JPH0340336B2 - - Google Patents

Info

Publication number
JPH0340336B2
JPH0340336B2 JP57080716A JP8071682A JPH0340336B2 JP H0340336 B2 JPH0340336 B2 JP H0340336B2 JP 57080716 A JP57080716 A JP 57080716A JP 8071682 A JP8071682 A JP 8071682A JP H0340336 B2 JPH0340336 B2 JP H0340336B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
fuel
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57080716A
Other languages
Japanese (ja)
Other versions
JPS58198752A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57080716A priority Critical patent/JPS58198752A/en
Publication of JPS58198752A publication Critical patent/JPS58198752A/en
Publication of JPH0340336B2 publication Critical patent/JPH0340336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の空燃比制御装置に係り、
特に、燃料噴射式エンジンを備えた自動車等の車
両用内燃機関に用いるに好適な内燃機関の空燃比
制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio control device for an internal combustion engine,
In particular, the present invention relates to an air-fuel ratio control device for an internal combustion engine suitable for use in a vehicle internal combustion engine such as an automobile equipped with a fuel injection engine.

〔従来の技術〕[Conventional technology]

安定化ジルコニア素子を備え排気ガス中の酸素
濃度を検出する酸素センサ(以下O2センサとい
う。)を用い、このO2センサの出力値に基づいて
機関に供給される混合気の空燃比が理論空燃比近
傍となるよう、帰還制御する方法が提案されてい
る。
Using an oxygen sensor (hereinafter referred to as an O 2 sensor) equipped with a stabilized zirconia element and detecting the oxygen concentration in exhaust gas, the air-fuel ratio of the air-fuel mixture supplied to the engine is theoretically determined based on the output value of this O 2 sensor. A method of feedback control has been proposed so that the air-fuel ratio becomes close to that of the air-fuel ratio.

ところが、この方法においてはO2センサの出
力特性は第1図のAに示されるように機関に供給
される混合気の空燃比が理論空燃比より濃い(リ
ツチ)場合は電圧を発生し、薄い(リーン)場合
は電圧を発生しないいわゆるON,OFF出力特性
を有するため、O2センサ出力値yに基づいて理
論空燃比及びその近傍の極めて狭い空燃比を制御
することができるものの、その他の領域では出力
が変化しないため、例えば、空燃比を希薄空燃比
の所望の空燃比に帰還制御できない。
However, in this method, the output characteristic of the O 2 sensor is as shown in A in Figure 1, when the air-fuel ratio of the air-fuel mixture supplied to the engine is richer than the stoichiometric air-fuel ratio, it generates a voltage, and when the air-fuel ratio is richer than the stoichiometric air-fuel ratio, it generates a voltage; (Lean) has a so-called ON/OFF output characteristic that does not generate voltage, so it is possible to control the stoichiometric air-fuel ratio and an extremely narrow air-fuel ratio in the vicinity based on the O 2 sensor output value y. Since the output does not change, for example, the air-fuel ratio cannot be feedback-controlled to a desired air-fuel ratio of a lean air-fuel ratio.

これを解消するものとして、O2センサとして
電圧印加方式のものを用い、このO2センサの出
力値に基づき空燃比を所望の希薄空燃比に帰還制
御する方法がある。これは前述した素子に電源電
圧を印加するものであつて、この場合O2センサ
の出力特性は第1図のBに示される如く、空燃比
がリーンになるに従つて出力電圧が増大する特性
を示す。従つて、目標とする空燃比に対応した出
力電圧とO2センサの出力電圧xとを比較するこ
とによつて目標の空燃比に帰還制御することがで
きる。
To solve this problem, there is a method of using a voltage application type O 2 sensor and feedback controlling the air-fuel ratio to a desired lean air-fuel ratio based on the output value of this O 2 sensor. This applies a power supply voltage to the above-mentioned element, and in this case, the output characteristic of the O 2 sensor is as shown in B in Figure 1, where the output voltage increases as the air-fuel ratio becomes leaner. shows. Therefore, by comparing the output voltage corresponding to the target air-fuel ratio and the output voltage x of the O 2 sensor, feedback control can be performed to the target air-fuel ratio.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、この電圧印加方式のO2センサを用
いた空燃比制御装置においては、所期ばらつきあ
るいは経時変化によつて第2図に示されるように
出力変化が生じる。尚、この出力変化は各空燃比
における変化量が等しい平行的なものである。そ
の結果、空燃比が目標とする空燃比からずれて、
運転性の悪化、エミツシヨンの悪化が生じるとい
う問題点があつた。
However, in the air-fuel ratio control device using this voltage application type O 2 sensor, the output changes as shown in FIG. 2 due to expected variations or changes over time. Note that this output change is parallel with the same amount of change at each air-fuel ratio. As a result, the air-fuel ratio deviates from the target air-fuel ratio,
There were problems such as deterioration of drivability and deterioration of emission.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の内燃機関の空燃比制御装置は、第7
図に示すように、 内燃機関の吸気系に配置され内燃機関に燃料を
供給するための燃料供給手段A、 内燃機関の排気系に配置され、酸素イオン伝導
性の固体電解質本体と該本体上に配置される一対
の電極とを具備する酸素センサB、 前記電極間に所定電圧を印加し、センサより出
力値xを発生せしめる電源手段C、 前記電極間への所定電圧の印加を中止し、セン
サより出力値yを発生せしめる電圧印加中止手段
D、 空燃比を希薄空燃比に制御するため酸素センサ
Bからの出力値xに基づき空燃比が希薄空燃比と
なるように燃料供給手段Aからの燃料供給量を制
御する希薄空燃比制御手段E、 空燃比を理論空燃比に制御するため酸素センサ
Bからの出力値yに基づき空燃比が理論空燃比と
なるように燃料供給手段Aからの燃料供給量を制
御する理論空燃比制御手段F、 前記電圧印加中止手段Dによつて前記電極間へ
の所定電圧の印加を一旦中止したとき、酸素セン
サからの出力値yに基づき理論空燃比制御手段F
により空燃比が理論空燃比に制御されたことを確
認し、電圧印加中止手段Dによる電圧印加中止を
停止し、センサBへの電圧印加を再開する電圧印
加再開手段G、 電圧印加再開時の理論空燃比に制御されている
ときの酸素センサBの出力値xsと、電圧を印加し
たときにおける理論空燃比における該センサの設
計出力値aとの差(xs−a)を求め記憶する偏差
算出手段H、 前記センサ出力値xから前記記憶値(xs−a)
を減じて、希薄空燃比制御手段Eによる希薄空燃
比制御に使用されるセンサ出力値xを較正する較
正手段I、 を備える。
The air-fuel ratio control device for an internal combustion engine according to the present invention has a seventh aspect of the present invention.
As shown in the figure, a fuel supply means A is disposed in the intake system of the internal combustion engine and supplies fuel to the internal combustion engine; an oxygen sensor B comprising a pair of electrodes disposed; a power source C for applying a predetermined voltage between the electrodes and causing the sensor to generate an output value x; and ceasing the application of the predetermined voltage between the electrodes, Voltage application stopping means D for generating an output value y more efficiently; and fuel supplying means A for controlling the air-fuel ratio to a lean air-fuel ratio based on the output value x from the oxygen sensor B. Lean air-fuel ratio control means E for controlling the supply amount, and fuel supply from fuel supply means A so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the output value y from the oxygen sensor B in order to control the air-fuel ratio to the stoichiometric air-fuel ratio. stoichiometric air-fuel ratio control means F for controlling the amount; when the application of the predetermined voltage between the electrodes is once stopped by the voltage application stop means D, the stoichiometric air-fuel ratio control means F controls the amount of the predetermined voltage based on the output value y from the oxygen sensor;
The voltage application restart means G confirms that the air-fuel ratio is controlled to the stoichiometric air-fuel ratio, stops the voltage application stop by the voltage application stop means D, and restarts the voltage application to the sensor B. Deviation that calculates and stores the difference (x s - a) between the output value x s of oxygen sensor B when the air-fuel ratio is controlled and the design output value a of the sensor at the stoichiometric air-fuel ratio when voltage is applied. Calculation means H, from the sensor output value x to the stored value (x s −a);
Calibration means I, which calibrates the sensor output value x used for lean air-fuel ratio control by the lean air-fuel ratio control means E, by subtracting .

〔作用〕[Effect]

センサBを電源手段Cに接続することによりセ
ンサから出力値xが得られ、このセンサ出力値x
に基づき希薄空燃比制御手段Eは空燃比を希薄空
燃比となるように燃料供給手段Aからエンジンへ
の燃料供給量を帰還制御する。
By connecting the sensor B to the power source C, an output value x is obtained from the sensor, and this sensor output value x
Based on this, the lean air-fuel ratio control means E feedback-controls the amount of fuel supplied from the fuel supply means A to the engine so that the air-fuel ratio becomes the lean air-fuel ratio.

電圧印加中止手段DによりセンサBの電極間へ
の電圧を印加を中止すると出力値yが発生され、
理論空燃比制御手段Eは理論空燃比が得られるよ
うに出力値yに基づき燃料供給手段Aからのエン
ジンへの燃料供給量を帰還制御する。
When the voltage application stop means D stops applying the voltage between the electrodes of the sensor B, an output value y is generated.
The stoichiometric air-fuel ratio control means E feedback-controls the amount of fuel supplied to the engine from the fuel supply means A based on the output value y so that the stoichiometric air-fuel ratio is obtained.

空燃比が理論空燃比に制御されたことが確認さ
れると、電圧供給再開手段Gは電圧印加中止手段
Dによる電圧印加中止を停止し、電源手段Cによ
る電圧供給を再開する。偏差算出手段Hは、電圧
印加時の理論空燃比に制御されたときの酸素セン
サ出力値xsを求め、該出力値xsと理論空燃比に於
ける該センサの設計出力値aとの差(xs−a)を
求めて、記憶する。較正手段Jは、前記センサ出
力値xから前記記憶値(xs−a)を減じて該セン
サ出力値xを補正する。
When it is confirmed that the air-fuel ratio has been controlled to the stoichiometric air-fuel ratio, the voltage supply restart means G stops the voltage application stop means D from stopping the voltage application, and the power supply means C restarts the voltage supply. The deviation calculating means H calculates the oxygen sensor output value xs when the air-fuel ratio is controlled to the stoichiometric air-fuel ratio when voltage is applied, and calculates the difference between the output value xs and the design output value a of the sensor at the stoichiometric air-fuel ratio. Find and memorize (x s - a). The calibration means J corrects the sensor output value x by subtracting the stored value (x s −a) from the sensor output value x.

〔実施例〕〔Example〕

以下図面を参照しながら本発明を詳細に説明す
る。第3図は本発明が適用される自動車の電子制
御燃料噴射式内燃機関のシステム図である。
The present invention will be described in detail below with reference to the drawings. FIG. 3 is a system diagram of an electronically controlled fuel injection type internal combustion engine of an automobile to which the present invention is applied.

エアクリーナ1から吸入された空気はエアフロ
メータ2、絞り弁3、サージタンク4、吸気ポー
ト5、および吸気弁6を含む吸気通路12を介し
て機関本体7の燃焼室8へ送られる。絞り弁6は
運転室の加速ペダル13に連動する。燃焼室8は
シリンダヘツド9、シリンダブロツク10、およ
びピストン11によつて区画され、混合気の燃焼
によつて生成された排気ガスは排気弁15、排気
ポート16、排気多岐管17、および排気管18
を介して大気へ放出される。バイパス通路21は
絞り弁3の上流とサージタンク4とを接続し、バ
イパス流量制御弁22はバイパス通路21の流路
断面積を制御してアイドリンング時の機関回転速
度を一定に維持する。窒素酸化物の発生を抑制す
るために排気ガスを吸気系へ導く排気ガス再循環
(EGR)通路23は、排気多岐管17とサージタ
ンク4とを接続し、オンオフ弁形式の排気ガス再
循環(EGR)制御弁24は電気パルスに応動し
てEGR通路23を開閉する。吸気温センサ28
はエアフロメータ2内に設けられて吸気温を検出
し、スロツトル弁位置センサ29は、絞り弁3の
開度を検出する。水温センサ30はシリンダブロ
ツク10に取りつけられて冷却水温度を検出し、
O2センサ31は排気多岐管17の集合部分に取
りつけられて集合部分における酸素濃度を検出
し、クランク角センサ32は、機関本体7のクラ
ンク軸(図示せず)に結合する配電器33の軸3
4の回転からクランク軸のクランク角を検出す
る。車速センサ35は変速機36の出力軸の回転
速度を検出する。45はクランク軸回転数検出セ
ンサである。これらのセンサ2,28,30,3
1,32,35,45の出力、および蓄電池37
の電圧は電子制御部40へ送られる。またO2
ンサ31には制御部40より電源電圧が印加可能
とされている。燃料噴射弁41は各気筒に対応し
て各吸気ポート5の近傍にそれぞれ設けられ、ポ
ンプ42は燃料タンク43からの燃料通路44を
介して燃料噴射弁41へ送る。電子制御部40は
各センサからの入力信号をパラメータとして燃料
噴射量を計算し、計算した燃料噴射量に対応した
パルス幅の電気パルスを燃料噴射弁41へ送る。
該弁41は該パルス幅に応じて開弁し燃料を噴射
する。電子制御部40はまた、バイパス量制御弁
22、EGR制御弁24、および点火コイル46
を制御する。点火コイル46の二次側は配電器3
3へ接続されている。
Air taken in from the air cleaner 1 is sent to the combustion chamber 8 of the engine body 7 through an intake passage 12 that includes an air flow meter 2, a throttle valve 3, a surge tank 4, an intake port 5, and an intake valve 6. The throttle valve 6 is linked to an accelerator pedal 13 in the driver's cab. The combustion chamber 8 is divided by a cylinder head 9, a cylinder block 10, and a piston 11, and the exhaust gas generated by the combustion of the mixture is passed through an exhaust valve 15, an exhaust port 16, an exhaust manifold 17, and an exhaust pipe. 18
released into the atmosphere via The bypass passage 21 connects the upstream side of the throttle valve 3 and the surge tank 4, and the bypass flow control valve 22 controls the cross-sectional area of the bypass passage 21 to maintain a constant engine rotational speed during idling. An exhaust gas recirculation (EGR) passage 23 that guides exhaust gas to the intake system in order to suppress the generation of nitrogen oxides connects the exhaust manifold 17 and the surge tank 4. EGR) control valve 24 opens and closes EGR passage 23 in response to electric pulses. Intake temperature sensor 28
is provided in the air flow meter 2 to detect the intake air temperature, and the throttle valve position sensor 29 detects the opening degree of the throttle valve 3. The water temperature sensor 30 is attached to the cylinder block 10 and detects the cooling water temperature.
The O 2 sensor 31 is attached to the collecting part of the exhaust manifold 17 to detect the oxygen concentration in the collecting part, and the crank angle sensor 32 is attached to the shaft of the power distributor 33 connected to the crankshaft (not shown) of the engine main body 7. 3
The crank angle of the crankshaft is detected from the rotation of step 4. Vehicle speed sensor 35 detects the rotational speed of the output shaft of transmission 36. 45 is a crankshaft rotation speed detection sensor. These sensors 2, 28, 30, 3
1, 32, 35, 45 outputs, and storage battery 37
The voltage is sent to the electronic control section 40. Further, a power supply voltage can be applied to the O 2 sensor 31 from the control unit 40 . A fuel injection valve 41 is provided near each intake port 5 in correspondence with each cylinder, and a pump 42 supplies fuel from a fuel tank 43 to the fuel injection valve 41 via a fuel passage 44. The electronic control unit 40 calculates the fuel injection amount using input signals from each sensor as parameters, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 41.
The valve 41 opens according to the pulse width and injects fuel. The electronic control unit 40 also controls the bypass amount control valve 22, the EGR control valve 24, and the ignition coil 46.
control. The secondary side of the ignition coil 46 is the power distributor 3
Connected to 3.

第4図は、O2センサ31への電源電圧を印加
すると共に出力値を得るための回路図である。
O2センサ31の端子71,72はそれぞれA/
D変換器60(第5図)に接続されており、その
途中に切換えスイツチ73,74が設けられ、電
源75が抵抗76を介してスイツチ73,74切
り換え時のみにO2センサ31へ通電可能に接続
されている。図中実線は電圧印加時を示し、点線
は電圧OFF時の接続である。即ち、実線の如く
に切換えスイツチ73,74を接続すればO2
ンサ31には電源からの電圧が印加され、出力値
は抵抗76の降下値として取り出される。また点
線の如くに切換えスイツチ73,74を接続すれ
ば、O2センサ31への電源75からの電圧印加
はなく、O2センサ31の出力値は端子71,7
2から直接A/D変換器60へ伝えられる。尚、
第4図Aで囲まれる部分は、第3図の電子制御部
40のAで示される部分に設けられている。
FIG. 4 is a circuit diagram for applying a power supply voltage to the O 2 sensor 31 and obtaining an output value.
Terminals 71 and 72 of the O2 sensor 31 are A/
It is connected to a D converter 60 (Fig. 5), and changeover switches 73 and 74 are provided in the middle thereof, and a power source 75 can energize the O 2 sensor 31 through a resistor 76 only when the switches 73 and 74 are changed over. It is connected to the. In the figure, solid lines indicate connections when voltage is applied, and dotted lines indicate connections when voltage is OFF. That is, if the changeover switches 73 and 74 are connected as shown by the solid lines, a voltage from the power source is applied to the O 2 sensor 31, and the output value is taken out as a drop value across the resistor 76. Furthermore, if the changeover switches 73 and 74 are connected as shown by the dotted lines, no voltage is applied from the power supply 75 to the O 2 sensor 31, and the output value of the O 2 sensor 31 is
2 and is directly transmitted to the A/D converter 60. still,
The portion surrounded by A in FIG. 4 is provided in the portion indicated by A of the electronic control unit 40 in FIG.

第5図は電子制御部40の詳細を示すブロツク
図である。電子制御部40は、マイクロプロセツ
サから成り演算ならびに制御をおこなうCPU(中
央処理装置)56、後述する補正処理プログラム
およびその他のEGR制御処理等を行うこめのプ
ログラムが格納されるROM(リードオンリメモ
リ)57、データを一次的に格納するRAM(ラ
ンダムアクセスメモリ)58、機関停止時にも補
助電源より給電を受け、必須のデータの記憶を保
持する不揮発記憶素子としての第2のRAM5
9、A/D(アナログ/デジタル)変換器60、
およびI/O(入力/出力)器61はバス62を
介して互いに接続されている。エアフロメータ
2、吸気温センサ28、水温センサ30、空燃比
センサ31、および蓄電池37の出力はA/D変
換器60へ送られる。また、スロツトル位置セン
サ29、クランク角センサ32、車速センサ3
5、およびクランク軸回転数センサ45の出力は
I/O器61へ送られ、バイパス流量制御弁2
2、EGR制御弁24、燃料噴射弁41、および
点火コイル46はI/O器61を介してCPU5
6から入力を受ける。
FIG. 5 is a block diagram showing details of the electronic control section 40. The electronic control unit 40 includes a CPU (Central Processing Unit) 56 that is made up of a microprocessor and performs calculations and control, and a ROM (Read Only Memory) that stores correction processing programs to be described later and other programs that perform EGR control processing. ) 57, a RAM (Random Access Memory) 58 that temporarily stores data, and a second RAM 5 that receives power from the auxiliary power supply even when the engine is stopped and serves as a non-volatile memory element that retains essential data.
9, A/D (analog/digital) converter 60,
and I/O (input/output) devices 61 are connected to each other via a bus 62. The outputs of the air flow meter 2, intake temperature sensor 28, water temperature sensor 30, air-fuel ratio sensor 31, and storage battery 37 are sent to an A/D converter 60. In addition, a throttle position sensor 29, a crank angle sensor 32, a vehicle speed sensor 3
5 and the output of the crankshaft rotation speed sensor 45 are sent to the I/O device 61, and the bypass flow control valve 2
2. The EGR control valve 24, the fuel injection valve 41, and the ignition coil 46 are connected to the CPU 5 via the I/O device 61.
Receive input from 6.

以上の構成を用いてO2センサ31の出力値の
補正を行う例を次に説明する。尚、この処理のた
めのプログラムはROM57に格納されている。
第6図はこの補正を行うフローチヤートである。
ステツプ101において理論空燃比のエンジン条
件であるか否か判断し、YESと判別される場合
にはステツプ102に進み、一旦O2センサ31
への電源電圧印加をOFFとした後ステツプ10
3に進む。O2センサ31への電圧印加がOFFと
されたことで、O2センサ31は第1図のAに示
す特性を示すようになつており、空燃比を精密に
理論空燃比とすることが可能となる。即ち、ステ
ツプ103において、この出力特性となつたO2
センサ31の出力値yが理論空燃比のものである
かどうかを判断し(これは、例えば立ち上がり域
における電圧値であるかどうかを判断することに
より行われる。)、判別の結果が「小さい」場合に
はステツプ104に進み空燃比を少し濃くし、再
びステツプ103に帰還する。判別の結果が「大
きい」場合にはステツプ105に進み、空燃比を
少し薄くし、再びステツプ103に帰還する。こ
れらの帰還を経て、または経ずして、O2センサ
31の出力値yが理論空燃比のものとなる場合に
はステツプ106に進み、O2センサ31への電
源電圧印加をONとする。これにより再びO2セン
サ31は電圧印加方式のものとなるので、ステツ
プ107に進み、理論空燃比に対応した出力電圧
xsを読み込む。次いでステツプ108に進み、電
源印加方式におけるO2センサ31の理論空燃比
の設計出力電圧aとの差(xs−a)をRAM58
のメモリに記憶しておく。そして、電圧印加方式
によつて空燃比を希薄空燃比域の所定の空燃比に
帰還制御を行う場合には電圧印加方式のO2セン
サの出力値xからこの(xs−a)を減じ、(x−
(xs−a))値に基づいて帰還制御を行う。
Next, an example of correcting the output value of the O 2 sensor 31 using the above configuration will be described. Incidentally, a program for this processing is stored in the ROM 57.
FIG. 6 is a flowchart for performing this correction.
In step 101, it is determined whether or not the engine condition is the stoichiometric air-fuel ratio .
Step 10 after turning off the power supply voltage application to
Proceed to step 3. By turning off the voltage application to the O 2 sensor 31, the O 2 sensor 31 exhibits the characteristics shown in A in Figure 1, making it possible to precisely set the air-fuel ratio to the stoichiometric air-fuel ratio. becomes. That is, in step 103, the O 2
It is determined whether the output value y of the sensor 31 is at the stoichiometric air-fuel ratio (this is done, for example, by determining whether it is a voltage value in the rising region), and if the result of the determination is "small". If so, the process proceeds to step 104, where the air-fuel ratio is made slightly richer, and the process returns to step 103 again. If the result of the determination is "large", the process proceeds to step 105, the air-fuel ratio is made slightly leaner, and the process returns to step 103 again. If the output value y of the O 2 sensor 31 becomes equal to the stoichiometric air-fuel ratio after or without these feedback steps, the process proceeds to step 106, and the application of the power supply voltage to the O 2 sensor 31 is turned on. As a result, the O 2 sensor 31 becomes a voltage application type again, so the process proceeds to step 107, and the output voltage corresponding to the stoichiometric air-fuel ratio is
Load x s . Next, the process proceeds to step 108, where the difference (x s - a) between the stoichiometric air-fuel ratio of the O 2 sensor 31 and the design output voltage a in the power application method is stored in the RAM 58.
Store it in memory. When performing feedback control of the air-fuel ratio to a predetermined air-fuel ratio in the lean air-fuel ratio region using the voltage application method, subtract this (x s - a) from the output value x of the O 2 sensor using the voltage application method, (x-
(x s −a)) Feedback control is performed based on the value.

尚、以上実施例は所謂L−J方式のものであつ
て、エアフロメータ2によつて吸気量を検出し、
これとエンジン回転数に基づいて基本噴射パルス
を決定し空燃比を制御するようにしているが、本
発明はいわゆるD−J方式、即ち、吸気管12に
負圧検出センサを設け、これに基づいて基本噴射
パルスを決定し空燃比を制御するようにしてもよ
い。
The above embodiments are of the so-called L-J method, and the intake air amount is detected by the air flow meter 2.
The basic injection pulse is determined based on this and the engine speed to control the air-fuel ratio, but the present invention uses the so-called DJ method, that is, a negative pressure detection sensor is provided in the intake pipe 12, and the air-fuel ratio is controlled based on this. Alternatively, the air-fuel ratio may be controlled by determining the basic injection pulse.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電圧印
加方式によるO2センサ作動時の出力値を正確に
補正することができ、エンジン運転空燃比の目標
値からのずれを小さくすることができる。そのた
め、自動車の運転性が快適なものになると共に、
エミツシヨンも適正なものとすることができる。
As described above, according to the present invention, it is possible to accurately correct the output value when the O 2 sensor is activated by the voltage application method, and it is possible to reduce the deviation of the engine operating air-fuel ratio from the target value. This makes the car more comfortable to drive, and
Emissions can also be made appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はO2センサの特性を示すグラフ、第2
図はO2センサの出力値の変化を示すグラフ、第
3図は電子制御燃料噴射式内燃機関のシステム
図、第4図はO2センサへ電圧を印加するための
回路図、第5図は電子制御部40の詳細を示すブ
ロツク図、第6図はO2センサ出力値補正のため
のフローチヤート、第7図は本発明の構成を示す
図である。 2……エアフロメータ、4……サージタンク、
8……燃焼室、11……ピストン、16……排気
ポート、21……バイパス通路、22……バイパ
ス制御弁、23……EGR通路、28……吸気温
センサ、30……水温センサ、31……O2セン
サ、32……クランク角センサ、40……電子制
御部、56……CPU、57……ROM、58,5
9……RAM、60……A/D変換器、61……
I/O器、62……バス、73,74……切換え
スイツチ。
Figure 1 is a graph showing the characteristics of the O 2 sensor, Figure 2 is a graph showing the characteristics of the O 2 sensor.
The figure is a graph showing changes in the output value of the O 2 sensor, Figure 3 is a system diagram of an electronically controlled fuel injection internal combustion engine, Figure 4 is a circuit diagram for applying voltage to the O 2 sensor, and Figure 5 is a graph showing changes in the output value of the O 2 sensor. FIG. 6 is a block diagram showing details of the electronic control section 40, FIG. 6 is a flowchart for correcting the output value of the O 2 sensor, and FIG. 7 is a diagram showing the configuration of the present invention. 2... Air flow meter, 4... Surge tank,
8... Combustion chamber, 11... Piston, 16... Exhaust port, 21... Bypass passage, 22... Bypass control valve, 23... EGR passage, 28... Intake temperature sensor, 30... Water temperature sensor, 31 ... O2 sensor, 32...Crank angle sensor, 40...Electronic control unit, 56...CPU, 57...ROM, 58,5
9...RAM, 60...A/D converter, 61...
I/O device, 62... bus, 73, 74... changeover switch.

Claims (1)

【特許請求の範囲】 1 以下の構成要素を備える内燃機関の空燃比制
御装置、 内燃機関の吸気系に配置され内燃機関に燃料を
供給するための燃料供給手段、 内燃機関の排気系に配置され、酸素イオン伝導
性の固体電解質本体と該本体上に配置される一対
の電極とを具備する酸素センサ、 前記電極間に所定電圧を印加し、センサより出
力値xを発生せしめる電源手段、 前記電極間への所定電圧の印加を中止し、セン
サより出力値yを発生せしめる電圧印加中止手
段、 空燃比を希薄空燃比に制御するため酸素センサ
からの出力値xに基づき空燃比が希薄空燃比とな
るように燃料供給手段からの燃料供給量を制御す
る希薄空燃比制御手段、 空燃比を理論空燃比に制御するため酸素センサ
からの出力値yに基づき空燃比が理論空燃比とな
るように燃料供給手段からの燃料供給量を制御す
る理論空燃比制御手段、 前記電圧印加中止手段によつて前記電極間への
所定電圧の印加を一旦中止したとき、酸素センサ
からの出力値yに基づき空燃比が理論空燃比に制
御されたことを確認し、電圧印加中止手段による
電圧印加中止を停止し、センサへの電圧印加を再
開する電圧印加再開手段、 電圧印加再開時の理論空燃比に制御されている
ときの酸素センサの出力値xsと、電圧を印加した
ときにおける該センサの設計出力値aとの差(xs
−a)を求め記憶する偏差算出手段、 前記センサ出力値xから前記記憶値(xs−a)
を減じて、希薄空燃比制御手段による希薄空燃比
制御に使用されるセンサ出力値xを較正する較正
手段。
[Claims] 1. An air-fuel ratio control device for an internal combustion engine comprising the following components: A fuel supply means disposed in the intake system of the internal combustion engine for supplying fuel to the internal combustion engine; A fuel supply means disposed in the exhaust system of the internal combustion engine. , an oxygen sensor comprising an oxygen ion conductive solid electrolyte body and a pair of electrodes disposed on the body; power supply means for applying a predetermined voltage between the electrodes and causing the sensor to generate an output value x; the electrodes; Voltage application stopping means for stopping the application of a predetermined voltage between the oxygen sensor and causing the sensor to generate an output value y; A lean air-fuel ratio control means controls the amount of fuel supplied from the fuel supply means so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the output value y from the oxygen sensor. stoichiometric air-fuel ratio control means for controlling the amount of fuel supplied from the supply means; when the application of a predetermined voltage between the electrodes is once stopped by the voltage application stop means, the air-fuel ratio is adjusted based on the output value y from the oxygen sensor; voltage application restart means for confirming that the air-fuel ratio is controlled to the stoichiometric air-fuel ratio, stops the voltage application stop by the voltage application stop means, and restarts the voltage application to the sensor; The difference (x s
-a), a deviation calculating means for determining and storing the stored value (x s −a) from the sensor output value x;
Calibration means for calibrating a sensor output value x used for lean air-fuel ratio control by the lean air-fuel ratio control means.
JP57080716A 1982-05-13 1982-05-13 Controller for air-fuel ratio of internal combustion engine Granted JPS58198752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080716A JPS58198752A (en) 1982-05-13 1982-05-13 Controller for air-fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080716A JPS58198752A (en) 1982-05-13 1982-05-13 Controller for air-fuel ratio of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS58198752A JPS58198752A (en) 1983-11-18
JPH0340336B2 true JPH0340336B2 (en) 1991-06-18

Family

ID=13726063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080716A Granted JPS58198752A (en) 1982-05-13 1982-05-13 Controller for air-fuel ratio of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS58198752A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727391Y2 (en) * 1986-02-04 1995-06-21 本田技研工業株式会社 Air-fuel ratio controller for internal combustion engine
JPH0635955B2 (en) * 1986-07-30 1994-05-11 三菱自動車工業株式会社 Air-fuel ratio detector
US7776194B2 (en) 2004-04-16 2010-08-17 Denso Corporation Gas concentration measuring apparatus designed to compensate for output error
JP4872198B2 (en) * 2004-04-16 2012-02-08 株式会社デンソー Gas concentration detector
JP5067469B2 (en) * 2004-04-16 2012-11-07 株式会社デンソー Gas concentration detector

Also Published As

Publication number Publication date
JPS58198752A (en) 1983-11-18

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
US6176227B1 (en) Control system for cylinder injection type internal combustion engine with exhaust gas recirculation feedback control
JPS6231179B2 (en)
JPH0340336B2 (en)
US6935162B2 (en) Apparatus for detecting leakage in an evaporated fuel processing system
JPH0727390Y2 (en) Air-fuel ratio controller for internal combustion engine
JPH01219328A (en) Air-fuel ratio control device for internal combustion engine
JP3757569B2 (en) EGR control device for internal combustion engine
JPS6231180B2 (en)
JP3046847B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JP2752629B2 (en) Air-fuel ratio control device for internal combustion engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JP3478713B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0368221B2 (en)
JPH04112959A (en) Evaporated fuel process controller
JP2631580B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JPH0684732B2 (en) Engine idle speed controller
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH07247918A (en) Canister purge control
JPH025898B2 (en)
JPH11182302A (en) Idling speed learning control device for electric control throttle type internal combustion engine