JP2000231080A - Optical circulator - Google Patents

Optical circulator

Info

Publication number
JP2000231080A
JP2000231080A JP11033157A JP3315799A JP2000231080A JP 2000231080 A JP2000231080 A JP 2000231080A JP 11033157 A JP11033157 A JP 11033157A JP 3315799 A JP3315799 A JP 3315799A JP 2000231080 A JP2000231080 A JP 2000231080A
Authority
JP
Japan
Prior art keywords
optical
axis
light
lens
birefringent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11033157A
Other languages
Japanese (ja)
Other versions
JP4070053B2 (en
Inventor
Hiroshi Matsuura
寛 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP03315799A priority Critical patent/JP4070053B2/en
Publication of JP2000231080A publication Critical patent/JP2000231080A/en
Application granted granted Critical
Publication of JP4070053B2 publication Critical patent/JP4070053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compacter optical circulator without increasing the number of component even when it is made into the multi-port one. SOLUTION: A double refraction member 3, a 1st phase member 4, a polarization rotator 5 and a composite double refraction member 6 are arranged between an arraying body 2 where at least, three or more optical fibers 2b are arrayed and a lens 7 in this optical circulator. A 2nd phase member 8 and a reflector 9 are arranged on an opposite side to the members 3, 4, 5 and 6 with respect to the lens 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システムや
光計測分野等で使用される光サーキュレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical circulator used in the field of optical communication systems and optical measurement.

【0002】[0002]

【従来の技術】光サーキュレータは、光通信や光計測等
の分野で重要な非相反光回路素子の1つである。光サー
キュレータは、光サーキュレータが入射側と出射側の2
ポート型であるのに対し、少なくとも3以上のポートを
有し、例えば、1,2,3の番号で表される3ポートを
有する場合、順方向の1→2,2→3,3→1の方向に
進む光は低損失で、逆方向の1→3,3→2,2→1の
方向に進む光は高損失の出力として伝送する。
2. Description of the Related Art An optical circulator is one of important non-reciprocal optical circuit elements in fields such as optical communication and optical measurement. The optical circulator has two optical circulators, one on the input side and the other on the output side.
In contrast to the port type, it has at least three or more ports, for example, if it has three ports represented by numbers 1, 2, and 3, in the forward direction, 1 → 2, 2 → 3, 3 → 1 The light traveling in the direction of (1) has low loss, and the light traveling in the opposite direction of 1 → 3, 3 → 2, 2 → 1 is transmitted as a high loss output.

【0003】このような光サーキュレータとしては、例
えば、国際公開番号WO97/22034に開示された
光サーキュレータが知られている。
As such an optical circulator, for example, an optical circulator disclosed in International Publication No. WO97 / 22034 is known.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記光サー
キュレータは、光軸に沿って対向配置された一方の光導
波路アレイから他方の光導波路アレイへ光を伝送する構
造のうえ、構成部品数が多いことから、大型化してしま
うという問題があった。しかも、ポート数を増やそうと
すると、その分構成部品が増加するため、一層大型化し
多ポート化が難しいという問題があった。
By the way, the optical circulator has a structure in which light is transmitted from one optical waveguide array arranged along the optical axis to the other optical waveguide array, and the number of components is large. Therefore, there is a problem that the size is increased. In addition, when the number of ports is to be increased, the number of components increases accordingly, and there is a problem that it is difficult to increase the number of ports and increase the number of ports.

【0005】本発明は上記の点に鑑みてなされたもの
で、多ポートにしても構成部品数が増えることがなく、
従来品に比べても小型な光サーキュレータを提供するこ
とを目的とする。
The present invention has been made in view of the above points, and the number of components does not increase even if the number of ports is increased.
It is an object of the present invention to provide an optical circulator that is smaller than a conventional product.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の光サーキュレータにおいては、少なくとも3本
以上の光ファイバが配列された配列体とレンズとの間
に、複屈折部材、第1の位相部材、偏波回転子、複合複
屈折部材が配置され、これらの部材の前記レンズに対し
て反対側に第2の位相部材と反射体とが配置されている
構成としたのである。
In order to achieve the above object, in an optical circulator of the present invention, a birefringent member, a first birefringent member, and a first birefringent member are provided between an array of at least three or more optical fibers and a lens. A phase member, a polarization rotator, and a complex birefringent member are arranged, and a second phase member and a reflector are arranged on the opposite side of these members with respect to the lens.

【0007】[0007]

【発明の実施の形態】以下、本発明の光サーキュレータ
に係る一実施形態を図1乃至図6に基づいて詳細に説明
する。光サーキュレータ1は、図1に示すように、4本
の光ファイバが配列された配列体2とレンズ7との間
に、複屈折部材3、第1位相部材4、偏波回転子5及び
複合複屈折部材6が配置され、これら構成部材3〜6の
レンズ7に対して反対側に第2位相部材8と反射体9と
が配置されている。複屈折部材3乃至第2位相部材8
は、それぞれ光の入出射面にSiO2/TiO2等の反射
防止コーティングを施したものを使用することが望まし
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the optical circulator of the present invention will be described below in detail with reference to FIGS. As shown in FIG. 1, the optical circulator 1 includes a birefringent member 3, a first phase member 4, a polarization rotator 5, and a composite between an array 2 in which four optical fibers are arrayed and a lens 7. A birefringent member 6 is arranged, and a second phase member 8 and a reflector 9 are arranged on the opposite side of the lenses 7 of the constituent members 3 to 6. Birefringent member 3 to second phase member 8
It is desirable to use a material in which an anti-reflection coating such as SiO2 / TiO2 is applied to the light entrance / exit surfaces, respectively.

【0008】ここで、図3(a),(b)に、複屈折部
材3から反射体9までの配置と、光の進行方向をZ軸、
Z軸に直交する面内のそれぞれ水平方向をX軸、鉛直方
向をY軸としたときの光の偏光状態を示す。これらX軸
乃至Z軸は、本明細書に添付した他の図面においても同
様である。配列体2は、基板2aの表面に等間隔、か
つ、平行(平行度3度以内)に形成した4本のV溝(図
示せず)のそれぞれに光ファイバ2bが配列固定されて
いる。ここで、4本の光ファイバ2bは、以下の説明に
おける区別の便宜上、図1に示すように、それぞれポー
トP1〜P4と呼ぶ。このとき、配列体2は、レンズ7の
中心軸AcXから最も近い光ファイバ2b(ポートP1)
までの距離をa、複合複屈折部材6で分離される幅をd
とすると、1番目の光ファイバ2bを基準とする第n番
目の光ファイバ2bまでの距離wnを、wn=Lf×n=
2{a+2(n−1)d}+d(n=1,2,3,……
………)に設定する。但し、Lfは隣り合う光ファイバ
2bの間隔で、レンズ7のバックフォーカスと光サーキ
ュレータ1を構成する部材の結晶長及び結晶長と分離幅
の関係を考慮して決定され、本実施形態では126μm
に設定した。
Here, FIGS. 3A and 3B show the arrangement from the birefringent member 3 to the reflector 9 and the traveling direction of light on the Z axis.
It shows the polarization state of light when the horizontal direction is the X axis and the vertical direction is the Y axis in a plane orthogonal to the Z axis. These X axis to Z axis are the same in other drawings attached to this specification. In the array 2, optical fibers 2b are arranged and fixed in four V-grooves (not shown) formed at equal intervals and in parallel (within a degree of parallelism of 3 degrees) on the surface of the substrate 2a. Here, the four optical fibers 2b are referred to as ports P1 to P4, respectively, as shown in FIG. 1 for convenience of distinction in the following description. At this time, the array 2 has the optical fiber 2b (port P1) closest to the central axis AcX of the lens 7.
Is a, and the width separated by the complex birefringent member 6 is d.
Then, the distance wn from the first optical fiber 2b to the n-th optical fiber 2b is defined as wn = Lf × n =
2 {a + 2 (n-1) d} + d (n = 1, 2, 3,...)
………). However, Lf is determined by taking into consideration the back focus of the lens 7 and the crystal length of the members constituting the optical circulator 1 and the relationship between the crystal length and the separation width, which is 126 μm in the present embodiment.
Set to.

【0009】また、複数の光ファイバ2bは、複屈折部
材3側を加熱してコアをTEC(thermal expanded cor
e)処理し、モードフィールド径(MFD: mode field diam
eter)を拡大させることにより広がり角を小さくしたMFD
拡大部2cを有する。MFD拡大部2cとしては、前記T
EC処理をした光ファイバに限るものではなく、分布屈
折率型ファイバや微小レンズを用いてもよい。一方、配
列体2は、3本以上の光ファイバを等間隔、かつ、平行
に配列することができれば、光ファイバが4本以上の多
数であってもよいことは言うまでもなく、また、上記の
他、例えば、多心コネクタ用のセラミックスやSUSか
らなるフェルール、V溝アレイに複数の光ファイバを固
定したものあるいは複数の光ファイバを合成樹脂でモー
ルドしたもの等、種々のものを使用することができる。
Further, the plurality of optical fibers 2b heat the birefringent member 3 side to form a core of a TEC (thermal expanded corona).
e) process the mode field diameter (MFD)
MFD with reduced divergence angle by expanding
It has an enlarged portion 2c. As the MFD expansion unit 2c, the T
The optical fiber is not limited to the EC-treated optical fiber, but may be a distributed index fiber or a microlens. On the other hand, if the arrangement body 2 can arrange three or more optical fibers at equal intervals and in parallel, it is needless to say that the number of optical fibers may be as many as four or more. For example, various types such as a ferrule made of ceramics or SUS for a multi-core connector, a type in which a plurality of optical fibers are fixed to a V-groove array, or a type in which a plurality of optical fibers are molded with a synthetic resin can be used. .

【0010】複屈折部材3は、光ファイバ2bから出射
した光の常光線と異常光線への分離と反射体9で反射し
て戻ってくる偏光を合成するもので、光ファイバ2bの
間隔を常光線と異常光線とに分離する分離幅に一致させ
る。複屈折部材3は、複屈折結晶板や1軸性光学結晶
(偏光子)が使用され、例えば、ルチル(TiO2),方
解石(CaCO3),イットリウム・オソバナデート(YVO
4),アルファバリウム・ボーデート(αBaB2O4)等
の結晶がある。複屈折部材3は、最小の結晶長となるよ
うに光学軸を入射光に対して42〜50度前後に加工
し、入手の容易性や結晶自体の信頼性を考慮すると、ル
チルが好ましい。複屈折部材3は、結晶長tを、光ファ
イバ2bの間隔Lfに対してLf=約0.1tの関係に設定
し、本実施形態では、2mm角、厚さ約1.3mmの、光
学軸45でカットした偏光分離素子を用いた。
The birefringent member 3 separates the light emitted from the optical fiber 2b into an ordinary ray and an extraordinary ray, and combines the reflected light reflected by the reflector 9 and returns. It is made to match the separation width that separates the light into extraordinary rays. As the birefringent member 3, a birefringent crystal plate or a uniaxial optical crystal (polarizer) is used. For example, rutile (TiO2), calcite (CaCO3), yttrium osovanadate (YVO)
4) There are crystals such as alpha barium bodate (αBaB2O4). The birefringent member 3 has an optical axis processed to about 42 to 50 degrees with respect to incident light so as to have a minimum crystal length, and rutile is preferable in consideration of availability and reliability of the crystal itself. The birefringent member 3 sets the crystal length t to a relationship of Lf = about 0.1 t with respect to the distance Lf between the optical fibers 2b, and in the present embodiment, an optical axis of 2 mm square and about 1.3 mm thick. The polarization splitter cut at 45 was used.

【0011】第1位相部材4は、複屈折部材3を透過し
た偏光の偏光面を45度回転させるもので、複合相反性
偏波回転子や複合1/2波長板等が使用され、例えば、
TBIG,GBIG等のガーネットや水晶等がある。複
合相反性偏波回転子は、0次単プレートや1次単プレー
ト等、可能な限り薄いことが望ましく、高次の波長板を
使用すると、波長特性と温度特性が悪くなる。第1位相
部材4は、複合1/2波長板を使用するときには、図3
(a)に示すように、光学軸AOP1がY軸に対して−2
2.5度傾いた1/2波長板4aと光学軸AOP2がY軸に
対して+22.5度傾いた1/2波長板4bとを接合面4
cでY軸方向に重ね、紫外線硬化型等の光学接着剤で接
着して使用する。第1位相部材4は、用いる接着剤が接
合面4cから光の入出射面にはみ出さないように注意す
る。
The first phase member 4 rotates the plane of polarization of the polarized light transmitted through the birefringent member 3 by 45 degrees. For example, a composite reciprocal polarization rotator or a composite half-wave plate is used.
Garnets such as TBIG and GBIG, and crystals are available. The composite reciprocal polarization rotator is desirably as thin as possible, such as a zero-order single plate or a first-order single plate. If a higher-order wave plate is used, wavelength characteristics and temperature characteristics are deteriorated. When the composite half-wave plate is used, the first phase member 4
As shown in (a), the optical axis AOP1 is -2 with respect to the Y axis.
The half-wave plate 4a tilted by 2.5 degrees and the half-wave plate 4b whose optical axis AOP2 is tilted by +22.5 degrees with respect to the Y axis are joined to each other at the joint surface 4.
The layers are overlapped in the Y-axis direction by c, and are bonded and used with an optical adhesive such as an ultraviolet curing type. The first phase member 4 takes care that the adhesive used does not protrude from the bonding surface 4c to the light input / output surface.

【0012】本実施形態では、第1位相部材4として、
光学軸AOP1の傾きが−22.5度と光学軸AOP2の傾きが
+22.5度の0次単プレート水晶波長板を、ダイシング
ソーで接合面4cのチッピングが0.02mm以下の精
度となるようにカットしたものを使用した。偏波回転子
5は、第1位相部材4を透過した偏光の偏光面を回転さ
せる非相反偏波回転子で、使用波長帯域で旋光角が45
度程度のできるだけ薄いものを使用する。偏波回転子5
は、例えば、ガーネット,TBIG(テルビウム・ビス
マス・アイアン・ガーネット),GBIG(ガドリニウ
ム・ビスマス・アイアン・ガーネット)等を使用するこ
とができる。本実施形態では、光の進行方向に対して右
回りのガーネットを用いたが、左回りのガーネットを用
いる場合、第1位相部材4は、それぞれ光学軸AOP1が
+22.5度、光学軸AOP2が−22.5度の傾きとすれば
よい。
In this embodiment, as the first phase member 4,
A zero-order single-plate quartz wave plate having an inclination of the optical axis AOP1 of -22.5 degrees and an inclination of the optical axis AOP2 of +22.5 degrees is adjusted so that the chipping of the bonding surface 4c with a dicing saw has an accuracy of 0.02 mm or less. Was used. The polarization rotator 5 is a non-reciprocal polarization rotator that rotates the polarization plane of the polarized light transmitted through the first phase member 4, and has an optical rotation angle of 45 in the used wavelength band.
Use something as thin as possible. Polarization rotator 5
For example, garnet, TBIG (terbium bismuth iron garnet), GBIG (gadolinium bismuth iron garnet), or the like can be used. In the present embodiment, the garnet clockwise with respect to the traveling direction of light is used. However, when the garnet clockwise is used, the first phase member 4 has an optical axis AOP1 of +22.5 degrees and an optical axis AOP2 of The inclination may be -22.5 degrees.

【0013】偏波回転子5は、図1において、第1位相
部材4の位置と入れ替えてもよい。このように配置する
と、偏波回転子5は、透過する光の拡がり角が一定のた
め、光のビーム径が小さいところで使用できる。このた
め、光サーキュレータ1は、偏波回転子5をこのように
配置すると、組立誤差や構成部品の加工誤差によるビー
ム蹴られの可能性が少なくなる。
The position of the polarization rotator 5 may be replaced with the position of the first phase member 4 in FIG. With this arrangement, the polarization rotator 5 can be used where the beam diameter of the light is small because the spread angle of the transmitted light is constant. Therefore, in the optical circulator 1, when the polarization rotator 5 is arranged in this manner, the possibility of beam kick due to an assembly error or a processing error of a component is reduced.

【0014】複合複屈折部材6は、常光線を異常光線
に、異常光線を常光線に、それぞれ切り替えるもので、
光ファイバ2bの間隔の半分を常光線と異常光線とに分
離する分離幅に一致させる。複合複屈折部材6は、複合
複屈折結晶板や複合1軸性光学結晶(偏光子)が使用さ
れ、例えば、ルチル(TiO2),方解石(CaCO3),イ
ットリウム・オソバナデート(YVO4),アルファバリ
ウム・ボーデート(αBaB2O4)等の結晶がある。複合
複屈折部材6は、例えば、図4(a)に示すように、光
学軸AOP1がZ軸に対してθ1=約−42〜−50度傾い
た結晶板6aと光学軸AOP2がZ軸に対してθ2=約+4
2〜+50度傾いた結晶板6bとを接合面6cでX方向
に重ね、光学接着剤で接着して使用する。複合複屈折部
材6は、結晶軸が複屈折部材3の結晶軸と直交するよう
に配置する。
The complex birefringent member 6 switches an ordinary ray into an extraordinary ray and an extraordinary ray into an ordinary ray.
A half of the interval between the optical fibers 2b is made equal to the separation width for separating the ordinary ray and the extraordinary ray. As the composite birefringent member 6, a composite birefringent crystal plate or a composite uniaxial optical crystal (polarizer) is used. There are crystals such as (αBaB2O4). For example, as shown in FIG. 4A, the complex birefringent member 6 includes a crystal plate 6a in which the optical axis AOP1 is inclined by about θ1 = −42 to −50 degrees with respect to the Z axis and the optical axis AOP2 is in On the other hand, θ2 = about +4
The crystal plate 6b inclined by 2 to +50 degrees is overlapped in the X direction at the joint surface 6c, and is used by bonding with an optical adhesive. The complex birefringent member 6 is arranged so that the crystal axis is orthogonal to the crystal axis of the birefringent member 3.

【0015】このとき、複合複屈折部材6は、接着剤が
接合面6cから光の入出射面にはみ出さないように注意
する。また、複合複屈折部材6は、結晶板6a,6bを
ダイシングソーでチッピングが0.1mm以下の精度と
なるようにカットしたものを使用し、接着剤は、可能な
限り薄くすることによりピラミダルエラー(pyramidal
error)を抑制する。本実施形態では、ルチルを光学軸
AOP1,AOP2をZ軸に対して±45度でカットした厚み
約0.63mmの2枚のサバール板を反転させて図2のよ
うに接合面6cで貼り合わせたものを使用した。
At this time, care should be taken so that the adhesive of the composite birefringent member 6 does not protrude from the joining surface 6c to the light entrance / exit surface. The composite birefringent member 6 is obtained by cutting the crystal plates 6a and 6b with a dicing saw so that the chipping has an accuracy of 0.1 mm or less, and the adhesive is made as thin as possible to reduce the pyramidal error. (Pyramidal
error). In this embodiment, two Savart plates having a thickness of about 0.63 mm, in which the optical axes AOP1 and AOP2 are cut at ± 45 degrees with respect to the Z axis, are inverted, and rutile is bonded at the bonding surface 6c as shown in FIG. Was used.

【0016】ここで、複合複屈折部材6は、図4(b)
に示すように、図4(a)の場合とは逆に、光学軸AOP
1がZ軸に対してθ1=約+42〜+50度傾いた結晶板
6aと光学軸AOP2がZ軸に対してθ2=約−42〜−5
0度傾いた結晶板6bとを接合面6cでX方向に重ね、
光学接着剤で接着してもよい。この場合、4本の光ファ
イバ2bは、図1に示した場合とは逆に、レンズ7の中
心軸Acに近い光ファイバ2bがポートP3,P4、遠い
光ファイバ2bがポートP1,P2となる。
Here, the composite birefringent member 6 is shown in FIG.
As shown in FIG. 4, on the contrary to the case of FIG.
1 is the crystal plate 6a inclined at θ1 = about +42 to +50 degrees with respect to the Z axis, and the optical axis AOP2 is at θ2 = about −42 to −5 with respect to the Z axis.
The crystal plate 6b inclined at 0 degrees is overlapped in the X direction at the joint surface 6c,
You may bond with an optical adhesive. In this case, the four optical fibers 2b are ports P3 and P4 near the central axis Ac of the lens 7, and ports P1 and P2 are far optical fibers 2b, contrary to the case shown in FIG. .

【0017】レンズ7は、入射する光の偏波モード分散
のキャンセルとコリメーションを行うもので、非球面レ
ンズ,ボールレンズ,平凸レンズあるいは分布屈折レン
ズ等を使用することができる。但し、レンズ7は、配列
体2との間に前記構成部材3〜6を配置し得るバックフ
ォーカスを有するレンズを使用する。本実施形態では、
焦点距離f=1.8mmの非球面レンズを使用した。
The lens 7 cancels and collimates the polarization mode dispersion of incident light, and may be an aspherical lens, a ball lens, a plano-convex lens, a distributed refraction lens, or the like. However, as the lens 7, a lens having a back focus in which the constituent members 3 to 6 can be arranged between the lens and the array 2 is used. In this embodiment,
An aspheric lens having a focal length f = 1.8 mm was used.

【0018】第2位相部材8は、1/4波長板等の位相
差板で、0次単プレートや0次2枚構成の水晶板が適当
で、高次の波長板を使用すると、波長特性と温度特性が
悪くなる。第2位相部材8は、45度旋光の非相反偏波
回転子、例えば、GBIG等のガーネットを用いてもよ
い。本実施形態では、第2位相部材8として、光学軸A
OPを偏光方向に対して45度に設置した1/4波長板を
用いた。
The second phase member 8 is a retardation plate such as a quarter-wave plate, and a 0th-order single plate or a 0th-order 2-plate quartz plate is appropriate. And the temperature characteristics deteriorate. The second phase member 8 may use a non-reciprocal polarization rotator of 45-degree optical rotation, for example, a garnet such as GBIG. In the present embodiment, the optical axis A is used as the second phase member 8.
A quarter-wave plate in which the OP was set at 45 degrees with respect to the polarization direction was used.

【0019】反射体9は、第2位相部材8を通過した光
を反射する反射鏡で、本実施形態では、例えば、ベース
9aの表面にSiO2/TiO2をコーティングした反射
鏡を用いた。本発明の光サーキュレータ1は、以上のよ
うに、4本の光ファイバ2bが配列された配列体2とレ
ンズ7との間に、複屈折部材3、第1位相部材4、偏波
回転子5及び複合複屈折部材6が配置され、構成部材3
〜6のレンズ7に対して反対側に第2位相部材8と反射
体9とが配置された構造を特徴とする。即ち、光サーキ
ュレータ1は、配列体2のいずれかの光ファイバ2bか
ら入射した光を反射体9で反射させることで折り返させ
る構造である。
The reflector 9 is a reflecting mirror for reflecting the light passing through the second phase member 8, and in the present embodiment, for example, a reflecting mirror in which the surface of a base 9a is coated with SiO2 / TiO2 is used. As described above, the optical circulator 1 of the present invention comprises the birefringent member 3, the first phase member 4, the polarization rotator 5 between the lens 7 and the array 2 in which the four optical fibers 2b are arrayed. And the complex birefringent member 6 is disposed,
It is characterized in that the second phase member 8 and the reflector 9 are arranged on the opposite side to the lenses 7 to 6. That is, the optical circulator 1 has a structure in which light incident from any one of the optical fibers 2b of the array 2 is reflected by the reflector 9 to be folded.

【0020】従って、光サーキュレータ1において、例
えば、4本の光ファイバ2bのポート1に入射した光
は、X,Y軸を含む平面において、図2(a)に示すよ
うに複屈折部材3〜第2位相部材8へと伝搬し、反射体
9で反射され、図2(b)に示すように、4本の光ファ
イバ2bのポート2に低損失で出射されてゆく。このと
き、図2(a),図2(b)において、丸印は光の進行
方向に対し紙面に垂直なZ軸方向に振動する偏光、矢印
は光の進行方向に対し紙面に平行なX軸方向に振動する
偏光である。
Therefore, in the optical circulator 1, for example, the light that has entered the ports 1 of the four optical fibers 2b, on a plane including the X and Y axes, as shown in FIG. The light propagates to the second phase member 8, is reflected by the reflector 9, and is emitted to the ports 2 of the four optical fibers 2b with low loss as shown in FIG. At this time, in FIGS. 2 (a) and 2 (b), circles indicate polarized light that oscillates in the Z-axis direction perpendicular to the paper with respect to the traveling direction of light, and arrows indicate X parallel to the paper with respect to the traveling direction of light. A polarized light that vibrates in the axial direction.

【0021】但し、4本の光ファイバ2bのポート4に
入射した光は、損失が大きいため、逆方向に進んでポー
ト1へ出射されることはない。同様に、光ファイバ2b
に入射した光は、ポート2→ポート3,ポート3→ポー
ト4へと出射されるが、逆方向に進むことはない。この
ように、光サーキュレータ1は、光の伝搬方向に関して
非相反な特性を有している。
However, the light that has entered the port 4 of the four optical fibers 2b has a large loss, so that it does not travel in the reverse direction and exit to the port 1. Similarly, the optical fiber 2b
Is emitted from port 2 → port 3, port 3 → port 4, but does not travel in the opposite direction. Thus, the optical circulator 1 has non-reciprocal characteristics with respect to the light propagation direction.

【0022】このとき、図3(a),(b)で規定した
ように、光の進行方向をZ軸、Z軸に直交する面内のそ
れぞれ水平方向をX軸、鉛直方向をY軸とし、反射体9
側から見たとすると、横方向がX軸、縦方向がY軸で、
説明の便宜上、横方向を13分割して1から13で、縦
方向を5分割してa〜eで、それぞれ表すと、ポート1
の位置は、マトリクス的に見ると図5(a)に示すよう
に“6d”となる。この関係は、以下の図5(b)〜図
6(g)においても同様である。また、符号AcYはレン
ズ7のY軸方向における中心軸、符号AcXはレンズ7の
X軸方向における中心軸である。
At this time, as defined in FIGS. 3A and 3B, the traveling direction of the light is defined as the Z axis, the horizontal direction in a plane orthogonal to the Z axis is defined as the X axis, and the vertical direction is defined as the Y axis. , Reflector 9
When viewed from the side, the horizontal direction is the X axis, the vertical direction is the Y axis,
For convenience of description, the horizontal direction is divided into 13 and the vertical direction is divided into 1 to 13 and the vertical direction is divided into 5 and represented by a to e.
Is "6d" as shown in FIG. 5A when viewed in a matrix. This relationship is the same in FIGS. 5B to 6G below. The symbol AcY is the central axis of the lens 7 in the Y-axis direction, and the symbol AcX is the central axis of the lens 7 in the X-axis direction.

【0023】従って、例えば、ポート1に入射した光
は、光ファイバ2b内を伝搬して複屈折部材3へ出射さ
れ、図5(b)に示すように、複屈折部材3で、結晶軸
に直交した常光線と、同じく平行な異常光線とに分離さ
れる。次に、第1位相部材4は、光学軸AOP1がY軸に
対して−22.5度、光学軸AOP2がY軸に対して+22.
5度、それぞれ傾いているので、分離された常光線と異
常光線は、第1位相部材4を通過すると、図5(c)に
示すように、偏光方向がそれぞれ45度回転し、偏光方
向が同方向となる。ここで、図中、符号4cは、2つの
0次単プレート水晶波長板の接合面である。
Accordingly, for example, the light incident on the port 1 propagates through the optical fiber 2b and is emitted to the birefringent member 3, and as shown in FIG. It is split into orthogonal ordinary rays and extraordinarily parallel extraordinary rays. Next, in the first phase member 4, the optical axis AOP1 is -22.5 degrees with respect to the Y axis, and the optical axis AOP2 is +22.
Since they are tilted by 5 degrees, the separated ordinary ray and extraordinary ray pass through the first phase member 4, and as shown in FIG. In the same direction. Here, in the drawing, reference numeral 4c is a joining surface of the two zero-order single-plate quartz wave plates.

【0024】次いで、これらの光は、偏波回転子5を通
過することで、図5(d)に示すように、左回りに旋光
され、複屈折部材3の結晶軸と平行な偏光にそろえられ
る。しかる後、これらの光は、複合複屈折部材6に入射
する。このとき、複合複屈折部材6は、結晶軸が複屈折
部材3の結晶軸と直交していることから、図5(e)に
示すように、複屈折部材3から見て異常光線となる偏光
は常光線として通過してゆく。
Next, these lights pass through the polarization rotator 5 and are rotated counterclockwise as shown in FIG. 5D, so that they are polarized to be parallel to the crystal axis of the birefringent member 3. Can be Thereafter, these lights enter the complex birefringent member 6. At this time, since the crystal axis of the composite birefringent member 6 is orthogonal to the crystal axis of the birefringent member 3, as shown in FIG. Passes as an ordinary ray.

【0025】次に、複合複屈折部材6通過した光は、レ
ンズ7で所定角度屈折するが、図5(f)に示すよう
に、偏光状態は変化しない。このときの屈折角は、レン
ズ7の中心軸AcX,AcYから光の中心位置とレンズ7の
焦点距離fにより決まる。次いで、レンズ7を通過した
光は、第2位相部材8に入射する。第2位相部材8は、
光学軸AOPが偏光方向に対して45度に設置されている
ので、図5(g)に示すように、通過する光は右円偏光
となる。
Next, the light that has passed through the complex birefringent member 6 is refracted at a predetermined angle by the lens 7, but the polarization state does not change as shown in FIG. The refraction angle at this time is determined from the central axes AcX and AcY of the lens 7 by the central position of light and the focal length f of the lens 7. Next, the light that has passed through the lens 7 enters the second phase member 8. The second phase member 8
Since the optical axis AOP is set at 45 degrees with respect to the polarization direction, the light passing therethrough becomes right circularly polarized light as shown in FIG.

【0026】そして、右円偏光となった光は、反射体9
で入射角と反対側に反射することで位相が変化し、図6
(a)に示す左円偏光となる。このように、光サーキュ
レータ1においては、反射体9によって光が反射され、
全体の光路長が短縮される。次に、反射された左円偏光
は、再度第2位相部材8を通過することで、図6(b)
に示すように、レンズ7を通過した光(図5(f)参
照)と直交する水平方向の偏光となる。
The right circularly polarized light is reflected by the reflector 9
In FIG. 6, the phase changes due to reflection on the side opposite to the incident angle.
The left circularly polarized light shown in FIG. Thus, in the optical circulator 1, light is reflected by the reflector 9,
The overall optical path length is reduced. Next, the reflected left-handed circularly polarized light passes through the second phase member 8 again, and as shown in FIG.
As shown in FIG. 5, the light is polarized in the horizontal direction orthogonal to the light passing through the lens 7 (see FIG. 5F).

【0027】ついで、水平方向の偏光は、再度レンズ7
を通過することにより、図6(c)に示すように、レン
ズ7の中心軸AcYに関し、図5(f)の場合と対称の位
置に出射される。このとき、レンズ7の通過前後で偏光
状態は変化しない。しかる後、レンズ7を通過した偏光
は、複合複屈折部材6を通過することで、図6(d)に
示すように、異常光線としてビーム位置が水平方向右側
へシフトする。
Next, the polarized light in the horizontal direction is again transmitted to the lens 7.
As shown in FIG. 6 (c), the light is emitted at a position symmetrical to the center axis AcY of the lens 7 as shown in FIG. 5 (f). At this time, the polarization state does not change before and after passing through the lens 7. After that, the polarized light that has passed through the lens 7 passes through the complex birefringent member 6, and the beam position shifts to the right in the horizontal direction as an extraordinary ray, as shown in FIG.

【0028】次に、これらの偏光は、偏波回転子5を通
過後に、図6(e)に示すように、左に45度旋光され
る。この状態は、Y軸方向におけるビーム位置は異なっ
ているが、図5(c)に示したように、複屈折部材3側
から第1位相部材4を通過した後の偏光状態と同じであ
る。ついで、これらの光は、第1位相部材4を通過する
と、図6(f)に示すように、偏光方向がそれぞれ45
度回転し、偏光方向が直交方向となる。
Next, after passing through the polarization rotator 5, these polarized lights are rotated to the left by 45 degrees as shown in FIG. This state is the same as the polarization state after passing through the first phase member 4 from the birefringent member 3 side, as shown in FIG. Then, when these lights pass through the first phase member 4, as shown in FIG.
And the polarization direction becomes the orthogonal direction.

【0029】そして、この後、これらの光は、複屈折部
材3を通過することにより、それぞれ常光線と異常光線
として合波され、図6(g)に示すように、“9d”に
対応するポート2の光ファイバ2bに入射される。ここ
で、図中、“1d”,“4d”,“6d”及び“11
d”の丸印は、それぞれ他のポートに対応する位置を示
している。
After that, these lights pass through the birefringent member 3 to be multiplexed as ordinary rays and extraordinary rays, respectively, and correspond to “9d” as shown in FIG. 6 (g). The light enters the optical fiber 2b of the port 2. Here, in the figure, “1d”, “4d”, “6d”, and “11d”
The circles with d "indicate positions corresponding to the other ports.

【0030】以下、他のポート2,3,4においても、
光は、上記と同様に、複屈折部材3と反射体9との間を
伝搬される。以上のように、光サーキュレータ1は、配
列体2とレンズ7との間に、複屈折部材3、第1位相部
材4、偏波回転子5及び複合複屈折部材6が配置され、
構成部材3〜6のレンズ7に対して反対側に第2位相部
材8と反射体9とが配置された構造を特徴とする。この
ため、光サーキュレータ1は、光ファイバの数、従って
ポート数を多数にしても、光を反射させない構造のもの
に比べて構成部品数を半減させて小型にすることができ
る。また、構成部材3〜6の表面で反射した光は、反射
角の2倍で発散するため、光ファイバ2bに入射し難く
なる。このため、光サーキュレータ1は、リターンロス
対策を施す必要がない。
Hereinafter, also for the other ports 2, 3, and 4,
The light is propagated between the birefringent member 3 and the reflector 9 as described above. As described above, in the optical circulator 1, the birefringent member 3, the first phase member 4, the polarization rotator 5, and the complex birefringent member 6 are arranged between the array 2 and the lens 7,
The second embodiment is characterized in that a second phase member 8 and a reflector 9 are arranged on the opposite side of the lens 7 of the constituent members 3 to 6. For this reason, the optical circulator 1 can be reduced in size by halving the number of components compared to a structure that does not reflect light, even if the number of optical fibers, and thus the number of ports, is large. Further, the light reflected on the surfaces of the constituent members 3 to 6 diverges at twice the reflection angle, so that it is difficult to enter the optical fiber 2b. For this reason, the optical circulator 1 does not need to take measures against return loss.

【0031】[0031]

【発明の効果】請求項1の発明によれば、多ポートにし
ても構成部品数が増えることがなく、従来品に比べても
小型な光サーキュレータを提供することができる。
According to the first aspect of the present invention, even if the number of ports is increased, the number of components does not increase, and an optical circulator smaller than conventional products can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光サーキュレータの構成を示す平面図
である。
FIG. 1 is a plan view showing a configuration of an optical circulator of the present invention.

【図2】図1の光サーキュレータにおいて、複数の光フ
ァイバのポートに沿った断面における入射光の偏光状態
を示す断面図(a)と、反射体から戻ってくる反射光の
偏光状態を示す断面図(b)である。
2A is a cross-sectional view illustrating a polarization state of incident light in a cross section along a port of a plurality of optical fibers, and FIG. 2B is a cross-sectional view illustrating a polarization state of reflected light returning from a reflector. FIG.

【図3】図1の光サーキュレータにおいて、複屈折部材
から反射体までの配置と、光の進行方向をZ軸、Z軸に
直交する面内のそれぞれ水平方向をX軸、鉛直方向をY
軸としたときの光の偏光状態を前半側(a)と後半側
(b)とに2分して示した斜視図である。
FIG. 3 shows the arrangement from the birefringent member to the reflector in the optical circulator of FIG. 1, the direction of light propagation as the Z axis, the horizontal direction in a plane perpendicular to the Z axis as the X axis, and the vertical direction as the Y axis.
FIG. 3 is a perspective view showing a polarization state of light when the axis is divided into a first half (a) and a second half (b).

【図4】図1の光サーキュレータにおいて、複合複屈折
部材を構成する2つの結晶板の光学軸の第1の配置を示
す斜視図(a)と、第2の配置を示す斜視図(b)であ
る。
FIG. 4 is a perspective view showing a first arrangement of optical axes of two crystal plates constituting a complex birefringent member in the optical circulator of FIG. 1, and FIG. 4B is a perspective view showing a second arrangement; It is.

【図5】図1の光サーキュレータにおいて、各構成部材
を通過した後における光の状態の前半側を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a first half of a state of light after passing through each constituent member in the optical circulator of FIG. 1;

【図6】図1の光サーキュレータにおいて、各構成部材
を通過した後における光の状態の後半側を示す説明図で
ある。
FIG. 6 is an explanatory view showing the latter half of the state of light after passing through each component in the optical circulator of FIG. 1;

【符号の説明】[Explanation of symbols]

1 光サーキュレータ 2 配列体 2b 光ファイバ 2c MFD拡大部 3 複屈折部材 4 第1位相部材 5 偏波回転子 6 複合複屈折部材 7 レンズ 8 第2位相部材 9 反射体 AcX,AcY 中心軸(レンズの) AOP 光学軸 AOP1,AOP2 光学軸 P1〜P4 ポート DESCRIPTION OF SYMBOLS 1 Optical circulator 2 Array 2b Optical fiber 2c MFD expansion part 3 Birefringent member 4 First phase member 5 Polarization rotator 6 Composite birefringent member 7 Lens 8 Second phase member 9 Reflector AcX, AcY Central axis (of lens ) AOP optical axis AOP1, AOP2 optical axis P1 ~ P4 port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3本以上の光ファイバが配列
された配列体とレンズとの間に、複屈折部材、第1の位
相部材、偏波回転子、複合複屈折部材が配置され、これ
らの部材の前記レンズに対して反対側に第2の位相部材
と反射体とが配置されていることを特徴とする光サーキ
ュレータ。
1. A birefringent member, a first phase member, a polarization rotator, and a compound birefringent member are arranged between an array in which at least three or more optical fibers are arranged and a lens. An optical circulator, wherein a second phase member and a reflector are arranged on a side of the member opposite to the lens.
JP03315799A 1999-02-10 1999-02-10 Optical circulator Expired - Fee Related JP4070053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03315799A JP4070053B2 (en) 1999-02-10 1999-02-10 Optical circulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03315799A JP4070053B2 (en) 1999-02-10 1999-02-10 Optical circulator

Publications (2)

Publication Number Publication Date
JP2000231080A true JP2000231080A (en) 2000-08-22
JP4070053B2 JP4070053B2 (en) 2008-04-02

Family

ID=12378746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03315799A Expired - Fee Related JP4070053B2 (en) 1999-02-10 1999-02-10 Optical circulator

Country Status (1)

Country Link
JP (1) JP4070053B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102579A1 (en) 2006-03-09 2007-09-13 Namiki Seimitsu Houseki Kabushiki Kaisha Reflection type optical circulator
JP2008065111A (en) * 2006-09-08 2008-03-21 Namiki Precision Jewel Co Ltd Polarization plane rotating miller
US8139911B2 (en) 2007-08-29 2012-03-20 Namiki Seimitsu Houseki Kabushiki Kaisha Light-illuminating probe and fundus observing apparatus, fundus surgery apparatus, endoscope, and catheter using the light-illuminating probe
WO2022021738A1 (en) * 2020-07-29 2022-02-03 武汉光迅科技股份有限公司 Integrated optical circulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102579A1 (en) 2006-03-09 2007-09-13 Namiki Seimitsu Houseki Kabushiki Kaisha Reflection type optical circulator
US7826137B2 (en) 2006-03-09 2010-11-02 Namiki Seimitsu Houseki Kabushiki Kaisha Reflective optical circulator
JP2008065111A (en) * 2006-09-08 2008-03-21 Namiki Precision Jewel Co Ltd Polarization plane rotating miller
US8139911B2 (en) 2007-08-29 2012-03-20 Namiki Seimitsu Houseki Kabushiki Kaisha Light-illuminating probe and fundus observing apparatus, fundus surgery apparatus, endoscope, and catheter using the light-illuminating probe
WO2022021738A1 (en) * 2020-07-29 2022-02-03 武汉光迅科技股份有限公司 Integrated optical circulator

Also Published As

Publication number Publication date
JP4070053B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP2795295B2 (en) Spherical optical isolator
JP2774467B2 (en) Polarization independent optical isolator
US4671613A (en) Optical beam splitter prism
US5040863A (en) Optical isolator
US6249619B1 (en) Optical isolator
US7813040B2 (en) Multi-stage optical isolator
JP3517657B2 (en) Embedded optical non-reciprocal circuit device
JPH04191703A (en) Deflection independency optical part
JP5076099B2 (en) Reflective optical circulator
JP4070053B2 (en) Optical circulator
JP2572627B2 (en) Optical isolator and optical circulator
US6549686B2 (en) Reflective optical circulator
JPH05313094A (en) Optical isolator
JP2001091785A (en) Optical coupling and branching element using optical fiber
JP2008310068A (en) In-line optical isolator
JPS6234104A (en) Polarization beam splitter and its manufacture
JP3077554B2 (en) Optical isolator
US11428914B1 (en) Small, high power optical isolator
JP2006317624A (en) Optical circulator
JPS6130247B2 (en)
JP2004258268A (en) Flush type optical component and its manufacturing method, and optical circuit using flush type optical component
JPH037909A (en) Optical component and its manufacture and device using the same
JPH0627415A (en) 3-port type optical circulator
JPH10186164A (en) Optical branching and coupling device
JP2000221447A (en) Optical non-reciprocal circuit unit and optical isolator and optical circulator using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees