JPS6130247B2 - - Google Patents

Info

Publication number
JPS6130247B2
JPS6130247B2 JP13186480A JP13186480A JPS6130247B2 JP S6130247 B2 JPS6130247 B2 JP S6130247B2 JP 13186480 A JP13186480 A JP 13186480A JP 13186480 A JP13186480 A JP 13186480A JP S6130247 B2 JPS6130247 B2 JP S6130247B2
Authority
JP
Japan
Prior art keywords
lens
fiber
single mode
pitch
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13186480A
Other languages
Japanese (ja)
Other versions
JPS5756813A (en
Inventor
Masatoshi Saruwatari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13186480A priority Critical patent/JPS5756813A/en
Publication of JPS5756813A publication Critical patent/JPS5756813A/en
Publication of JPS6130247B2 publication Critical patent/JPS6130247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining

Description

【発明の詳細な説明】 この発明は単一モードフアイバの光を任意の分
割比で分岐することのできる小形で簡便な可変分
岐回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a small and simple variable branching circuit capable of branching light from a single mode fiber at an arbitrary division ratio.

従来においては単一モードフアイバの光を任意
の分割比で分岐できる可変分岐回路は知られてい
ない。しかし可変分岐回路として第1図に示す構
成が考えられる。即ち、入射用単一モードフアイ
バ1のコア2から出射した光ビームをレンズ3に
より平行ビームにして、それを偏光子4によつて
矢印5で示す光軸の直線偏光にする。直線偏光の
光6は偏光方向が偏光子4の光学軸と平行となり
偏光分離プリズム7を通過する。この時、プリズ
ム7の光学軸が矢印8で示すように偏光子4の光
学軸5と角度θをなしているとプリズム7の光学
軸に平行な偏光方向9と垂直な偏光方向11に分
離される。この時分岐比は平行方向と垂直方向と
でcos2θ:sin2θとなる。従つてθを変えること
で任意の分岐比が得られる。これら分岐された光
をレンズ12,13で絞つて結合用の単一モード
フアイバ14,15に収束入射させる。
Conventionally, there has been no known variable branching circuit capable of branching light from a single mode fiber at an arbitrary splitting ratio. However, the configuration shown in FIG. 1 can be considered as a variable branch circuit. That is, the light beam emitted from the core 2 of the input single mode fiber 1 is made into a parallel beam by the lens 3, and then made into linearly polarized light along the optical axis indicated by the arrow 5 by the polarizer 4. The linearly polarized light 6 passes through the polarization separation prism 7 with its polarization direction parallel to the optical axis of the polarizer 4. At this time, if the optical axis of the prism 7 forms an angle θ with the optical axis 5 of the polarizer 4 as shown by the arrow 8, the light is separated into a polarization direction 9 parallel to the optical axis of the prism 7 and a polarization direction 11 perpendicular to the optical axis of the prism 7. Ru. At this time, the branching ratio in the parallel direction and the perpendicular direction is cos 2 θ:sin 2 θ. Therefore, by changing θ, any branching ratio can be obtained. These branched lights are condensed by lenses 12 and 13 and convergently incident on single mode fibers 14 and 15 for coupling.

この分岐回路は次の問題点がある。通常単一モ
ードフアイバからの出射光は偏光している半導体
レーザの光を入れてもフアイバ1を伝ぱんする間
に無偏波となる。従つて偏光子4で約半分の光が
損失となり、低損失の分岐回路になり得ない。第
2に光はフアイバ1を出てフアイバ14,15に
入射するまで、レンズ3、偏光子4、プリズム
7、レンズ12又は13の各入射面及び出射面及
びフアイバ1の出射面、フアイバ14又は15の
入射面の計10回のフレネル反射をうけるので約
2dBの損失がある。よつてこれらフアイバや光学
素子すべてに反射防止膜が必要となる。第3にこ
の分岐回路は分岐比を変化するにはプリズム7を
回転させ、それと同時にレンズ12,13及びフ
アイバ14,15を回転させなければならない。
従つてこれらの素子は一体化しなければフアイバ
14,15に入射する光軸がずれ安定な結合が得
られない。しかしプリズム7、レンズ12及び1
3フアイバ14,15は光の進行方向において離
されているため、これらを一体に回転させること
がやりにくい。
This branch circuit has the following problems. Normally, the light emitted from a single mode fiber becomes non-polarized while propagating through the fiber 1 even if polarized light from a semiconductor laser is input. Therefore, about half of the light is lost in the polarizer 4, and a branch circuit with low loss cannot be achieved. Second, the light exits the fiber 1 and enters the fibers 14, 15 through the entrance and exit surfaces of the lens 3, polarizer 4, prism 7, lens 12 or 13, and the exit surface of the fiber 1, the fiber 14 or It receives a total of 10 Fresnel reflections from 15 incident surfaces, so approximately
There is a loss of 2dB. Therefore, all of these fibers and optical elements require antireflection coatings. Thirdly, this branching circuit must rotate prism 7 and simultaneously rotate lenses 12, 13 and fibers 14, 15 in order to change the branching ratio.
Therefore, unless these elements are integrated, the optical axes incident on the fibers 14 and 15 will be shifted and a stable coupling cannot be obtained. However, prism 7, lenses 12 and 1
Since the three fibers 14 and 15 are separated in the direction of light propagation, it is difficult to rotate them together.

この発明はこれらの欠点を除去するため、レン
ズとして端面が平面で他の光学素子との一体化が
可能な集束性レンズを使用し、偏光分離プリズム
及び波長板の働きで安定性のよい可変光分岐回路
を得るものである。以下図面について詳細に説明
する。
In order to eliminate these drawbacks, this invention uses a converging lens with a flat end surface that can be integrated with other optical elements, and uses a polarization splitting prism and a wave plate to produce highly stable variable light. A branch circuit is obtained. The drawings will be explained in detail below.

第2図はこの発明の一実施例であつて入射用単
一モードフアイバ16として第3図に示すように
コア17が楕円のものが用いられる。この楕円コ
アフアイバ16はコア17の長軸(または短軸)
と平行な直線偏光18の光が入射すると楕円コア
フアイバ16内では偏光状態が維持される。即
ち、フアイバ16からの出力光はコア17の長軸
(または短軸)方向の直線偏光となる。第1図で
は直線偏光を得るため偏光子4が必要で3dBの損
失をうけていたが、この例では直線偏光にするた
めの偏光子が不要となり、3dBの損失がない。フ
アイバ16の出射面には集束性レンズ19の入射
面を光学接着剤等を用いてはりつけて一体化して
いる。集束性レンズ19は円筒状のもので中心軸
に垂直な断面内で中心軸からの距離をrとする
と、n(r)=n0(1−ar2/2)の屈折率分布を
有するものである。こゝでn0は中心軸の屈折率、
aは屈折率の変化の程度を示す定数である。この
集束性レンズ19の性質は中心軸からx0だけ離れ
た位置にその端面と垂直方向の光ビームが入射す
ると、P=2π/√で表わされる周期長(ピッ
チ)で光ビームが中心軸を対称軸としてうねりな
がら進む。P/2の長さ(1/2ピツチ)では光ビ
ームは−x0の位置に来る。一方光ビーム径につい
てはレンズ19内をP/2の周期で増減をくりか
えす。従つてレンズ19がP/2の長さでは光ビ
ーム径はレンズに入射した時と同じ、つまりフア
イバ16の出射ビーム径と同じ大きさにもどる
が、位置ずれについては中心軸に対して反転す
る。第2図では入射側フアイバ16と一体化した
レンズ19は1/2ピツチよりわずかに短くしてあ
り、フアイバ16とレンズ19の中心軸は合致さ
せてある。
FIG. 2 shows an embodiment of the present invention, in which an input single mode fiber 16 having an elliptical core 17 as shown in FIG. 3 is used. This elliptical core fiber 16 is the long axis (or short axis) of the core 17.
When linearly polarized light 18 parallel to the elliptical core fiber 16 is incident, the polarization state is maintained within the elliptical core fiber 16. That is, the output light from the fiber 16 becomes linearly polarized light in the direction of the long axis (or short axis) of the core 17. In Fig. 1, a polarizer 4 is required to obtain linearly polarized light, resulting in a 3 dB loss, but in this example, a polarizer is not required to obtain linearly polarized light, and there is no 3 dB loss. The entrance surface of the focusing lens 19 is bonded to the exit surface of the fiber 16 using an optical adhesive or the like to be integrated. The converging lens 19 is cylindrical and has a refractive index distribution of n(r)=n 0 (1−ar 2 /2), where r is the distance from the central axis in a cross section perpendicular to the central axis. It is. Here, n 0 is the refractive index of the central axis,
a is a constant indicating the degree of change in refractive index. The property of this focusing lens 19 is that when a light beam in a direction perpendicular to its end surface is incident at a position x 0 away from the central axis, the light beam will cross the central axis with a periodic length (pitch) expressed as P=2π/√. It undulates as an axis of symmetry. At a length of P/2 (1/2 pitch), the light beam comes to the position -x 0 . On the other hand, the diameter of the light beam is repeatedly increased and decreased within the lens 19 at a period of P/2. Therefore, when the lens 19 has a length of P/2, the light beam diameter is the same as when it entered the lens, that is, it returns to the same size as the output beam diameter of the fiber 16, but the positional deviation is reversed with respect to the central axis. . In FIG. 2, the lens 19 integrated with the entrance fiber 16 is made slightly shorter than 1/2 pitch, and the central axes of the fiber 16 and lens 19 are aligned.

光の分岐を行なう素子としては偏光分離プリズ
ム7を使用する。プリズム7は一軸性の複屈折結
晶を使い、その光学軸(C−軸)21は光の進行
方向(光軸)を含む面内にあり進行方向とは角度
αをなしている。このプリズム7に入射した光は
C−軸と光軸を含む面に平行な偏光成分(異常
光)は図中の光ビーム22のようにプリズムで屈
折してC−軸を含む面内の集束性レンズ23の中
心軸からy0はなれた位置に垂直に入射する。一
方、上記の面に垂直な偏光成分(常光)は図中の
光ビーム24のようにプリズム7を直進し、レン
ズ23の中心軸に合致する。こゝでレンズ23の
長さを1/2ピツチの整数倍に選ぶと、両偏波の光
ビームはレンズ23の出力端においてレンズ23
に入射する際のビーム径と同じになり、しかも両
者の位置はy0だけ離れた所にくる。従つてレンズ
23の出力端面に密着させて二本の結合用単一モ
ードフアイバ14,15をお互いのコア中心の間
隔がy0となるように置けばそれぞれ異常光22と
常光24とが損失なく結合する。
A polarization splitting prism 7 is used as an element for splitting light. The prism 7 uses a uniaxial birefringent crystal, and its optical axis (C-axis) 21 lies within a plane that includes the direction of travel of light (optical axis) and forms an angle α with the direction of travel. The light incident on this prism 7 has a polarized component (extraordinary light) parallel to the plane containing the C-axis and the optical axis, which is refracted by the prism and focused within the plane containing the C-axis, as shown in the light beam 22 in the figure. The light is incident perpendicularly to a position y 0 away from the central axis of the sexual lens 23 . On the other hand, the polarized light component perpendicular to the above plane (ordinary light) travels straight through the prism 7 like the light beam 24 in the figure and coincides with the central axis of the lens 23. If the length of the lens 23 is selected to be an integral multiple of 1/2 pitch, the light beams of both polarizations will pass through the lens 23 at the output end of the lens 23.
The diameter of the beam will be the same as that when it enters the beam, and the two positions will be separated by y 0 . Therefore, if two single mode coupling fibers 14 and 15 are placed in close contact with the output end face of the lens 23 so that the distance between their core centers is y 0 , the extraordinary light 22 and the ordinary light 24 can be transmitted without loss. Join.

そこで偏光分離プリズム7、集束性レンズ2
3、単一モードフアイバ14,15をあらかじめ
光軸をあわせて一体化しておき、集束性レンズ1
9,23の中心軸を軸として回転できるようにす
ると楕円フアイバ16の長軸に平行又は垂直に入
射した偏光と偏光分離プリズム7のC−軸と光軸
とで形成する面との角度θが任意に変えられる。
従つて異常光22と常光24との比がcos2θ:
sin2θとなり可変分岐回路が実現する。
Therefore, the polarization separation prism 7, the focusing lens 2
3. The single mode fibers 14 and 15 are integrated in advance with their optical axes aligned, and the converging lens 1
9 and 23, the angle θ between the polarized light incident parallel or perpendicular to the long axis of the elliptical fiber 16 and the plane formed by the C-axis and the optical axis of the polarization separation prism 7 will be Can be changed arbitrarily.
Therefore, the ratio between the extraordinary light 22 and the ordinary light 24 is cos 2 θ:
sin 2 θ, and a variable branch circuit is realized.

こゝでレンズ19,23とプリズム7との条件
についてさらに説明する。プリズム7は異常光、
常光を少なくともフアイバ14,15の直径以上
に分離しなければならない。プリズム7に方解石
を使うとα=42.06゜にとると分離が最大となり
プリズム7の厚さをtとすると、y0/t=0.1と
なる。y0を125μm以上とするとt≧1.25mmとな
る。レンズ23においてはその入射面、つまりプ
リズムとレンズ7との接触面において光ビーム2
2,24が垂直に入射する。従つてレンズ23か
ら垂直に出射するビームはレンズ23の長さを1/
2ピツチの整数倍にとつた場合に得られ、そのビ
ーム径は入射面におけるビーム径と同じになる。
単一モードフアイバ14,15と効率よく結合さ
せるためにはレンズ23の長さを1/2ピツチの整
数倍にとらなければならない。さらにレンズ23
に入射するビーム径をフアイバ14,15のビー
ム径と同じにしなければならない。レンズ23に
入射するビーム径はレンズ19の長さに依存す
る。直径1.8mmの多成分のロツドレンズでは屈折
率変化を表わすパラメータaが0.12mm-2程度であ
るので1/2ピツチ長は9.2mmである。この長さから
プリズム7の厚さ約1.3mmを引いた長さに近い適
当な値にレンズ19の長さをすると、フアイバ1
6から出射したビームはレンズ19によりプリズ
ム7とレンズ23との接触面で再びフアイバ16
のモードとほゞ同じ大きさのビームに絞られる。
従つてレンズ19の長さは1/2ピツチ長からプリ
ズム7の厚さを引いた値に1/2ピツチ長の整数倍
(0倍を含む)を加えた値となる。要はレンズ1
9の入射面からレンズ23の出射面までの長さを
1/2ピツチの整数倍(2倍以上)とすればよいが
その場合設計の容易さからレンズ23は1/2ピツ
チの整数倍とするとよい。なお第2図の例ではフ
アイバ16とレンズ19とは一体化してあり、プ
リズム7、レンズ23、フアイバ14,15も一
体化できるので光学素子と空気との接触面はレン
ズ19及びプリズム7間の2面に減ずる。従つて
フレネル反射損は0.4dB程度に減ずる。
Here, the conditions for the lenses 19 and 23 and the prism 7 will be further explained. Prism 7 is an extraordinary light,
The ordinary light must be separated by at least the diameter of the fibers 14 and 15. When calcite is used for the prism 7, the separation becomes maximum when α=42.06°, and if the thickness of the prism 7 is t, then y 0 /t=0.1. When y 0 is 125 μm or more, t≧1.25 mm. In the lens 23, the light beam 2
2 and 24 are incident perpendicularly. Therefore, the beam emitted vertically from the lens 23 has a length of 1/
This is obtained when the pitch is an integral multiple of 2 pitches, and the beam diameter is the same as the beam diameter at the incident surface.
In order to efficiently couple the single mode fibers 14 and 15, the length of the lens 23 must be an integral multiple of 1/2 pitch. Furthermore, lens 23
The beam diameter entering the fibers 14 and 15 must be made the same as the beam diameter of the fibers 14 and 15. The diameter of the beam incident on lens 23 depends on the length of lens 19. In a multi-component rod lens with a diameter of 1.8 mm, the parameter a representing a change in refractive index is about 0.12 mm -2 , so the 1/2 pitch length is 9.2 mm. If the length of the lens 19 is set to an appropriate value close to the length obtained by subtracting the thickness of the prism 7, approximately 1.3 mm, from this length, the fiber 1
The beam emitted from the lens 19 passes through the fiber 16 again at the contact surface between the prism 7 and the lens 23.
The beam is focused to the same size as the mode.
Therefore, the length of the lens 19 is the value obtained by subtracting the thickness of the prism 7 from the 1/2 pitch length and adding an integral multiple (including 0 times) of the 1/2 pitch length. The key is lens 1
The length from the entrance surface of lens 9 to the exit surface of lens 23 is
It may be an integral multiple (twice or more) of 1/2 pitch, but in that case, for ease of design, the lens 23 is preferably an integral multiple of 1/2 pitch. In the example shown in FIG. 2, the fiber 16 and the lens 19 are integrated, and the prism 7, lens 23, and fibers 14 and 15 can also be integrated, so the contact surface between the optical element and the air is between the lens 19 and the prism 7. Reduced to 2 sides. Therefore, Fresnel reflection loss is reduced to about 0.4 dB.

第4図はこの発明の他の一実施例である。基本
的な構成素子は第2図とほゞ同じであるが、入射
側のレンズ19と偏光分離プリズム7との間に1/
2波長板25を挿入したものである。1/2波長板2
5はその速い軸と入射する直線偏光との角度を
とすると2だけ偏光方向が回転する。あらかじ
め、光フアイバ14,15及び16と、レンズ1
9及び23と偏光分離プリズム7とは光軸を合わ
せて一体化しておく。こゝでフアイバ16はコア
17の楕円の長軸または短軸がプリズム7のC軸
と光軸で作る面に一致させておき、1/2波長板2
5が無い場合はプリズム7に入射するビームは常
光または異常光になるようにしておく。この状態
で1/2波長板25を挿入し、これを光軸のまわり
に回転すると1/2波長板25の速い軸とレンズ1
9を通して入射する直線偏光方向との角度によ
りプリズム7に入射する偏光方向が2だけかわ
るので第2図で示したプリズム7、レンズ23、
フアイバ14,15の一体化したものを2回転
させた場合と等価になり、可変分岐回路が実現す
る。
FIG. 4 shows another embodiment of the invention. The basic components are almost the same as those shown in Fig. 2, but there is a
A two-wavelength plate 25 is inserted. 1/2 wavelength plate 2
5, the polarization direction is rotated by 2, where the angle between the fast axis and the incident linearly polarized light is taken as the angle. In advance, the optical fibers 14, 15 and 16 and the lens 1 are
9 and 23 and the polarization separation prism 7 are integrated with their optical axes aligned. Here, the fiber 16 is arranged so that the long axis or short axis of the ellipse of the core 17 coincides with the plane formed by the C axis and the optical axis of the prism 7, and the 1/2 wavelength plate 2
5, the beam incident on the prism 7 is made to be ordinary light or extraordinary light. In this state, when inserting the 1/2 wavelength plate 25 and rotating it around the optical axis, the fast axis of the 1/2 wavelength plate 25 and the lens 1
Since the polarization direction incident on the prism 7 changes by 2 depending on the angle with the linear polarization direction incident through the prism 9, the prism 7, the lens 23, and the lens 23 shown in FIG.
This is equivalent to rotating the integrated fibers 14 and 15 twice, and a variable branch circuit is realized.

こゝで1/2波長板25としては用いる複屈折結
晶の複屈折の値でその厚さが異なるがおよそ100
μm以下の非常に薄いものとなるので結像条件す
なわち最適なレンズ19の長さは第2図の場合
と、あまり変らない。この例では第4図で示し
た、光学素子はすべて一体化しておき、1/2波長
板25だけを0から45度まで回転できるようにす
ればよく、その回転の中心軸はどこでもよい。従
つて第2図に示した実施例で問題となる回転によ
る光学軸(レンズ19とレンズ23との中心軸)
のぶれによるフアイバ14,15への結合効率の
変動がなく、常に最初に設定した条件で結合する
ので信頼性が一層高いものとなる。なお、1/2波
長板25は位相差が完全に180゜になる必要はな
く可変光分岐回路の最大の減衰量を20dBとする
と±11゜ずれてもよい。
Here, the thickness of the 1/2 wavelength plate 25 varies depending on the birefringence value of the birefringent crystal used, but it is approximately 100 mm thick.
Since it is very thin, less than .mu.m, the imaging conditions, that is, the optimum length of the lens 19, do not differ much from the case of FIG. 2. In this example, all the optical elements shown in FIG. 4 are integrated, and only the 1/2 wavelength plate 25 needs to be able to rotate from 0 to 45 degrees, and the central axis of rotation may be anywhere. Therefore, the optical axis (center axis of lens 19 and lens 23) due to rotation is a problem in the embodiment shown in FIG.
There is no fluctuation in the coupling efficiency to the fibers 14, 15 due to wobbling, and the coupling is always performed under the initially set conditions, resulting in even higher reliability. Note that the phase difference of the half-wave plate 25 does not need to be completely 180 degrees, and may be shifted by ±11 degrees assuming that the maximum attenuation of the variable optical branch circuit is 20 dB.

また分岐比を1:0から0:1まで変えるので
なく、1:0から0.9:0.1位まで変えて数%結合
する分岐用フアイバで他の結合用フアイバの光量
をモニタする場合に応用するとすれば1/2波長板
25の代りに位相差がわずかに異なる波長板を用
いてもよい。またモニタ用フアイバとしてはコア
径、NAが大きなステツプ型、グレーデツド型フ
アイバを用いてもよい。この発明の分岐回路に使
用する構成部品のうち、空気と接触する集束形レ
ンズ、偏光分離プリズム、波長板はあらかじめ誘
電体多層膜等で反射防止膜加工を施しておくこと
も可能である。
In addition, instead of changing the branching ratio from 1:0 to 0:1, it may be applied to monitor the light intensity of other coupling fibers by changing the branching ratio from 1:0 to about 0.9:0.1 and using a branching fiber that couples several percent. For example, instead of the 1/2 wavelength plate 25, a wavelength plate having a slightly different phase difference may be used. Further, as the monitoring fiber, a step type or graded type fiber with a large core diameter and NA may be used. Among the components used in the branch circuit of the present invention, the focusing lens, polarization separation prism, and wavelength plate that come into contact with air may be coated with an antireflection film using a dielectric multilayer film or the like in advance.

以上説明したようにこの発明はレンズ系とフア
イバとは光学接着剤等で一体化できるため余分な
フレネル反射損を減らすことができる。また、分
岐比を変化するために可動部分が必要になるがプ
リズム、レンズ、分岐用フアイバを一体化してあ
るため可動による光軸ずれを小さくでき、可動に
よる余分な結合損失の増加を小さくできる。特に
波長板の回転を使用する第4図に示した実施例で
は光軸合せの必要な構成部品については固定した
ままでよいので分岐比を変えることによる光軸ず
れは生じなく、極めて安定で低損失の可変分岐回
路が構成できる。更に半導体レーザ等の直線偏光
した光を利用し、楕円フアイバで偏光特性を維持
する場合は直線偏光にするための余分な損失がな
い。
As explained above, in this invention, the lens system and the fiber can be integrated with an optical adhesive or the like, so that unnecessary Fresnel reflection loss can be reduced. Further, although a movable part is required to change the branching ratio, since the prism, lens, and branching fiber are integrated, optical axis deviation due to movement can be reduced, and increase in extra coupling loss due to movement can be reduced. In particular, in the embodiment shown in Fig. 4, which uses rotation of the wave plate, the components that require optical axis alignment can remain fixed, so there is no optical axis misalignment caused by changing the branching ratio, resulting in extremely stable and low A variable loss branch circuit can be constructed. Furthermore, when linearly polarized light from a semiconductor laser or the like is used and the polarization characteristics are maintained with an elliptical fiber, there is no extra loss due to linearly polarized light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は偏光を利用した改良前の単一モードフ
アイバ用可変光分岐回路の原理を示す図、第2図
はこの発明による可変光分岐回路の一実施例の原
理を示す図、第3図はフアイバ16の断面図、第
4図はこの発明による可変光分岐回路の他の実施
例の原理を示す図である。 1:入射用単一モードフアイバ、2:コア部
分、3:レンズ、4:偏光子、7:偏光分離プリ
ズム、14,15:分岐用フアイバ、16:単一
モード楕円コアフアイバ、17:楕円コア、1
9,23:集束性レンズ、22:異常光、24:
常光、25:λ/2波長板。
Fig. 1 is a diagram showing the principle of an unimproved variable optical branching circuit for a single mode fiber using polarization, Fig. 2 is a diagram showing the principle of an embodiment of a variable optical branching circuit according to the present invention, and Fig. 3 4 is a sectional view of the fiber 16, and FIG. 4 is a diagram showing the principle of another embodiment of the variable optical branch circuit according to the present invention. 1: Single mode fiber for incidence, 2: Core portion, 3: Lens, 4: Polarizer, 7: Polarization separation prism, 14, 15: Branching fiber, 16: Single mode elliptical core fiber, 17: Elliptical core, 1
9, 23: Focusing lens, 22: Extraordinary light, 24:
Ordinary light, 25:λ/2 wavelength plate.

Claims (1)

【特許請求の範囲】 1 一本の単一モードフアイバからの出力光を2
本の結合用フアイバに任意の分岐比で結合させる
可変光分岐回路において、入射用単一モードフア
イバとして楕円コアフアイバを用い、その楕円コ
アフアイバの出力端面に1/2ピツチの整数倍より
わずかに短かい長さの第1集束形レンズを取りつ
けて一体化し、上記結合用フアイバとしては2本
をアレー状に配置してその入射端面に1/2ピツチ
の整数倍の長さの第2集束形レンズを取りつけて
一体化し、その第2集束形レンズの入射面に偏光
分離プリズムを取りつけて一体化し、その偏光分
離プリズムを上記第1集束形レンズと対向させ、
上記結合用フアイバと上記入射用単一モードフア
イバとで作る光軸を中心軸としてプリズムレンズ
付結合用フアイバの全体もしくはレンズ付入射用
単一モードフアイバの全体を回転できるようにし
たことを特徴とする単一モードフアイバ用可変光
分岐回路。 2 一本の単一モードフアイバからの出力光を2
本の結合用フアイバに任意の分岐比で結合させる
可変光分岐回路において、入射用単一モードフア
イバとして楕円コアフアイバを用い、その楕円コ
アフアイバの出力端面に1/2ピツチの整数倍より
わずかに短かい長さの第1集束レンズを取りつけ
て一体化し、上記結合用フアイバとしては2本を
アレー状に配置してその入射端面に1/2ピツチの
整数倍の長さの第2集束形レンズを取りつけて一
体化し、その第2集束形レンズの入射面に偏光分
離プリズムを取りつけて一体化し、その偏光分離
用プリズムと上記第1集束形レンズの出射面との
間に波長板を挿入し、その波長板以外の構成部品
は光軸を合せて固定した状態でその波長板を上記
光軸に垂直な面内で回転できるようにしたことを
特徴とする単一モードフアイバ用可変光分岐回
路。
[Claims] 1. The output light from one single mode fiber is
In a variable optical branching circuit that couples to a main coupling fiber at an arbitrary branching ratio, an elliptical core fiber is used as the input single mode fiber, and the output end face of the elliptical core fiber is slightly shorter than an integral multiple of 1/2 pitch. A first converging lens with a length of 1/2 pitch is attached and integrated, and two of the coupling fibers are arranged in an array, and a second converging lens with a length of an integral multiple of 1/2 pitch is attached to the incident end face. attaching and integrating a polarization separation prism to the incident surface of the second converging lens, and making the polarization separation prism face the first convergence lens;
The entire coupling fiber with a prism lens or the entire input single mode fiber with a lens can be rotated about the optical axis formed by the coupling fiber and the input single mode fiber as a central axis. Variable optical branch circuit for single mode fiber. 2 The output light from one single mode fiber is
In a variable optical branching circuit that couples to a main coupling fiber at an arbitrary branching ratio, an elliptical core fiber is used as the input single mode fiber, and the output end face of the elliptical core fiber is slightly shorter than an integral multiple of 1/2 pitch. A first focusing lens having a length of 1/2 pitch is attached and integrated, and two of the above-mentioned coupling fibers are arranged in an array, and a second focusing lens having a length that is an integral multiple of 1/2 pitch is attached to the incident end face. A polarization separation prism is attached to the incident surface of the second converging lens, and a wavelength plate is inserted between the polarization separation prism and the output surface of the first condensing lens. 1. A variable optical branching circuit for a single mode fiber, characterized in that the wavelength plate can be rotated in a plane perpendicular to the optical axis while the components other than the plate are fixed with their optical axes aligned.
JP13186480A 1980-09-22 1980-09-22 Vaiable optical branching circuit for single mode fiber Granted JPS5756813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186480A JPS5756813A (en) 1980-09-22 1980-09-22 Vaiable optical branching circuit for single mode fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186480A JPS5756813A (en) 1980-09-22 1980-09-22 Vaiable optical branching circuit for single mode fiber

Publications (2)

Publication Number Publication Date
JPS5756813A JPS5756813A (en) 1982-04-05
JPS6130247B2 true JPS6130247B2 (en) 1986-07-12

Family

ID=15067904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186480A Granted JPS5756813A (en) 1980-09-22 1980-09-22 Vaiable optical branching circuit for single mode fiber

Country Status (1)

Country Link
JP (1) JPS5756813A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153518U (en) * 1983-03-31 1984-10-15 日本電気株式会社 optical coupler
GB9906494D0 (en) * 1999-03-23 1999-05-12 Renishaw Plc Laser interferometer
US6493140B1 (en) * 1999-10-14 2002-12-10 Oplink Communications, Inc. Polarization splitter and combiner and optical devices using the same
CN102162931A (en) * 2010-02-21 2011-08-24 西安邮电学院 Phase-type polarization controller

Also Published As

Publication number Publication date
JPS5756813A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
CA1284909C (en) Optical beam splitter prism
US4556292A (en) Optical polarizer having a prism
US5740288A (en) Variable polarization beam splitter, combiner and mixer
US4492436A (en) Polarization independent beam splitter
US4966438A (en) Dielectric layer polarizer
JP2774467B2 (en) Polarization independent optical isolator
US6018418A (en) Polarization beam splitter
US6590706B1 (en) Optical circulators using beam angle turners
US5223975A (en) Polarization beam coupler including a splitter for producing an output monitor beam
WO2003075018A1 (en) Current measuring device
JP2000028967A (en) Optical attenuator
JPH03126910A (en) Polarization light source device and polarization beam splitter
US6819810B1 (en) Depolarizer
JPH10253927A (en) Three port optical circulator and its manufacture
JPH10170867A (en) Optical device with optical circulator function
JPH04191703A (en) Deflection independency optical part
EP0863425A2 (en) Optical device for splitting an input beam into two orthogonal polarization states
JPS6130247B2 (en)
JP2572627B2 (en) Optical isolator and optical circulator
JPH07301734A (en) Optical coupler
US6549686B2 (en) Reflective optical circulator
US11796778B2 (en) Small, high power optical isolator
US6987896B1 (en) Optical isolator
JP2000231080A (en) Optical circulator
CN112904490A (en) Reflective optical circulator