration, by adjusting the mechanical variable means, the transparent body 1
Let us first consider the case where the gap between the transparent body 1 and the transparent body 1 is made sufficiently large so that the incident light 6 is totally reflected inside the transparent body 1 and travels.

広く知られているように屈曲率の大きい物質から小さい
物質に向かって進む光が全反射される際、その光は位相
変化を受ける。
As is widely known, when light traveling from a material with a large curvature index toward a material with a small curvature index is totally reflected, the light undergoes a phase change.

前述の入射面に平行な電界成分の光と入射面に垂直な電
界成分の光の間の位相差δは次式で表わされる。
The phase difference δ between the electric field component of light parallel to the incident plane and the electric field component of light perpendicular to the incident plane is expressed by the following equation.

あ。a.

a =cosθ5マ ・・・(1)2
5in2θ ここでθは反射面に入射する光の入射角(第1図参照)
、n ”r12/nlである。
a = cosθ5ma...(1)2
5in2θ where θ is the angle of incidence of light incident on the reflective surface (see Figure 1)
, n''r12/nl.

但し、nl及びn2ハ反射面近傍のそれぞれの透明体及
び外部媒質の屈曲率を示す。
However, nl and n2 indicate the curvature index of the transparent body and external medium in the vicinity of the reflective surface, respectively.

今、n1= 1.51、n2=1.0(空気)、そして
θ=54°37′とおくと、δ=7が得られる。
Now, by setting n1 = 1.51, n2 = 1.0 (air), and θ = 54°37', δ = 7 is obtained.

なわち、透明体1の内部で4回全反射させることにより
入射光6の入射面に平行な電界成分と垂直直な電界成分
の位相差πラジアルを得て出射するから、偏向面は90
°回転した直線偏向となってプリズムに入射し出射光7
となる。
That is, by totally reflecting the incident light 6 four times inside the transparent body 1, the phase difference π radial between the electric field component parallel to the plane of incidence and the electric field component perpendicular to the incident plane of the incident light 6 is obtained and the beam is emitted, so the deflection plane is 90
°It becomes a rotated linear polarization and enters the prism and the outgoing light 7
becomes.

一方機械的可変手段3によって透明体1および2の間隙
を十分に小さくして入射光6が全反射することなく進す
場合には(破線の光路)、入射光6の両軍界戒分は位相
変化を受けることなく出射して出射光8となる。
On the other hand, if the mechanical variable means 3 makes the gap between the transparent bodies 1 and 2 sufficiently small so that the incident light 6 travels without being totally reflected (the optical path indicated by the broken line), the difference between the two military disciplines of the incident light 6 is The light is emitted as emitted light 8 without undergoing any phase change.

ここで入射光6はその偏光面が前述の入射面に45°の
角度をなす直線偏光ごを用いているので入射光6の入射
面に平行な電界成分と垂直な電界成分の位相差πラジア
ン又はOラジアンの変換を受けるにともなって複屈折プ
リズム4から出射する光は互いに直交する直線偏光に切
換えられる。
Here, since the incident light 6 is linearly polarized light whose polarization plane makes an angle of 45° to the above-mentioned plane of incidence, the phase difference between the electric field component parallel to the plane of incidence and the electric field component perpendicular to the plane of incidence of the incident light 6 is π radian. Alternatively, as the light is converted into O radians, the light emitted from the birefringent prism 4 is switched to linearly polarized light that is orthogonal to each other.

第2図は本考案の第二の実施例を示す。FIG. 2 shows a second embodiment of the invention.

1及び2は前述の透明体、3は機械的可変手段、5はそ
の主軸が入射端面に垂直でない複屈折性物質でつくられ
た複屈折板、6は入射光、7及び8は出射光である。
1 and 2 are the aforementioned transparent bodies, 3 is a mechanical variable means, 5 is a birefringent plate made of a birefringent material whose principal axis is not perpendicular to the incident end surface, 6 is incident light, and 7 and 8 are output lights. be.

第一の実施例の場合と同様に機械的可変手段3の調整に
よって入射光6は透明体1及び2又は透明体1を通るこ
とによって入射面に平行な電界成分と垂直な電界成分の
位相差πラジアン又はOラジアンを受けて互いに直交す
る直線偏光に切換えられる。
As in the case of the first embodiment, by adjusting the mechanical variable means 3, the incident light 6 passes through the transparent bodies 1 and 2 or the transparent body 1, so that the phase difference between the electric field component parallel to the plane of incidence and the electric field component perpendicular to the plane of incidence is They receive π radians or O radians and are switched to linearly polarized light that is orthogonal to each other.

上記実施例において、透明体1及び2の間隙の寸法は機
械的な方法で変えたが、その間隙に電界により屈折率が
変化する電気光学物質を設けて電気的手段によって実効
的な寸法を変化させてもよいことは当然である。
In the above embodiment, the dimensions of the gap between the transparent bodies 1 and 2 were changed by a mechanical method, but an electro-optic material whose refractive index changes by an electric field is provided in the gap to change the effective dimension by electrical means. Of course, you can let them do so.

また、上記実施例では1回の全反射で光は一7ジアンの
位相差を受ける構成が示されたが、これに限定されず、
任意回数の全反射を行ない、合計πラジアンの位相差を
形成できるのであればよいことんも明らかである。
Further, in the above embodiment, a configuration was shown in which the light undergoes a phase difference of 17 jian with one total reflection, but the present invention is not limited to this.
It is obvious that total reflection can be performed an arbitrary number of times to form a phase difference of a total of π radians.

最後に本考案の特徴をあげれば、式(1)から明らかな
ように透明体1の温度が変化しても屈折率変化にともな
う位相変化は極めて小さいので外部擾乱に対して安定な
光切換器が得られる。
Finally, the feature of the present invention is that, as is clear from equation (1), even if the temperature of the transparent body 1 changes, the phase change due to the change in refractive index is extremely small, so the optical switching device is stable against external disturbances. is obtained.

透明体1及び2が光集束性透明体でつくられているので
、それらの内部を伝播する光ビームは発散することなく
進み原理的に無損失の光切換器が得られる等である。
Since the transparent bodies 1 and 2 are made of light-converging transparent bodies, the light beams propagating inside them proceed without divergence, and in principle a lossless optical switch can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第一の実施例を示す断面図、第2図は
本考案の第二の実施例を示す断面図、1及び2は透明体
、3は機械的可変手段、4はプリズム、5は複屈折板、
6は入射光、そして7及び8は出射光である。
Fig. 1 is a sectional view showing a first embodiment of the present invention, Fig. 2 is a sectional view showing a second embodiment of the invention, 1 and 2 are transparent bodies, 3 is a mechanical variable means, and 4 is a sectional view showing a second embodiment of the present invention. Prism, 5 is a birefringent plate,
6 is the incident light, and 7 and 8 are the outgoing lights.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心軸に垂直な断面内の屈折率が中心軸から離れるにし
たがって徐々に減少する屈折率分布を有し、前記中心軸
を含む平面からなる第1の面とこの中心軸に垂直でかつ
互いに平行な第2および第3の面をそれぞれ有する第1
および第2の光集束性透明体を、それぞれの第1の面が
互いに平行して対向するように配置した複合透明体と、
前記第1の透明体の第1の面と前記第2の透明体の第1
の面との間隙を変える間隙可変手段と、前記第1の透明
体の第2の面に近接して配置した偏光選択素子とを含み
、前記第1の透明体の第3の面から入射した光が、前記
間隙が小さいときは前記第1の透明体及び前記第2の透
明体を蛇行して進んで前記第1の透明体の第2の面から
出射し、前記間隙が大きいときは前記第1の透明体の第
1の面で全反射を繰り返して伝播し、入射した光の入射
面に平行な電界成分と垂直な電界成分とがこの全反射の
際に位相変化を受けて偏光面が変化して、前記第1の透
明体の第2の面から出射することを特徴とする光切換器
It has a refractive index distribution in which the refractive index in a cross section perpendicular to the central axis gradually decreases as it moves away from the central axis, and a first surface consisting of a plane including the central axis and a first surface perpendicular to the central axis and parallel to each other. a first surface having second and third surfaces, respectively;
and a composite transparent body in which a second light-focusing transparent body is arranged such that their respective first surfaces are parallel to each other and face each other;
the first surface of the first transparent body and the first surface of the second transparent body
and a polarization selection element disposed in close proximity to the second surface of the first transparent body, the polarization selecting element for changing the gap between the first transparent body and the third surface of the first transparent body. When the gap is small, the light travels through the first transparent body and the second transparent body and exits from the second surface of the first transparent body, and when the gap is large, the light travels through the first transparent body and the second transparent body and exits from the second surface of the first transparent body. The incident light propagates by repeating total reflection on the first surface of the first transparent body, and the electric field component parallel to the incident plane and the electric field component perpendicular to the incident plane undergo a phase change during this total reflection, resulting in a polarization plane. An optical switching device characterized in that the light changes and the light is emitted from the second surface of the first transparent body.
JP1977068241U 1977-05-26 1977-05-26 optical switch Expired JPS6039849Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977068241U JPS6039849Y2 (en) 1977-05-26 1977-05-26 optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977068241U JPS6039849Y2 (en) 1977-05-26 1977-05-26 optical switch

Publications (2)

Publication Number Publication Date
JPS53162737U JPS53162737U (en) 1978-12-20
JPS6039849Y2 true JPS6039849Y2 (en) 1985-11-29

Family

ID=28975937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977068241U Expired JPS6039849Y2 (en) 1977-05-26 1977-05-26 optical switch

Country Status (1)

Country Link
JP (1) JPS6039849Y2 (en)

Also Published As

Publication number Publication date
JPS53162737U (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4516837A (en) Electro-optical switch for unpolarized optical signals
US4693544A (en) Optical branching device with internal waveguide
US4671613A (en) Optical beam splitter prism
CA1141216A (en) Self-aligning optical fibre coupler
US5930422A (en) Optical circulator
JPS6319621A (en) Optical switch
US6014254A (en) Optical device for splitting an input beam into two orthogonal polarization states
JP2572627B2 (en) Optical isolator and optical circulator
US5872878A (en) Partial optical circulators
JPS6039849Y2 (en) optical switch
JPH0527136A (en) Optical multiplexer/demultiplexer
CA2229959A1 (en) Optical circulator
CN103955027B (en) A kind of filter of interleaver
JPS5928402Y2 (en) Wave plate using light-focusing transparent material
US20020110305A1 (en) Reflective optical circulator
JPS5937770Y2 (en) Optical path switching device
JP2000018911A (en) Interferometer, optical resonator, optical switch, sensor, and optical filter
JPS6130247B2 (en)
JP3833122B2 (en) Optical coupler for optical connection, optical branching or optical assembly
JPH0450561B2 (en)
RU2343517C2 (en) Polarisation-independent acoustooptical fibre-optic commutator
JP2661968B2 (en) Light switch
JPS581762Y2 (en) Optical path switching device
JPS6066213A (en) Optical demultiplexer
JPS627021A (en) Polarizing compensation element