JPH026425Y2 - - Google Patents
Info
- Publication number
- JPH026425Y2 JPH026425Y2 JP7965984U JP7965984U JPH026425Y2 JP H026425 Y2 JPH026425 Y2 JP H026425Y2 JP 7965984 U JP7965984 U JP 7965984U JP 7965984 U JP7965984 U JP 7965984U JP H026425 Y2 JPH026425 Y2 JP H026425Y2
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- optical fiber
- optical fibers
- phase
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013307 optical fiber Substances 0.000 claims description 60
- 239000000835 fiber Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 230000010287 polarization Effects 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は温度補償の施された光フアイバ型位相
変調器に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a temperature-compensated optical fiber phase modulator.
(従来技術とその問題点)
近年、通信の高機能化を目指したコヒーレント
光通信や機器の小型化、高信頼性化を目指した光
フアイバジヤイロなどの研究が進められている
が、これらにはいずれも光の位相制御手段が必要
とされる。(Conventional technology and its problems) In recent years, research has been progressing on coherent optical communication aimed at increasing the functionality of communication, optical fiber gyroscopes aimed at miniaturizing equipment, and increasing reliability. A light phase control means is also required.
また導波型光素子と単一モードフアイバの接続
やコヒーレント光通信では任意の偏光を所望の方
向の直線偏光に変換する偏光補償装置が必要とさ
れるが、この偏光補償装置においても2段の位相
変調器を縦続に接続した方式が特願昭58−116342
に述べられている。 In addition, a polarization compensator that converts arbitrary polarized light into linearly polarized light in a desired direction is required for connecting waveguide optical devices and single mode fibers and for coherent optical communications. A system in which phase modulators are connected in series was proposed in patent application 116342/1986.
It is stated in
上述の用除に用いられる位相変調器としては、
光フアイバに圧力や伸びを印加し、光フアイバ内
の複屈折の大きさや方向を変化させることにより
光フアイバ伝搬光の直交する2つの偏光成分間の
位相差を変える方式が、光をフアイバ外に光を出
す必要がなく損失を生じないため期待されてい
る。 As a phase modulator used for the above purpose,
This method changes the phase difference between two orthogonal polarization components of light propagating through an optical fiber by applying pressure or stretching to the optical fiber and changing the magnitude and direction of birefringence within the fiber. It is expected that there will be no need to emit light and there will be no loss.
上述のような光フアイバに圧力や伸びを印加す
る光フアイバ型位相変調器としては第1図の構成
のものが提案されている。第1図の構成において
は、円筒状圧電素子に偏波保存光フアイバを巻き
付け、円筒状圧電素子に印加する電圧により偏波
保存光フアイバに伸びを生じさせる。このとき生
じた伸びにより偏波保存光フアイバの直交する2
つの光学軸方向の複屈折の大きさが変化すること
により伝搬定数差が変化し直交する2つの偏光成
分間の位相差を変えることができる。偏波保存光
フアイバの場合2つの光学軸間の伝搬定数差はも
ともと大きく作られているため伸びを印加したと
きに生ずる伝搬定数差の変化分も大きいという特
徴がある。しかしながらもともとの伝搬定数差が
大きいため伝搬定数差の温度依存性も大きく、わ
ずかな温度変化により伝搬定数差が大きく変わつ
てしまうという欠点がある。このため円筒状圧電
素子に同じ電圧を印加しても、直交する2つの偏
光成分間の位相差の変化分は温度により大きく異
なつてしまう。このような欠点は光フアイバに板
状圧電素子などで圧力を印加する型の位相変調器
でも同様である。これは前述のような2段の位相
変調器を縦続に接続する方式の偏光補償装置にお
いては大きな問題であり、ある時点で2つの位相
変調器に適当な電圧を印加して偏光補償を行なつ
ても、それから温度が変化すると印加すべき電圧
値が変化し、最悪の場合には偏光補償装置出射光
の偏光状態を監視して位相変調器への印加電圧を
制御しようとしても制御しきれない場合が生ず
る。 As an optical fiber type phase modulator that applies pressure or stretch to an optical fiber as described above, one having the configuration shown in FIG. 1 has been proposed. In the configuration shown in FIG. 1, a polarization-maintaining optical fiber is wound around a cylindrical piezoelectric element, and a voltage applied to the cylindrical piezoelectric element causes the polarization-maintaining optical fiber to stretch. Due to the elongation that occurred at this time, the two orthogonal directions of the polarization-maintaining optical fiber
By changing the magnitude of birefringence in the directions of the two optical axes, the propagation constant difference changes and the phase difference between two orthogonal polarization components can be changed. In the case of a polarization-maintaining optical fiber, since the difference in propagation constant between the two optical axes is originally made large, the change in the difference in propagation constant that occurs when elongation is applied is also large. However, since the original difference in propagation constants is large, the temperature dependence of the difference in propagation constants is also large, and there is a drawback that the difference in propagation constants changes greatly due to a slight change in temperature. Therefore, even if the same voltage is applied to the cylindrical piezoelectric element, the amount of change in the phase difference between the two orthogonal polarization components will vary greatly depending on the temperature. These drawbacks also apply to phase modulators that apply pressure to an optical fiber using a plate-shaped piezoelectric element or the like. This is a big problem in the polarization compensation device that connects two phase modulators in cascade as described above, and at some point an appropriate voltage is applied to the two phase modulators to perform polarization compensation. However, if the temperature changes, the voltage value to be applied will change, and in the worst case, even if you try to control the voltage applied to the phase modulator by monitoring the polarization state of the output light from the polarization compensator, it will not be possible to control the voltage applied to the phase modulator. A situation arises.
(考案の目的)
本考案の目的は上述のような欠点を除去せしめ
て温度補償の施された光フアイバ型位相変調器を
提供することにある。(Objective of the invention) An object of the invention is to eliminate the above-mentioned drawbacks and provide a temperature-compensated optical fiber phase modulator.
(考案の構成)
本考案は、光透過方向と直交する方向に屈折率
の異方性を有する複数本の光フアイバと、この光
フアイバに伸びまたは圧力を印加する手段を備
え、複数本の光フアイバは、屈折率の異方性の主
軸を一定方向に向けたものと、この一定方向に対
して90度傾けたものとを含むようにして光透過方
向に直列接続され、かつ、前記主軸が一定の方向
に向いている各光フアイバの長さの和と主軸が前
記一定方向に対して90度傾いている各光フアイバ
の長さの和が等しくなるよう構成されている。(Structure of the invention) The present invention comprises a plurality of optical fibers having refractive index anisotropy in a direction perpendicular to the light transmission direction, and a means for stretching or applying pressure to the optical fibers, and a plurality of optical fibers are provided. The fibers are connected in series in the light transmission direction so that the main axis of the refractive index anisotropy is oriented in a certain direction and the fiber is inclined at 90 degrees with respect to this certain direction, and the main axis is in a certain direction. The configuration is such that the sum of the lengths of the optical fibers facing in this direction is equal to the sum of the lengths of the optical fibers whose principal axes are inclined at 90 degrees with respect to the certain direction.
(本考案の作用・原理)
上述の構成のように位相変調器を構成する光フ
アイバを屈折率の異方性の主軸が互いに90゜傾け
られて接続された偶数本の光フアイバとすると、
互いに直交する2つの偏光成分間の伝搬定数差の
温度変動による変化は偶数本の光フアイバ中で
正、負、正、負、……と偶数回繰り返すことにな
り、かつ各々の光フアイバは長さを等しくしてあ
るのでその絶対値は等しい。したがつて隣り合う
2本の光フアイバで温度変動による伝搬定数差の
変化は打ち消しあうことになる。位相変調器は偶
数本の光フアイバより構成されているので、位相
変調器全体としての温度変動による伝搬定数差の
変化は零となり、温度補償が施されたことにな
る。(Operation and principle of the present invention) Assuming that the optical fibers constituting the phase modulator as described above are an even number of optical fibers connected with their principal axes of refractive index anisotropy inclined at 90 degrees to each other,
The change in the propagation constant difference between two mutually orthogonal polarization components due to temperature fluctuation repeats positive, negative, positive, negative, etc. an even number of times in an even number of optical fibers, and each optical fiber is long. Since the magnitudes are made equal, their absolute values are equal. Therefore, changes in the propagation constant difference due to temperature fluctuations in two adjacent optical fibers cancel each other out. Since the phase modulator is composed of an even number of optical fibers, the change in the propagation constant difference due to temperature fluctuation in the phase modulator as a whole becomes zero, which means that temperature compensation has been performed.
以上の説明では理解しやすくするため、長さの
同じ光フアイバが偶数本ある場合を例にとつて説
明したが、光フアイバが奇数本の場合、又、長さ
が全て同じでない場合でも成り立つ。すなわち、
温度変動による伝搬定数差の正、負の変化量が同
じになるように光フアイバの本数、長さが定めら
れていればよいのである。 In the above explanation, in order to make it easier to understand, the case where there are an even number of optical fibers with the same length has been explained as an example, but it also applies when there is an odd number of optical fibers, or when the lengths are not all the same. That is,
The number and length of the optical fibers need only be determined so that the positive and negative changes in the propagation constant difference due to temperature fluctuations are the same.
(実施例) 以下図面を参照して本考案を詳細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.
第2図は本考案による光フアイバ型位相変調器
の一実施例を示す。第2図において楕円クラツド
型偏波保存光フアイバ21および22が圧電素子
23にはさみつけられており、偏波保存光フアイ
バ21と22は点24においてその複屈折軸がが
互いに90゜の角度をなすように、すなわち偏波保
存光フアイバ21と22とで楕円クラツドの長軸
の方向が互いに90゜の角度をなすように接続され
ている。そして接続点24はこの位相変調器の構
成要素である偏波保存光フアイバの長さの2等分
点である。なお第2図においては説明の都合上2
本の偏波保存光フアイバ21と22は離れている
ように書かれているが、実際には両者は密着して
接続されている。以上により本考案による光フア
イバ型位相変調器が構成される。 FIG. 2 shows an embodiment of the optical fiber phase modulator according to the present invention. In FIG. 2, elliptically clad polarization-maintaining optical fibers 21 and 22 are sandwiched between a piezoelectric element 23, and the birefringence axes of the polarization-maintaining optical fibers 21 and 22 make an angle of 90° to each other at a point 24. In other words, the polarization-maintaining optical fibers 21 and 22 are connected such that the long axes of the elliptical clads form an angle of 90° with each other. The connection point 24 is a bisecting point of the length of the polarization maintaining optical fiber which is a component of this phase modulator. In addition, in Figure 2, 2 is used for convenience of explanation.
Although the polarization-maintaining optical fibers 21 and 22 are written as being separated in the book, they are actually closely connected. As described above, the optical fiber type phase modulator according to the present invention is constructed.
偏波保存光フアイバ21の伝搬光は圧電素子2
3により圧力が印加され、この圧力により直交す
る2つの偏光成分間の伝搬定数差が変化し、前記
2つの偏光成分間の位相差が圧電素子に電圧を印
加しない時に対して変化する。今第2図において
圧力はy方向に印加されているので圧力の印加方
向すなわちy方向の偏光成分がそれに直交するx
方向の偏光成分より位相の進み方が大きいとす
る。この時接続点24において複屈折軸が90゜傾
けられて2本の偏波保存光フアイバ21と22が
接続されていても、偏波保存光フアイバ22にお
いてもやはり圧力は同方向のy方向に印加されて
いるので偏波保存光フアイバ22の伝搬光もy方
向の偏光成分の位相の進み方が大きいことにな
る。これに対して温度変動により接続点24まで
に偏波保存光フアイバ21中で生ずる位相差の変
化分をΔβとすると、接続点24から後の偏波保
存光フアイバ22中で生ずる位相差の温度変化分
もやはりΔβと等しくなる。これは接続点24が
この位相変調器を構成している偏波保存光フアイ
バの長さの2等分点であるためである。しかしな
がら、接続点24において偏波保存光フアイバ2
1と22は複屈折軸が互いに90゜傾けられて接続
されているため、偏波保存光フアイバ21と22
での位相差の温度変化分の大きさは等しくてもそ
の符号が異なる。すなわちx方向偏光成分のy方
向偏光成分に対する位相の進みの温度変動分が偏
波保存光フアイバ21中でΔφとすると偏波保存
光フアイバ22では−Δφとなり位相変調器全体
としての温度変動による伝搬定数差の変化分は零
となる。 The light propagating through the polarization maintaining optical fiber 21 is transmitted through the piezoelectric element 2.
3, pressure is applied, and this pressure changes the propagation constant difference between the two orthogonal polarization components, and the phase difference between the two polarization components changes with respect to when no voltage is applied to the piezoelectric element. In Fig. 2, the pressure is applied in the y direction, so the direction of pressure application, that is, the polarization component in the y direction is perpendicular to x.
It is assumed that the phase advance is larger than the polarization component in the direction. At this time, even if the two polarization-maintaining optical fibers 21 and 22 are connected with the birefringence axis tilted by 90 degrees at the connection point 24, the pressure in the polarization-maintaining optical fiber 22 is still in the same direction, y-direction. Since this is applied, the phase of the polarized light component in the y direction of the light propagating through the polarization maintaining optical fiber 22 also advances greatly. On the other hand, if the change in the phase difference that occurs in the polarization-maintaining optical fiber 21 up to the connection point 24 due to temperature fluctuation is Δβ, then the temperature of the phase difference that occurs in the polarization-maintaining optical fiber 22 after the connection point 24 The amount of change is also equal to Δβ. This is because the connection point 24 is a point that bisects the length of the polarization-maintaining optical fiber constituting this phase modulator. However, at the connection point 24, the polarization maintaining optical fiber 2
1 and 22 are connected with their birefringence axes tilted at 90 degrees to each other, so polarization maintaining optical fibers 21 and 22
Although the magnitude of the temperature change in the phase difference at is the same, the signs are different. In other words, if the temperature variation in the phase advance of the x-direction polarized light component with respect to the y-direction polarization component is Δφ in the polarization-maintaining optical fiber 21, it becomes -Δφ in the polarization-maintaining optical fiber 22, and propagation due to temperature fluctuations in the entire phase modulator. The amount of change in the constant difference becomes zero.
(考案の効果)
以上が本光フアイバ型位相変調器の動作原理で
あり、このように位相変調器を構成する偏波保存
光フアイバの全長の半分の長さ分だけ、偏波保存
光フアイバの複屈折軸を90゜傾けて接続すること
により、位相変調の効果の大きさを損なうことな
く、不用な温度変動による伝搬定数差の変化を除
去でき、温度補償の施された光フアイバ型位相変
調器を簡単に得ることができる。(Effect of the invention) The above is the operating principle of this optical fiber type phase modulator. In this way, the polarization maintaining optical fiber is By connecting the birefringent axis at an angle of 90 degrees, changes in the propagation constant difference due to unnecessary temperature fluctuations can be removed without impairing the magnitude of the phase modulation effect, making it possible to eliminate changes in the propagation constant difference due to unnecessary temperature fluctuations. Optical fiber phase modulation with temperature compensation. equipment can be obtained easily.
本考案は上記の実施例に限定されるものではな
い。例えば他の例としては、2本の長さの等しい
偏波保存光フアイバを複屈折軸を90゜傾けて接続
し、そのうちの1本のみを円筒状圧電素子に巻き
付けた構成の光フアイバ型位相変調器や、単一モ
ードフアイバに圧電素子で圧力を印加し、単一モ
ードフアイバの長さの2等分点で複屈折軸を90゜
傾けて接続した構成、あるいは、偏波保存光フア
イバの本数をふやし、例えば、長さがl、2l、
3l、l、3lの各光フアイバを温度変動による伝搬
定数の変化が正、負、負、正、正となるように接
続した構成等でも上記実施例と同じように伝搬定
数の変化は零とすることができる。 The present invention is not limited to the above embodiments. For example, another example is an optical fiber type phase shifter in which two polarization-maintaining optical fibers of equal length are connected with their birefringent axes tilted at 90 degrees, and only one of them is wound around a cylindrical piezoelectric element. A configuration in which pressure is applied to a modulator or a single mode fiber using a piezoelectric element, and the birefringence axis is tilted at 90 degrees at the point bisecting the length of the single mode fiber, or a polarization maintaining optical fiber is used. Increase the number of pieces, for example, the length is l, 2l,
Even in a configuration in which the optical fibers 3l, 1, and 3l are connected so that the change in the propagation constant due to temperature fluctuation is positive, negative, negative, positive, or positive, the change in the propagation constant is zero as in the above example. can do.
第1図は円筒状圧電素子に1本の偏波保存光フ
アイバを巻きつけた光フアイバ型位相変調器の公
知例を示す図、第2図は本考案による温度補償を
施した光フアイバ型位相変調器の詳細を示す図で
ある。
11,21,22:偏波保存光フアイバ、1
2:円筒状圧電素子、23:板状圧電素子。
Figure 1 shows a known example of an optical fiber type phase modulator in which a single polarization maintaining optical fiber is wound around a cylindrical piezoelectric element, and Figure 2 shows an optical fiber type phase modulator with temperature compensation according to the present invention. FIG. 3 is a diagram showing details of a modulator. 11, 21, 22: polarization maintaining optical fiber, 1
2: Cylindrical piezoelectric element, 23: Plate piezoelectric element.
Claims (1)
有する複数本の光フアイバと該光フアイバに伸び
または圧力を印加する手段とを備え、前記複数本
の光フアイバは屈折率の異方性の主軸を一定方向
に向けたものとこの一定方向に対して90゜傾けた
ものを含むようにして光透過方向に直列接続され
かつ、屈折率の異方性の主軸が一定の方向に向い
ている各光フアイバの長さの和と屈折率の異方性
の主軸が前記一定方向に対して90゜傾いている各
光フアイバの長さの和が等しくなるようになつて
いることを特徴とする光フアイバ型位相変調器。 The plurality of optical fibers have an anisotropy of refractive index in a direction perpendicular to the light transmission direction, and a means for stretching or applying pressure to the optical fibers, the plurality of optical fibers having anisotropy of refractive index are connected in series in the light transmission direction, including those whose principal axes are oriented in a certain direction and those whose principal axes are oriented at 90 degrees with respect to this certain direction, and whose principal axes of refractive index anisotropy are oriented in a certain direction. A light characterized in that the sum of the lengths of the optical fibers is equal to the sum of the lengths of each optical fiber whose principal axis of refractive index anisotropy is inclined at 90 degrees with respect to the certain direction. Fiber phase modulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7965984U JPS60191028U (en) | 1984-05-30 | 1984-05-30 | Fiber optic phase modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7965984U JPS60191028U (en) | 1984-05-30 | 1984-05-30 | Fiber optic phase modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60191028U JPS60191028U (en) | 1985-12-18 |
JPH026425Y2 true JPH026425Y2 (en) | 1990-02-16 |
Family
ID=30624780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7965984U Granted JPS60191028U (en) | 1984-05-30 | 1984-05-30 | Fiber optic phase modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60191028U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016142744A (en) * | 2015-01-29 | 2016-08-08 | 株式会社東芝 | Temperature compensation element and optical sensor system |
-
1984
- 1984-05-30 JP JP7965984U patent/JPS60191028U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60191028U (en) | 1985-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3645603A (en) | Light modulation in optic fiber | |
US4606605A (en) | Optical fiber having in-line polarization filter | |
US4772084A (en) | Optical power splitter and polarization splitter | |
US6867918B2 (en) | Methods and apparatus for generation and control of coherent polarization mode dispersion | |
US5600738A (en) | Polarization dispersion compensation for optical devices | |
US5838842A (en) | Self-imaging waveguide optical polarization or wavelength splitters | |
US6233375B1 (en) | Integrated optics component with polarization effect | |
US5852691A (en) | Self-imaging waveguide optical polarization or wavelength splitters | |
US4666255A (en) | Method and apparatus for acousto-optically shifting the frequency of a light signal propagating in a single-mode fiber | |
US6891674B2 (en) | Methods and apparatus for frequency shifting polarization mode dispersion spectra | |
US5317384A (en) | Polarisation state insensitive optical discriminator | |
CN100388058C (en) | Polarization transformer and polarization mode dispersion compensator | |
JPH026425Y2 (en) | ||
EP0843198B1 (en) | Wavelength conversion device employing Bessel beams with parallel polarization | |
US6778715B2 (en) | Optical fiber-based device with tunable birefringence | |
CA2293029C (en) | Method and device for controlling the polarization of a beam of light | |
JPH0452443B2 (en) | ||
JPH0119126Y2 (en) | ||
Aichun et al. | Design of a 1× 2 novel optical switch based on polarization converters and splitters | |
JP2636392B2 (en) | Optical phase modulator | |
Tsukada et al. | Polarization-insensitive integrated-optical switches: A new approach | |
JPH07159632A (en) | Depolarizer | |
JPS61212826A (en) | Polarization compensating element | |
JPS60113214A (en) | Fiber type optical switch | |
Ford et al. | Birefringent-fiber wavelength filters |