JPS61210241A - Fuel feed control device for engine - Google Patents

Fuel feed control device for engine

Info

Publication number
JPS61210241A
JPS61210241A JP5123485A JP5123485A JPS61210241A JP S61210241 A JPS61210241 A JP S61210241A JP 5123485 A JP5123485 A JP 5123485A JP 5123485 A JP5123485 A JP 5123485A JP S61210241 A JPS61210241 A JP S61210241A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
engine
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123485A
Other languages
Japanese (ja)
Inventor
Ryoichi Matsumura
良一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5123485A priority Critical patent/JPS61210241A/en
Publication of JPS61210241A publication Critical patent/JPS61210241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of knocking and worsening of fuel consumption through proper correction of unevenness in characteristics of various parts, by a method wherein a fuel injection amount is corrected based on the value of a learning correction factor which learns a feedback correction factor even in an opening control region. CONSTITUTION:A device is provided with an oxygen sensor (a), detecting oxygen concentration in exhaust gas, and an engine operating condition detecting means (b). Further, the device comprises a means (c) which computes a factor, by means of which an air-fuel ratio is corrected to a given air-fuel ratio, based on an output from the oxygen sensor (a) and learns the factor as a factor, responding to a current operating condition, and stores it, and a means (d) which reads out the learning memory value of an air-fuel ratio correction factor from the means (c) to compute an open correction factor. Moreover, it includes a means (e) which alternatively selects the means (c) and (d) according to an operating condition, and controls a fuel feed amount based on the selected correction factor so that an air-fuel ratio is adjusted to a desired value, and a means (f) which feeds fuel to an engine based on an output from the means (e).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車等のエンジシの排気ガス成分により空燃
比を検出して、吸入混合気の空燃比が目標空燃比となる
ように燃料供給量を制御する装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention detects the air-fuel ratio based on the exhaust gas components of an engine such as an automobile, and adjusts the amount of fuel supplied so that the air-fuel ratio of the intake air-fuel mixture becomes the target air-fuel ratio. The present invention relates to a device for controlling.

(従来の技術) 近時、エンジンにより高い燃料経済性、運転性が要求さ
れる傾向にあり、かかる観点からマイクロコンピュータ
、等を応用して燃料供給量をより精密に制御することが
行われる。
(Prior Art) Recently, there has been a trend that higher fuel economy and drivability are required of engines, and from this point of view, microcomputers and the like are being applied to more precisely control the amount of fuel supplied.

従来のこの種のエンジンの燃料供給制御装置としては、
例えば特開昭58−25540号公報に記載されたもの
がある。この装置では酸素センサの出力に基づいて空燃
比を理論空燃比にフィードバック制御するとともに、エ
ンジン回転数と負荷によって区分される運転領域毎にフ
ィードバック制御量を学習値として記憶している。そし
て、次回に同一運転領域に至ったときにはその学習値を
適切に補正してフィードバンク制御量と共に使用するこ
とにより、応答性に時間遅れの伴う酸素センサの出力の
みによる制御に比して応答性を高め、特に過渡運転時に
おける制御精度を向上させている。
Conventional fuel supply control devices for this type of engine include:
For example, there is one described in Japanese Unexamined Patent Publication No. 58-25540. In this device, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio based on the output of the oxygen sensor, and the feedback control amount is stored as a learned value for each operating region divided by engine speed and load. The next time the same operating range is reached, the learned value is appropriately corrected and used together with the feedbank control amount, resulting in better responsiveness than control based only on the output of the oxygen sensor, which has a time delay. This improves control accuracy, especially during transient operation.

この装置のハード的構成は後述の実施例と同様であるた
め省略し、上述した制御を実現するためのプログラムを
第4図に示す。第4図中P1〜PL2はプログラムの各
ステップを示し、本プログラムは所定時間毎に一度実行
される。
The hardware configuration of this device is the same as that of the embodiment described later, so it will be omitted, and a program for realizing the above-mentioned control is shown in FIG. In FIG. 4, P1 to PL2 indicate each step of the program, and this program is executed once every predetermined time.

まず、P□で吸入空気量Qaと回転数Nを読み込み、P
2で次式■に従って基本噴射量Tpを演算する。
First, read the intake air amount Qa and rotation speed N with P□, and
2, the basic injection amount Tp is calculated according to the following equation (2).

Tp−K ・ (Qa/N)    −−−−−−■但
し、K:定数 この基本噴射量’rpはエンジン1回転当りの吸入空気
量Qaに対応する噴射量を示しており、エンジン負荷に
対応している。
Tp-K ・ (Qa/N) -------■ However, K: Constant This basic injection amount 'rp indicates the injection amount corresponding to the intake air amount Qa per engine revolution, and depends on the engine load. Compatible.

次いで、P3で回転数Nとエンジン負荷Tpをパラメー
タとして、フィードバック制御領域であるか否かを判別
する。フィードバック制御領域であるときはフィードバ
ックフローFBFに移行し、該領域でないときはオープ
ンフローOFに移行する。
Next, in P3, it is determined whether or not the engine is in the feedback control region using the rotational speed N and the engine load Tp as parameters. When the flow is in the feedback control region, the flow shifts to the feedback flow FBF, and when it is not within the feedback control region, the flow shifts to the open flow OF.

フィードバックフローFBFでは、P4でそのときの運
転領域に対応する学習補正係数βを第5図に示すように
NとTpをパラメータとするテーブルマツプからルック
アップする。βはフィードバック補正係数αの値をその
ときの運転領域に対応するものとして学習し記憶したも
のであり、該運転領域における酸素センサ出力を予め予
想し得る値として捉えることができる。次いで、P。
In the feedback flow FBF, at P4, the learning correction coefficient β corresponding to the current operating region is looked up from a table map with N and Tp as parameters, as shown in FIG. β is the value of the feedback correction coefficient α that is learned and stored as a value corresponding to the current operating range, and can be taken as a value that can be predicted in advance for the oxygen sensor output in the operating range. Next, P.

で酸素センサの出力に基づいて空燃比を目標空燃比に補
正するフィードバック補正係数αを演算し、P6で次式
〇に従って補正噴射量Tiを演算する。
In step P6, a feedback correction coefficient α for correcting the air-fuel ratio to the target air-fuel ratio is calculated based on the output of the oxygen sensor, and in step P6, a corrected injection amount Ti is calculated according to the following equation.

T t =  (K ・ (Qa/N))X  (1+
α)× (1+β>       −−−−−−■そし
て、P7で学習補正係数βを次式■に従って修正し今回
の更新値β′として該当する領域に記憶する。
T t = (K ・ (Qa/N))X (1+
α)×(1+β> −−−−−−■ Then, in P7, the learning correction coefficient β is corrected according to the following formula (■) and stored in the corresponding area as the current updated value β'.

β’ = (1−x)xβ+x×α −−−−−−■但
し、X:更新スピードを決める定数 このβ′は最新のフィードバック補正係数αにより旧記
憶値βをいわゆる重み付は平均して修正されることとな
り、装置の経時変化を吸収した最適値として記憶される
。したがつて、■式により演算された補正噴射量Tiは
酸素センサ出力が変動しているときや過渡運転時のよう
に該出力の応答性があまり期待できないとき等のような
場合であっても、目標空燃比に正確に一致するように補
正したものとなる。
β' = (1-x)xβ+x×α −−−−−−■ However, The value will be corrected and stored as the optimum value that has absorbed the change over time of the device. Therefore, the corrected injection amount Ti calculated by formula , which has been corrected to accurately match the target air-fuel ratio.

フィードバックフローFBFを経ると、次いで、P、で
次式■に従って最終噴射量Teを演算し、P、てこのT
eに対応する開弁パルス幅を有する噴射信号Siを出力
する。
After passing through the feedback flow FBF, P calculates the final injection amount Te according to the following formula (■), and P and the lever T
An injection signal Si having a valve opening pulse width corresponding to e is output.

Ta−TiX(1+δ)−・−■ Φ式中δは出力空燃比に補正する出力補正係数であり、
第5図に示すテーブルマツプに最適値が予め記憶されて
いる。そして、出力運転域でなければδ−〇に、出力運
転域であればその程度に応じた値(δ>O)が設定され
る。
Ta-TiX(1+δ)−・−■ ΦIn the formula, δ is the output correction coefficient that corrects the output air-fuel ratio,
Optimum values are stored in advance in the table map shown in FIG. Then, if it is not in the output operating range, δ-0 is set, and if it is in the output operating range, a value corresponding to the degree (δ>O) is set.

一方、上記ステップP3からNo命令に従ってオープン
フロー〇Fに移行したときは、PK、でβ−0,Puで
α−Oにセットし、P7でこのときの補正噴射量Tiを
Ti=TpとおいてP8に進む。すなわち、このときは
Tiの演算結果はα−0、β−0の条件から前記■式に
よる演算結果より必然的にTiwTpとなる。次いで、
P8で前記0式に従って最終の噴射量Teを算出する。
On the other hand, when transitioning from step P3 to open flow ○F according to the No command, PK is set to β-0, Pu is set to α-O, and in P7, the corrected injection amount Ti at this time is set as Ti=Tp. Proceed to P8. That is, in this case, the calculation result of Ti is inevitably TiwTp from the calculation result of the above-mentioned formula (2) from the conditions of α-0 and β-0. Then,
In P8, the final injection amount Te is calculated according to the above formula 0.

オープン制御のときは出力運転域であることが多く、0
式の演算により空燃比が過濃側に制御されて運転性が高
められる。
During open control, it is often in the output operation range, and 0
By calculating the formula, the air-fuel ratio is controlled to the rich side, improving drivability.

(発明が解決しようとする問題点) しかしなから、このような従来のエンジンの燃料供給制
御装置にあっては、フィードバック制御領域のみ学習補
正係数βにより補正噴射量Tiが補正される構成となっ
ていたため、装置の経時変化等によりエアフローメータ
やインジェクタなどのパーツの特性がばらついた場合で
あっても、フィードバック制御領域ではこれらのばらつ
きに応じてβによりTiが適切に補正され目標空燃比に
制御することができる。
(Problem to be Solved by the Invention) However, in such a conventional engine fuel supply control device, the corrected injection amount Ti is corrected by the learning correction coefficient β only in the feedback control region. Therefore, even if the characteristics of parts such as the air flow meter or injector vary due to changes in the equipment over time, Ti is appropriately corrected by β in the feedback control region according to these variations, and the air-fuel ratio is controlled to the target air-fuel ratio. can do.

一方、オープン制御領域ではβによる補正が行われず上
記パーツの特性がばらつくと、空燃比が目標とする値か
らはずれて運転性が悪化してしまう。例えば、空燃比が
リーン側に制御されるとノッキングを誘発し、リンチ側
に制御されると燃費の悪化を招く。
On the other hand, in the open control region, if the characteristics of the parts described above are not corrected by β and the characteristics of the parts vary, the air-fuel ratio deviates from the target value and drivability deteriorates. For example, when the air-fuel ratio is controlled to the lean side, knocking is induced, and when the air-fuel ratio is controlled to the lean side, fuel efficiency deteriorates.

(発明の目的) そこで本発明は、オープン制御領域においてもフィード
バック補正係数を学習した学習補正係数の値に基づいて
燃料噴射量を補正することにより、制御態様の如何に拘
らず装置の経時変化による各種パーツの特性のばらつき
を適切に補正して、ノンキングの発生や燃費の悪化を抑
制しエンジンの運転性を向上させることを目的としてい
る。
(Purpose of the Invention) Therefore, the present invention corrects the fuel injection amount based on the value of the learning correction coefficient obtained by learning the feedback correction coefficient even in the open control region, so that regardless of the control mode, the fuel injection amount is The purpose of this system is to appropriately compensate for variations in the characteristics of various parts, suppress the occurrence of non-king and deterioration of fuel efficiency, and improve engine drivability.

(発明の構成) 本発明によるエンジンの燃料供給制御装置はその基本概
念図を第1図に示すように、排気中の酸素濃度を検出す
る酸素センサaと、エンジンの運転状態を検出する運転
状態検出手段すと、酸素センサaの出力に基づいて空燃
比を所定空燃比に補正する空燃比補正係数を演算すると
ともに、この空燃比補正係数をそのときの運転状態に対
応するものとして学習し記憶する第1係数演算手段Cと
、第1係数演算手段Cから空燃比補正係数の学習記憶値
を読み出して空燃比を目標空燃比に補正するオープン補
正係数を演算する第2係数演算手段dと、運転状態に応
じて第1係数演算手段Cあるいは第2係数演算手段dを
択一的に選択し、その選択した補正係数に基づいて空燃
比が目標空燃比となるように燃料供給量を制御する供給
量制御手段eと、供給量制御手段eの出力に基づいてエ
ンジンに燃料を供給する燃料供給手段fと、を備えてお
り、制御態様の如何に拘らず装置の各種パーツの特性の
ばらつきを適切に補正するものである。
(Structure of the Invention) The engine fuel supply control device according to the present invention, as shown in FIG. The detection means calculates an air-fuel ratio correction coefficient for correcting the air-fuel ratio to a predetermined air-fuel ratio based on the output of the oxygen sensor a, and learns and stores this air-fuel ratio correction coefficient as corresponding to the operating state at that time. a first coefficient calculation means C for calculating the air-fuel ratio, and a second coefficient calculation means d for calculating an open correction coefficient for correcting the air-fuel ratio to the target air-fuel ratio by reading out the learning memory value of the air-fuel ratio correction coefficient from the first coefficient calculation means C; The first coefficient calculating means C or the second coefficient calculating means d is selectively selected depending on the operating state, and the fuel supply amount is controlled based on the selected correction coefficient so that the air-fuel ratio becomes the target air-fuel ratio. It is equipped with a supply amount control means e and a fuel supply means f that supplies fuel to the engine based on the output of the supply amount control means e, and regardless of the control mode, variations in characteristics of various parts of the device can be prevented. This is an appropriate correction.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2.3図は本発明の一実施例を示す図である。FIG. 2.3 is a diagram showing an embodiment of the present invention.

まず、構成を説明する。第2図において、1はエンジン
であり、吸入空気はエアクリーナ2より吸気管3を通し
て各気筒に供給され、燃料は噴射信号Siに基づきイン
ジェクタ(燃料供給手段) 4により噴射される。各気
筒には点火プラグ5が装着されており、点火プラグ5に
は所定の点火タイミングで高圧パルスが供給される。気
筒内の混合気は高圧パルスの放電によって着火、爆発し
、排気となって排気管6を通して排出される。
First, the configuration will be explained. In FIG. 2, reference numeral 1 denotes an engine, in which intake air is supplied from an air cleaner 2 to each cylinder through an intake pipe 3, and fuel is injected by an injector (fuel supply means) 4 based on an injection signal Si. A spark plug 5 is attached to each cylinder, and a high-pressure pulse is supplied to the spark plug 5 at a predetermined ignition timing. The air-fuel mixture in the cylinder is ignited and exploded by the high-pressure pulse discharge, and is discharged through the exhaust pipe 6 as exhaust gas.

吸入空気の流量Qaはエアフローメータ7により検出さ
れ、吸気管3内の絞弁8によって制御される。エンジン
1の回転数Nはクランク角センサ9により検出され、排
気中の酸素濃度は酸素センサ10により検出される。酸
素センサ10は理論空燃比を境に出力電圧Vsが急変す
る特性を有する。
The intake air flow rate Qa is detected by an air flow meter 7 and controlled by a throttle valve 8 in the intake pipe 3. The rotation speed N of the engine 1 is detected by a crank angle sensor 9, and the oxygen concentration in exhaust gas is detected by an oxygen sensor 10. The oxygen sensor 10 has a characteristic that the output voltage Vs suddenly changes after reaching the stoichiometric air-fuel ratio.

上記エアフローメータ7およびクランク角センサ9は運
転状態検出手段11を構成しており、運転状態検出手段
11および酸素センサ1oからの信号はコントロールユ
ニット12に入力される。コントロールユニット12は
上記センサ情報に基づいて燃料供給制御を行う。
The air flow meter 7 and the crank angle sensor 9 constitute an operating state detecting means 11, and signals from the operating state detecting means 11 and the oxygen sensor 1o are input to the control unit 12. The control unit 12 performs fuel supply control based on the sensor information.

コントロールユニット12は第1係数演算手段、第2係
数演算手段および供給量制御手段としての機能を有して
おり、CPU21、ROM22、RAM23およびI1
0ボートUにより構成される。CPU21はROM22
に書き込まれているプログラムに従ってI10ボート2
4より必要とする外部データを取り込んだり、またRA
M23との間でデータの授受を行ったりしなから燃料供
給制御に必要な処理値を演算処理し必要に応じて処理し
たデータを110ポートスへ出力する。■10ポートあ
には前記各センサ1O111からの信号が入力されると
ともに、I10ボート24からは噴射信号Stが出方さ
れる。ROM22はCPU21における演算プログラム
を格納しており、RAM23は演算に使用するデータを
マツプ等の形で記憶している。
The control unit 12 has functions as a first coefficient calculation means, a second coefficient calculation means, and a supply amount control means, and includes a CPU 21, a ROM 22, a RAM 23, and an I1
Consists of 0 votes U. CPU21 is ROM22
I10 boat 2 according to the program written in
You can import the external data you need from 4, and also use RA.
It does not exchange data with the M23, but calculates the processing values necessary for fuel supply control, and outputs the processed data to the 110 port as necessary. (2) Signals from the respective sensors 1O111 are input to the 10 port A, and an injection signal St is output from the I10 boat 24. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.

次に作用を説明する。Next, the effect will be explained.

第3図はROM22に書き込まれている燃料供給制御の
プログラムを示すフローチャートである。
FIG. 3 is a flowchart showing a fuel supply control program written in the ROM 22.

本プログラムの説明にあたり従来例として示した第4図
と同一処理を行うステップには同一番号を付してその説
明を省略し、異なる処理を行うステップには20番台の
番号を付して処理内容を説明する。
In explaining this program, steps that perform the same processing as in Figure 4 shown as a conventional example are given the same numbers and their explanations are omitted, and steps that perform different processing are given numbers in the 20s and the processing details. Explain.

第3図において、フィードバックフローFBFにおける
最後のステップP21でオープン補正係数γを次式■に
従って演算し、P8に進む。
In FIG. 3, in the last step P21 in the feedback flow FBF, the open correction coefficient γ is calculated according to the following equation (2), and the process proceeds to P8.

γ=Σβi+n     −−−−−一■wl オープン補正係数γはn個に区分された各運転領域にお
ける学習補正係数βを全運転領域に亘って平均化した値
であり、装置の経時変化等により各種パーツの特性のば
らつきを補正するデータとして捉えられる。そして、こ
のγの値はフィードバックフローFBFの実行毎に常に
最新のデータに修正され、所定のアドレスに記憶される
γ=Σβi+n −−−−−−1■wl The open correction coefficient γ is the value obtained by averaging the learning correction coefficient β in each operation area divided into n over all operation areas. It can be viewed as data that corrects variations in the characteristics of various parts. The value of γ is always corrected to the latest data each time the feedback flow FBF is executed, and is stored at a predetermined address.

一方、オープンフローOFでは、まずPaxでオープン
補正係数γをルックアップした後Pl+を経て、P23
で次式■に従って補正噴射量Tiを演算し、P8に進む
On the other hand, in open flow OF, first look up the open correction coefficient γ with Pax, then P23 through Pl+.
Then, the corrected injection amount Ti is calculated according to the following equation (2), and the process proceeds to P8.

Ti= (K・ (Qa/N))X (1+y)−・〜
■ 0式の演算によりオープン制御領域にあっても最終噴射
量Teはエアフローメータ7やインジェクタ4の特性の
ばらつきを補正した値に修正される。
Ti= (K・ (Qa/N))X (1+y)−・~
(2) Even in the open control region, the final injection amount Te is corrected to a value that corrects variations in the characteristics of the air flow meter 7 and the injector 4 by calculating Equation 0.

すなわち、各種パーツの特性にばらつきが存在していて
も、酸素センサ10からの情報を運転状態に応じて学習
、記憶していくことで、そのばらつきの程度が把握され
る。そして、このばらつきの程度は常に最初のデータγ
として記憶されており、オープン制御時には直ちにこの
γに基づいて噴射量が修正されるため、従来と異なり空
燃比を目標空燃比に精度よく制御することができる。し
たがって、オープン制御時にあってもノンキングの発生
や燃費の悪化を抑制してエンジン1の運転性を向上させ
ることができる。
That is, even if there are variations in the characteristics of various parts, the extent of the variations can be grasped by learning and storing information from the oxygen sensor 10 according to the operating state. And the degree of this dispersion is always equal to the initial data γ
Since the injection amount is immediately corrected based on this γ during open control, the air-fuel ratio can be accurately controlled to the target air-fuel ratio, unlike in the past. Therefore, even during open control, the occurrence of non-king and deterioration of fuel efficiency can be suppressed, and the drivability of the engine 1 can be improved.

(効果) 本発明によれば、オープン制御時であっても装置の経時
変化等による各種パーツの特性変化に起因する噴射量の
ばらつきを適切に補正して目標空燃比となるように燃料
供給量を制御することができ、ノッキングの発生や燃費
の悪化を抑制しエンジンの運転性を向上させることがで
きる。
(Effects) According to the present invention, even during open control, variations in the injection amount caused by changes in the characteristics of various parts due to changes in the device over time etc. are appropriately corrected, and the fuel supply amount is adjusted to the target air-fuel ratio. This makes it possible to control the occurrence of knocking and deterioration of fuel efficiency, thereby improving engine drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本概念図、第2.3図は本発明に係
る燃料供給制御装置の一実施例を示す図であり、第2図
はその全体構成図、第3図はその燃料供給制御のプログ
ラムを示すフローチャート、第4.5図は従来のエンジ
ンの燃料供給制御装置を示す図であり、第4図はその燃
料供給制御のプログラムを示すフローチャート、第5図
はその学習補正係数および出力補正係数の割り当てられ
る運転領域を回転数と負荷をパラメータとして示す図で
ある。 1〜−−−−一エンジン、 4−−−−−インジェクタ(燃料供給手段)、10・−
−一−−酸素センサ、 11−−−−−一運転状態検出手段、 12−・・・コントロールユニット(第1係数演算手段
、第2係数演算手段、供給量制御 手段)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 and 3 are diagrams showing an embodiment of the fuel supply control device according to the present invention, Fig. 2 is an overall configuration diagram thereof, and Fig. 3 is a diagram showing the fuel supply control device according to the present invention. Flowchart showing the fuel supply control program, FIG. 4.5 is a diagram showing a conventional engine fuel supply control device, FIG. 4 is a flowchart showing the fuel supply control program, and FIG. 5 is the learning correction coefficient. and FIG. 7 is a diagram showing an operating region to which an output correction coefficient is assigned using rotation speed and load as parameters. 1-----1 engine, 4-----injector (fuel supply means), 10.-
-1--Oxygen sensor, 11---Operation state detection means, 12-... Control unit (first coefficient calculation means, second coefficient calculation means, supply amount control means).

Claims (1)

【特許請求の範囲】 a)排気中の酸素濃度を検出する酸素センサと、b)エ
ンジンの運転状態を検出する運転状態検出手段と、 c)酸素センサの出力に基づいて空燃比を所定空燃比に
補正する空燃比補正係数を演算するとともに、この空燃
比補正係数をそのときの運転状態に対応するものとして
学習し記憶する第1係数演算手段と、 d)第1係数演算手段から空燃比補正係数の学習記憶値
を読み出して空燃比を目標空燃比に補正するオープン補
正係数を演算する第2係数演算手段と、 e)運転状態に応じて第1係数演算手段あるいは第2係
数演算手段を択一的に選択し、その選択した補正係数に
基づいて空燃比が目標空燃比となるように燃料供給量を
制御する供給量制御手段と、 f)供給量制御手段の出力に基づいてエンジンに燃料を
供給する燃料供給手段と、 を備えたことを特徴とするエンジンの燃料供給制御装置
[Scope of Claims] a) an oxygen sensor that detects the oxygen concentration in exhaust gas, b) an operating state detection means that detects the operating state of the engine, and c) an air-fuel ratio that is set to a predetermined air-fuel ratio based on the output of the oxygen sensor. d) a first coefficient calculation means for calculating an air-fuel ratio correction coefficient to be corrected to the current value, and learning and storing this air-fuel ratio correction coefficient as one corresponding to the operating state at that time; a second coefficient calculating means for calculating an open correction coefficient for correcting the air-fuel ratio to the target air-fuel ratio by reading out the learning memory value of the coefficient; and e) selecting the first coefficient calculating means or the second coefficient calculating means according to the operating condition. a supply amount control means for controlling the fuel supply amount so that the air-fuel ratio becomes a target air-fuel ratio based on the selected correction coefficient; A fuel supply control device for an engine, comprising: a fuel supply means for supplying; and a fuel supply control device for an engine.
JP5123485A 1985-03-13 1985-03-13 Fuel feed control device for engine Pending JPS61210241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123485A JPS61210241A (en) 1985-03-13 1985-03-13 Fuel feed control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123485A JPS61210241A (en) 1985-03-13 1985-03-13 Fuel feed control device for engine

Publications (1)

Publication Number Publication Date
JPS61210241A true JPS61210241A (en) 1986-09-18

Family

ID=12881253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123485A Pending JPS61210241A (en) 1985-03-13 1985-03-13 Fuel feed control device for engine

Country Status (1)

Country Link
JP (1) JPS61210241A (en)

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
JPS63176643A (en) Air-fuel ratio controller
JP2008082171A (en) Fuel injection control device for multiple-kind fuel engine
JPS5925055A (en) Air-fuel ratio control device
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
EP0758049A2 (en) Controller for multi-cylinder engine
JPS62253932A (en) Air-fuel ratio control device for engine
JPS61210241A (en) Fuel feed control device for engine
JPH0340336B2 (en)
JP3067489B2 (en) Fuel supply control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH02245442A (en) Air-fuel ratio learning control method and control device and fuel supply method and device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JPS6146435A (en) Air fuel ratio controller
JPS6143237A (en) Control device of air-fuel ratio
JPS61135950A (en) Air-fuel ratio feedback control method for electronically controlled engine
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JP3478713B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07133735A (en) Control device for internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JP2958595B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH05214993A (en) Air-fuel ratio learning control device for internal combustion engine
JPH03185245A (en) Fuel injection control device for 2-cycle internal combustion engine
JPH0129977B2 (en)