JPS627021A - Polarizing compensation element - Google Patents

Polarizing compensation element

Info

Publication number
JPS627021A
JPS627021A JP14726785A JP14726785A JPS627021A JP S627021 A JPS627021 A JP S627021A JP 14726785 A JP14726785 A JP 14726785A JP 14726785 A JP14726785 A JP 14726785A JP S627021 A JPS627021 A JP S627021A
Authority
JP
Japan
Prior art keywords
light
polarization
single mode
voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14726785A
Other languages
Japanese (ja)
Inventor
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14726785A priority Critical patent/JPS627021A/en
Publication of JPS627021A publication Critical patent/JPS627021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titl element having a small size and capable of operating at a low voltage and also producing with ease by utilizing a multiple reflection and using a translucent ceramics composed of (Pb,La)(Zr,Ti)O3 as a main component. CONSTITUTION:The cable terminals 4, 4' and 5, 5' are connected to a pair of the first electrodes 2, 2' and a pair of the second electrodes 3, 3' in a longitudinal direction respectively, in a such a way that a direction of impressing a voltage has the slope of 45 deg. towards a side surface parallel to a direction of propagating a light of the element 1 having a lozenge in a cross-section, and composedof (Pb,La)(Zr,Ti)O3. The reflective layer 6, 6' are provided on one or other and surface of both end surfaces perpendicular to the direction of propagating a light of the element 1. The focusing rod lens 7, 7' for an incident light and an outgoing light are placed on the both side parts which are not provided the reflective layer 6' respetively. The sides of the element 1 not facing to the lens 7, 7' are connected to a single mode fiber 8, 8' for the incident and the out-going lights respectively. The incident light is effected the multiple reflection at the reflection layers 6, 6', 6 in order, and is led to the fiber 8'.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は任意の偏光の入射光を所望の偏光状態に変換す
る偏光補償素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polarization compensation element that converts incident light of arbitrary polarization into a desired polarization state.

(従来技術とその問題点) 近年、光通信システム、特に長距離大容量光通信におい
ては、光フアイバ伝送系として単一モードファイバを用
いた光ヘテaダイン通信の研究開発が活発化している。
(Prior Art and its Problems) In recent years, in optical communication systems, particularly in long-distance, high-capacity optical communication, research and development of optical heterogeneous a-dyne communication using a single mode fiber as an optical fiber transmission system has become active.

この光ヘテロダイン通信では局発光と単一モードファイ
バの長距離伝送後の出射光との偏光状態が一致している
ことが必要となる。しかし、単一モード7アイパにおい
ては、温度や圧力等によりファイバ内の複屈折が変化す
るため、ファイバ出射端における偏光状態は複雑に変化
し、局発光の偏光状態と常には一致せず、受信感度の大
幅な低下を招く。
In this optical heterodyne communication, it is necessary that the polarization states of the local light and the light emitted after long-distance transmission from a single mode fiber match. However, in a single mode 7-eyeper, the birefringence inside the fiber changes due to temperature, pressure, etc., so the polarization state at the fiber output end changes in a complicated manner, and does not always match the polarization state of the local light, causing the reception This results in a significant decrease in sensitivity.

したがって、光ヘテロダイン通信においては、単一モー
ドファイバの出射端または、局部発振光源側に常に所望
の偏光状態を得る偏光補償装置を挿入することが必要と
なる。また小形化、集積化。
Therefore, in optical heterodyne communication, it is necessary to insert a polarization compensator to always obtain a desired polarization state at the output end of a single mode fiber or at the local oscillation light source side. Also, miniaturization and integration.

高性能化、高信頼化が図れるので最近盛んに研究開発が
進められている光スィッチや光変調器などの導波形光素
子においても、その導波光の偏光状態によってその機能
の効果が異なるため、導波形光素子間に単一モードファ
イバを接続して用いる場合、偏光補償!!置が必要とな
る。
Even in waveguide optical devices such as optical switches and optical modulators, which have recently been actively researched and developed to improve performance and reliability, their functional effects differ depending on the polarization state of the guided light. Polarization compensation when using a single mode fiber connected between waveguide optical elements! ! location is required.

従来、このような偏光補償装置を構成する偏光補償素子
は、例えば食堂らにより、雑誌iイ、イー、イー、イー
、ジャーナル、オブ、カンタム。
Conventionally, polarization compensation elements constituting such a polarization compensation device have been described, for example, by Shokudo et al., Journal of Quantum.

zレフ)a=りx(IEEE  Journal of
Quantum Electronics ) J 1
7巻、 1981年。
z ref) a=ri x (IEEE Journal of
Quantum Electronics) J 1
Volume 7, 1981.

991〜994頁に報告されている。Reported on pages 991-994.

これは、2枚のニオブ酸リチウム(LiNb03)のバ
ルクを用いた位相変調器を2つ、互いに45゜傾けて組
み合わせた構成で、L i N b O3の電気光学効
果を利用して、LiNbO3に電圧を印加して伝搬光の
位相差を変化させ、出射光の偏光状IIlを変えるもの
である。しかし、この偏光補償素子は、厚さ9.5 m
 、長さ40 wpm 、半波長電圧66[V]で駆動
電圧が高く、寸法も大きいという欠点があった。また、
この偏光補償素子は位相変調器を互いに45°傾けて配
置する必要があるため、製作が難かしいという欠点もあ
った。
This is a configuration in which two phase modulators using two bulk sheets of lithium niobate (LiNb03) are combined at an angle of 45 degrees to each other, and by utilizing the electro-optical effect of LiNbO3, A voltage is applied to change the phase difference of the propagating light, thereby changing the polarization pattern IIl of the emitted light. However, this polarization compensation element has a thickness of 9.5 m.
The shortcomings were that the length was 40 wpm, the driving voltage was high at a half-wavelength voltage of 66 [V], and the dimensions were large. Also,
This polarization compensation element also has the disadvantage that it is difficult to manufacture because it is necessary to arrange the phase modulators at an angle of 45 degrees with respect to each other.

(発明の目的) 本発明の目的は、これらの欠点を除去し、小形で低電圧
で駆動でき、製作が容易な偏光補償素子を提供すること
にある。
(Object of the Invention) An object of the present invention is to eliminate these drawbacks and provide a polarization compensation element that is small, can be driven at low voltage, and is easy to manufacture.

(発明の、S添) 本発明の偏光補償素子は、(Pb、La)(Zr。(S appendix of the invention) The polarization compensation element of the present invention is made of (Pb, La) (Zr.

Ti)03を主成分とし互いに45°傾いた傾面全もつ
柱状体からなる透光性セラミックス部材と、この部材の
光の伝搬方向に平行で前記45°傾いた側面に電圧の印
加方向が互いに45°傾くように縦続して設けられた第
1および第2の電極対と、前記光の伝搬方向に垂直な前
記部材の両端面に設けられた反射層とを備えて構成され
る。
A translucent ceramic member consisting of a columnar body mainly composed of Ti)03 and having all inclined surfaces inclined at 45 degrees to each other; It is configured to include a first and second electrode pair provided in series so as to be inclined at 45 degrees, and a reflective layer provided on both end surfaces of the member perpendicular to the propagation direction of the light.

(発明の作用、原理) 一般に、(Pb 、 La ) (Zr 、 Ti )
03からなる透光性セラミックスの一次および二次の電
気光学効果は、非常に大きく、例えは印加電圧に対する
材料の屈折率変化が、従来のL i N b O3の材
料に比べて、l#5大きい。したがって、この()’b
、La)(Zr、Ti)03 材料に伝搬光を入射させ
、駆動電圧を印加することによシ大きな複屈折を生じさ
せ、そのことにより伝搬光の位相差を変化させて出射光
の偏光状態を従来より容易に変化させることができ、駆
動電圧の低電圧化が可能となる。また、(Pb、La)
(Zr、Ti )03材料は、多結晶であるため、従来
のL i N b 03材料と異なり印加電圧の方向の
違いによる電気光学効果の大きさが変わらないので、従
来の偏光補償素子のよう[2つの位相変調器を互いに4
5°傾けて配置する必要がなくなシ、1)の(Pb、L
a)(Zr、Ti )03部材で、電圧の印加方向が互
いに45°傾くように電極対を縦続に設ければ良く、製
作が非常に容易になる。また、電極対が縦続して設けら
れているので、伝搬光を(Pb 、La ) (Zr 
、 Ti ) 03材料内で多重反射させることによp
、(Pb、La)(Zr、Ti)03材料の長さを短か
くでき偏光補償素子を小型罠できる。このように偏光状
態を低い駆動電圧で変えることができ、寸法も小さく、
また製作が各易な偏光補償素子が得られる。
(Operation, principle of the invention) Generally, (Pb, La) (Zr, Ti)
The primary and secondary electro-optic effects of the translucent ceramic made of 03 are very large, and for example, the refractive index change of the material with respect to the applied voltage is greater than that of the conventional L i N b O 3 material. big. Therefore, this ()'b
, La) (Zr, Ti)03 By injecting propagating light into the material and applying a driving voltage, large birefringence is produced, thereby changing the phase difference of the propagating light and changing the polarization state of the emitted light. can be changed more easily than before, making it possible to lower the driving voltage. Also, (Pb, La)
Since the (Zr, Ti)03 material is polycrystalline, unlike the conventional L i N b 03 material, the magnitude of the electro-optic effect does not change depending on the direction of the applied voltage. [Two phase modulators are connected to each other by 4
There is no need to place it at an angle of 5 degrees, and (1) (Pb, L)
a) With the (Zr, Ti)03 member, it is sufficient to provide pairs of electrodes in series so that the directions of voltage application are inclined at 45 degrees with respect to each other, which greatly facilitates manufacturing. In addition, since the electrode pairs are provided in series, the propagating light is controlled by (Pb, La) (Zr
, Ti) by multiple reflections within the 03 material.
, (Pb, La) (Zr, Ti)03 The length of the material can be shortened, and the polarization compensation element can be made smaller. In this way, the polarization state can be changed with a low driving voltage, the size is small,
Furthermore, a polarization compensation element that is easy to manufacture can be obtained.

(実施例) 以下本発明を図面により詳細に説明する。(Example) The present invention will be explained in detail below with reference to the drawings.

第1図(a) 、 (blは本発明の一実施例の斜視図
およびその側面図である。
FIGS. 1A and 1B are a perspective view and a side view of an embodiment of the present invention.

本実施例は、断面形状が菱形の(Pb 、La ) (
Zr。
In this example, (Pb, La) (
Zr.

Ti)03部部材の光の伝搬方向と平行な側面に、電圧
を印加する方向が互いに45°傾くように、縦続に第1
の電極対2.2′および第2の電極対3゜3′ヲ設け、
これら第1および第2の電極対2,2′および3.3′
にそれぞれリード端子4,4′および5.5′が接続さ
れている。この(Pb、La)(Zr。
Ti) 03 part member, the first electrodes are connected in series on the side surface parallel to the light propagation direction so that the directions in which voltages are applied are inclined by 45 degrees to each other.
an electrode pair 2.2' and a second electrode pair 3.3' are provided;
These first and second electrode pairs 2, 2' and 3.3'
Lead terminals 4, 4' and 5.5' are connected to the terminals 4, 4' and 5.5', respectively. This (Pb, La) (Zr.

Ti)03部部材の光の伝搬方向に垂直な両端面の一万
および他方の端面には反射層6,6′が設けられてシシ
、さらに、この反射NI6′が設けられていない両側部
分には入射用および出射用の集束性ロッドレンズ7.7
′がそれぞれ配置されている。これら集束性ロッドレン
ズ7,7′の(Pb、La)(Zr、Ti)03部材1
に面してしない側には入出力用単一モードファイバ8.
8′が接続されている。
Reflective layers 6 and 6' are provided on both end faces perpendicular to the light propagation direction of the Ti)03 member, and reflective layers 6 and 6' are provided on both end faces perpendicular to the light propagation direction. is a focusing rod lens for input and output 7.7
' are arranged respectively. (Pb, La) (Zr, Ti) 03 member 1 of these focusing rod lenses 7, 7'
Single mode fiber for input/output is provided on the side not facing 8.
8' is connected.

このような構成で、(Pb、La ) (Zr、Ti 
)03部材1は、−辺の長さが約2.4 cm 、二辺
の挾む角が45°の菱形の断面形状でその長さが10−
〇ものである。また、その組成は、−次の電気光学効果
の比較的大きいPbZrO3/PbTi03=65/3
5 、 La = g atom% Oものからh:b
o第1および第2の電極対2.2′および3.3′は、
アルミニウムから成り、また反射層6.6′はクロム−
金から成っている。
With such a configuration, (Pb, La) (Zr, Ti
)03 member 1 has a rhombic cross-sectional shape with a side length of approximately 2.4 cm and an angle between the two sides of 45°, and its length is 10 cm.
It is a thing. In addition, its composition is PbZrO3/PbTi03=65/3, which has a relatively large electro-optic effect of -order
5, La = g atom% O to h:b
o The first and second electrode pairs 2.2' and 3.3' are
The reflective layer 6.6' is made of aluminum and the reflective layer 6.6' is made of chromium.
made of gold.

単一モードファイバ8,8′の配置としては、入射用の
集束性ロッドレンズ7からの伝搬光’1(Pb。
The single mode fibers 8, 8' are arranged so that the propagating light '1 (Pb.

La)(Zr、Ti )03部部材の反射層6.6′で
多重反射させ、出射用の集束性ロッドレンズ7′により
集束させるようにするため、集束性ロッドレン、(7,
7’の光軸に対して、単一モードファイバ8゜8′の光
軸をそれぞれ外側に対称にずらして配置しである。また
本実施例では3回の多重反射をするようKm成したため
、伝搬する距離の半分程度の反射層6′の部分で伝搬光
が最小ビーム径になるよう比集束性ロッドレンズ7.7
′を配置しである。
La)(Zr,Ti)03 In order to cause multiple reflections by the reflective layer 6.6' of the part member and focus it by the focusing rod lens 7' for output, a focusing rod lens (7,
The optical axes of the single mode fibers 8.8' are arranged symmetrically shifted outward with respect to the optical axis of the single mode fibers 7'. In addition, in this embodiment, since Km is formed so that multiple reflections occur three times, the specific focusing rod lens 7.
' is placed.

単一モードファイバ8,8′は外径125μm、コア径
9μmのものである。
The single mode fibers 8, 8' have an outer diameter of 125 μm and a core diameter of 9 μm.

この構成において、任意の偏光状態の光は単一モードフ
ァイバ8から入射用の集束性aラドレンズ7へと伝搬し
、(Pb、La)(Zr、Tj )03部部材に入射す
る。そして、その入射光は、反射層6、反射層6′9反
射層6の順で反射し、出射用の集束性aツドレンズ7′
ヲ介して、単一モードファイバ8′に結合される。その
時リード端子4.4′間、すなわち第1の電極対2,2
′間に電圧を印加すると、(Pb、La ) (Zr、
Ti ) 03部材1は一次の電気光学効果により複屈
折を生じ、その伝搬光の互いに直交する2つの偏光モー
ド間の位相差を変化させる。このことにより伝搬光の偏
光状態は変化し、直線偏光、楕円偏光9円偏光のいずれ
かとなる。
In this configuration, light in an arbitrary polarization state propagates from the single mode fiber 8 to the focusing a-rad lens 7 for incidence, and enters the (Pb, La) (Zr, Tj)03 member. The incident light is reflected in the order of the reflective layer 6, the reflective layer 6'9, and the converging lens 7' for output.
The single mode fiber 8' is coupled to the single mode fiber 8'. At that time, between the lead terminals 4 and 4', that is, the first electrode pair 2, 2
When a voltage is applied between '(Pb, La) (Zr,
The Ti ) 03 member 1 produces birefringence due to the first-order electro-optic effect, and changes the phase difference between two mutually orthogonal polarization modes of the propagating light. This changes the polarization state of the propagating light, and it becomes either linearly polarized light, elliptically polarized light, or 9-circularly polarized light.

この伝搬光は、第2の電極対3,3′の電圧印加方向が
先に得られた偏光状態の偏光方向に対して45°傾いて
いるため、リード端子5,5′間に必要な電圧を印加す
ることにより、伝搬光の偏光状態を常に一定方向の所望
の偏光状態、例えは直線偏光、楕円偏光1円偏光などに
することができる。
Since the direction of voltage application to the second pair of electrodes 3, 3' is tilted by 45 degrees with respect to the polarization direction of the previously obtained polarization state, this propagating light requires a voltage between the lead terminals 5, 5'. By applying , the polarization state of the propagating light can always be made into a desired polarization state in a constant direction, for example, linearly polarized light, elliptically polarized light, or circularly polarized light.

そして得られた偏光状態の伝搬光を出射用の集束性ロッ
ドレンズ7′を介して単一モードファイバ8′に結合す
る。このように伝搬光を多重反射させて偏光状態を変化
させることは、第1および第2の電極対2.2′および
3,3’t−(り返し多段に設けることと同じである。
Then, the propagating light in the obtained polarized state is coupled to a single mode fiber 8' via an output focusing rod lens 7'. Changing the polarization state by multiple reflection of the propagating light in this way is the same as providing the first and second electrode pairs 2.2' and 3,3't-(repeatedly in multiple stages).

この構成で伝搬光の偏光状態を、たとえばM線傷光から
この直線偏光と偏波面が直交したつぎの直線偏光に変化
させる場合、直交する2つの偏光モード間の位相差をπ
(rad )変化させる必要があるが、とのπ(rad
 )変化させる半波長電圧を測定した結果、約lO〔■
〕と低電圧であった。この時(7)(Pb、La)(Z
r、Ti )03部材1内の最大ビーム直径は、178
μm程度で厚さに比べて十分に小さく、その回折損失は
無視でき、挿入損失として約α5 (dB )が得られ
た。
With this configuration, when changing the polarization state of propagating light from, for example, M-line scratched light to the next linearly polarized light whose polarization plane is orthogonal to this linearly polarized light, the phase difference between the two orthogonal polarization modes is π
(rad), but it is necessary to change π(rad
) As a result of measuring the half-wave voltage to be changed, approximately 1O [■
] and the voltage was low. At this time (7) (Pb, La) (Z
r, Ti )03 The maximum beam diameter in member 1 is 178
The diffraction loss was negligible as it was approximately μm, which was sufficiently small compared to the thickness, and an insertion loss of approximately α5 (dB) was obtained.

また、この構成に、偏光補償素子で得られた伝搬光の偏
光状態を検出して、その信号により第1および第2の電
極対2.2′および3.3′間に必要な駆動電圧を印加
するフィードバック制御系を備えることにより、伝搬光
の偏光状態の自動制御が可能となる。
Additionally, in this configuration, the polarization state of the propagating light obtained by the polarization compensation element is detected, and the necessary driving voltage is applied between the first and second electrode pairs 2.2' and 3.3' using the detected signal. By providing a feedback control system for applying voltage, it becomes possible to automatically control the polarization state of propagating light.

本実施例では、(Pb、Lr)(Zr、Ti )03部
部材の断面形状を菱形としたが、電圧を印加する方向が
互いに45°傾くように、縦続に第1および第2の電極
対2.2’によび3,3′がそれぞれ配置されていれは
良く、例えば六角形、六角形等でも良い。
In this example, the cross-sectional shape of the (Pb, Lr) (Zr, Ti) 03 member is rhombic; 2 and 2' and 3 and 3' may be arranged, for example, in a hexagonal shape, a hexagonal shape, etc.

また、本実施例では、−次の電気光学効果を使用したが
、二次の電気光学効果を利用しても良く、その時の組成
も限定されることはない。例えは比較的二次の電気光学
効果の大きいPbZrO3/PbTi03=65/35
 、 La =9atom%の組成等を用いても良い。
Further, in this example, a -order electro-optic effect is used, but a second-order electro-optic effect may be used, and the composition at that time is not limited. For example, PbZrO3/PbTi03 = 65/35, which has a relatively large second-order electro-optic effect.
, La=9 atom%, etc. may be used.

また、本実施例0(Pb、La)(Zr、Ti )03
部部材の組成PbZrO3/PbTiO3=65/35
゜La = 8 atom%は、これに限定されず、例
えばPbZrO3/PbTi03=62/3B 、La
=7atomチとか、PbZrO3/PbTi03=4
0/60 、La= 12 atom%さらには、他の
元素による変成で(P b (L a # L t )
 ) (Zr * T t ) 03 * P L Z
 T−(pb 、 La ) (Zn 、 Nb ) 
03等でも良い。
In addition, this Example 0 (Pb, La) (Zr, Ti) 03
Composition of parts PbZrO3/PbTiO3=65/35
゜La = 8 atom% is not limited to this, for example, PbZrO3/PbTi03=62/3B, La
=7atom chi, PbZrO3/PbTi03=4
0/60, La = 12 atom% Furthermore, by metamorphosis with other elements (P b (L a # L t )
) (Zr * T t ) 03 * P L Z
T-(pb, La) (Zn, Nb)
03 etc. is also fine.

また、伝搬光di(Pb、La)(Zr、Ti )03
部部材の伝搬距離の半分程度の部分で最小ビーム径にな
るように集束性ロッドレンズ7.7′を配置したが、伝
搬光2>E (pb 、La ) (Zr 、 Ti 
) 03部材l内で平行ビームになるように集束性ロッ
ドレンズ7.7′を配置しても良い。
In addition, the propagating light di(Pb, La)(Zr, Ti)03
Although the focusing rod lens 7.7' was arranged so that the beam diameter would be the minimum at about half the propagation distance of the member, the propagating light 2>E (pb, La) (Zr, Ti
) A converging rod lens 7,7' may be arranged to form a parallel beam within the 03 member l.

また、本実施例では伝搬光を(Pb、La)(Zr。Further, in this embodiment, the propagating light is (Pb, La) (Zr.

T i ・) 03部部材に対して同じ側から入出射し
たが、これに限定されず入出射面をそれぞれ対向させて
も良く、また多重反射回数も限定されない。
Although the light enters and exits the T.sub.03 member from the same side, the light is not limited to this, and the light entering and exiting surfaces may be opposed to each other, and the number of times of multiple reflections is not limited.

また、本実施例は単一モードファイバ8.8′の光軸を
集束性ロッドレンズ7.7′の光軸に対してずらして配
置したが、単一モードファイバ8.8′と集束性ロッド
レンズ7.7′の光軸をそれぞれ一致させ、集束性ロッ
ドレンズの出射端面を光軸に対して傾けて配置しても良
い。
Further, in this embodiment, the optical axis of the single mode fiber 8.8' is shifted from the optical axis of the focusing rod lens 7.7', but the single mode fiber 8.8' and the focusing rod lens 7.7' The optical axes of the lenses 7 and 7' may be made to coincide with each other, and the output end surface of the focusing rod lens may be arranged at an angle with respect to the optical axis.

なお、本実施例は電極対2,2′および3,3′にアル
ミニウムを用いたが、例えは透明電極I To。
In this example, aluminum was used for the electrode pairs 2, 2' and 3, 3', but for example, transparent electrodes I To.

クロム、ニッケル等であっても良く、また反射層6.6
′にクロム−金を用いたが、例えはアルミニウム、ニッ
ケル、銅等でも良い。
Chromium, nickel, etc. may be used, and the reflective layer 6.6
Although chromium-gold was used for ', aluminum, nickel, copper, etc. may also be used.

(発明の効果) 以上述べたように、本発明によれば、(pb。(Effect of the invention) As described above, according to the present invention, (pb.

La)(Zr、Ti )03を主成分とする透光性セラ
ミックスを用い、また多重反射を利用しているので、小
形で低電圧駆動ができ、さらに1個の(pb。
Since it uses translucent ceramics whose main components are La)(Zr, Ti)03 and utilizes multiple reflections, it is small and can be driven at low voltage, and it also has one (pb.

La)(Zr、Ti )03部材で構成できるので製作
が容易な偏光補償素子が得られる。
Since it can be constructed from La)(Zr,Ti)03 members, a polarization compensating element that is easy to manufacture can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1x) 、 lb)は本発明による一実施例の斜
視図およびその光伝搬方向からみた側地図である。図に
おいて、 1”−(Pb、La)(Zr、Ti )03部材、2,
2′および3.3′・・・・・・第1および第2の電極
対、4゜4′および5.5′・・・・・・リード端子、
6′6′・・・・・・反射層、7,7′・・・・・・入
射用および出射用集束性ロッドレンズ、8.8’・・・
・・・単一モードファイバである。
FIGS. 1x) and 1b) are a perspective view of an embodiment of the present invention and a side map thereof viewed from the light propagation direction. In the figure, 1”-(Pb, La) (Zr, Ti)03 member, 2,
2' and 3.3'...first and second electrode pair, 4°4' and 5.5'...lead terminal,
6'6'...Reflection layer, 7,7'...Focusing rod lens for input and output, 8.8'...
...It is a single mode fiber.

Claims (1)

【特許請求の範囲】[Claims] (Pb、La)(Zr、Ti)O_3を主成分とし互い
に45°傾いた側面をもつ柱状体からなる透光性セラミ
ックス部材と、この部材の光の伝搬方向に平行で前記4
5°傾いた側面に電圧の印加方向が互いに45°傾くよ
うに縦続してそれぞれ設けられた第1および第2の電極
対と、前記光の伝搬方向に垂直な前記部材の両端面に設
けられた反射層とを備えたことを特徴とする偏光補償素
子。
(Pb, La) (Zr, Ti) A translucent ceramic member consisting of a columnar body whose main component is O_3 and whose side surfaces are inclined at 45 degrees to each other, and
A pair of first and second electrodes are provided in series on a side surface inclined at 5 degrees so that the direction of voltage application is inclined at 45 degrees to each other, and a pair of electrodes are provided on both end surfaces of the member perpendicular to the propagation direction of the light. What is claimed is: 1. A polarization compensation element comprising: a reflective layer;
JP14726785A 1985-07-03 1985-07-03 Polarizing compensation element Pending JPS627021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14726785A JPS627021A (en) 1985-07-03 1985-07-03 Polarizing compensation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14726785A JPS627021A (en) 1985-07-03 1985-07-03 Polarizing compensation element

Publications (1)

Publication Number Publication Date
JPS627021A true JPS627021A (en) 1987-01-14

Family

ID=15426359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14726785A Pending JPS627021A (en) 1985-07-03 1985-07-03 Polarizing compensation element

Country Status (1)

Country Link
JP (1) JPS627021A (en)

Similar Documents

Publication Publication Date Title
JPH0758375B2 (en) Polarization independent photoelectron directional coupler
US3877782A (en) Electro-optical thin film device
CN113048969B (en) Small entanglement source for polarization-entangled photon pair output of fiber-optic gyroscope and adjusting method
AU611739B2 (en) Optical isolator
US6404537B1 (en) Polarization transformer
CN107037539B (en) Single polarization transmission type photonic crystal fiber resonant cavity
JPH07281128A (en) Optical isolator
JPH02179626A (en) Light wavelength converter
US3432223A (en) Modulator for a light beam
JPS627021A (en) Polarizing compensation element
JPH1183894A (en) Optical accelerometer
JPS61212826A (en) Polarization compensating element
JP2856525B2 (en) Optical waveguide polarizer
JPH0830789B2 (en) Polarization splitting prism
JPS6039849Y2 (en) optical switch
JPS6136976Y2 (en)
JP2534703B2 (en) Polarization control device
JP3435584B2 (en) Electric field sensor head and electric field sensor
JP3235301B2 (en) Light voltage sensor
JPS63246720A (en) Polarization control device
JPS6025916B2 (en) solid state laser device
JPS63129325A (en) Optical switch network
JPS5858782A (en) Module of semiconductor laser
JPS6123530B2 (en)
JPS6254169A (en) Photoelectric pressure sensor