JPH0129977B2 - - Google Patents

Info

Publication number
JPH0129977B2
JPH0129977B2 JP59038095A JP3809584A JPH0129977B2 JP H0129977 B2 JPH0129977 B2 JP H0129977B2 JP 59038095 A JP59038095 A JP 59038095A JP 3809584 A JP3809584 A JP 3809584A JP H0129977 B2 JPH0129977 B2 JP H0129977B2
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59038095A
Other languages
Japanese (ja)
Other versions
JPS60182326A (en
Inventor
Seishi Wataya
Takeo Sasaki
Yoshinobu Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59038095A priority Critical patent/JPS60182326A/en
Publication of JPS60182326A publication Critical patent/JPS60182326A/en
Publication of JPH0129977B2 publication Critical patent/JPH0129977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は空燃比センサを使用した空燃比のフイ
ードバツク制御方法における学習補正をする手段
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in means for performing learning correction in an air-fuel ratio feedback control method using an air-fuel ratio sensor.

〔従来技術〕[Prior art]

内燃機関から排出される排ガスを浄化するた
め、空燃比センサを使用して、空燃比を理論的な
空燃比の近傍にフイードバツク制御することによ
り、三元触媒の浄化効率を向上させる方法が広範
囲に使用されている。
In order to purify exhaust gas emitted from internal combustion engines, there is a wide range of methods for improving the purification efficiency of three-way catalysts by using air-fuel ratio sensors to feedback control the air-fuel ratio to near the theoretical air-fuel ratio. It is used.

さらに、空燃比のフイードバツク制御中におい
て、センサ又はアクチユエータ等の誤差を検出
し、制御システム全体における制御誤差を補正す
るためのいわゆる学習制御も一部に導入されつつ
ある。
Furthermore, during air-fuel ratio feedback control, so-called learning control is being introduced to detect errors in sensors, actuators, etc. and correct control errors in the entire control system.

第1図は従来の電子制御による燃料噴射装置を
使用した空燃比の制御方法の構成を示したもので
あり、1は内燃機関、2は内燃機関1に燃料を供
給するインジエクタ、3は内燃機関1に吸入され
る空気量を検出するエアフローセンサ、4はエア
クリーナ、5は内燃機関1に吸入される空気量を
調節する絞り弁、6は吸気管、7は内燃機関1を
冷却する水の温度を検出する水温センサ、8はエ
アフローセンサ3又は水温センサ7等による内燃
機関の運転状態を入力し、燃料の必要量を演算
し、インジエクタ2に印加する駆動パルス幅を制
御する制御装置、9は排気管、10は排気管9に
設けられ、排ガスの成分より空燃比に対応した出
力を発生する空燃比センサ、11は燃料タンク、
12はインジエクタ2へ燃料を供給するための燃
料ポンプ、13はインジエクタ2に供給される燃
料の圧力を一定に維持するための燃圧レギユレー
タである。
Figure 1 shows the configuration of a conventional air-fuel ratio control method using an electronically controlled fuel injection device, where 1 is an internal combustion engine, 2 is an injector that supplies fuel to the internal combustion engine 1, and 3 is an internal combustion engine. 1 is an air flow sensor that detects the amount of air taken in, 4 is an air cleaner, 5 is a throttle valve that adjusts the amount of air taken into the internal combustion engine 1, 6 is an intake pipe, and 7 is the temperature of water that cools the internal combustion engine 1. 8 is a control device that inputs the operating state of the internal combustion engine from the air flow sensor 3 or the water temperature sensor 7, etc., calculates the required amount of fuel, and controls the drive pulse width applied to the injector 2; an exhaust pipe; 10 is an air-fuel ratio sensor provided in the exhaust pipe 9 and generates an output corresponding to the air-fuel ratio based on the components of exhaust gas; 11 is a fuel tank;
12 is a fuel pump for supplying fuel to the injector 2, and 13 is a fuel pressure regulator for maintaining the pressure of the fuel supplied to the injector 2 constant.

以上のような構成において、制御装置8はエア
フローセンサ3により得られる吸入空気量を主な
入力情報として、水温センサ7の信号又は図示し
ない機関の回転数の信号など内燃機関の運転状態
を表示するパラメータにより内燃機関1に供給す
べき燃料の量を演算し、その結果をインジエクタ
2の駆動パルス幅として出力する。
In the above configuration, the control device 8 uses the amount of intake air obtained by the air flow sensor 3 as main input information, and displays the operating state of the internal combustion engine, such as the signal of the water temperature sensor 7 or the signal of the engine rotation speed (not shown). The amount of fuel to be supplied to the internal combustion engine 1 is calculated based on the parameters, and the result is output as the drive pulse width of the injector 2.

従つて、内燃機関1は所望の空燃比により運転
されるが、排ガスを効率よく浄化するためには、
空燃比を理論的な空燃比の近傍に精度よく制御す
ることが不可欠である。
Therefore, the internal combustion engine 1 is operated at a desired air-fuel ratio, but in order to efficiently purify the exhaust gas,
It is essential to accurately control the air-fuel ratio to near the theoretical air-fuel ratio.

然るに、エアフローセンサ3又はインジエクタ
2等の誤差の総和が充分に小でないため、空燃比
センサ10によるフイードバツク制御が必要とな
る。
However, since the sum of errors of the air flow sensor 3, injector 2, etc. is not small enough, feedback control using the air-fuel ratio sensor 10 is required.

空燃比センサ10の特性は第3図に示すように
空燃比が理論的な空燃比になると、その出力する
電圧のレベルが反転する。
As shown in FIG. 3, the characteristics of the air-fuel ratio sensor 10 are such that when the air-fuel ratio reaches the theoretical air-fuel ratio, the level of the voltage it outputs is reversed.

上記のような空燃比センサ10から出力する信
号を使用して従来より第4図bに示すように空燃
比をフイードバツクさせることが広く行なわれて
いる。
Conventionally, it has been widely practiced to feedback the air-fuel ratio as shown in FIG. 4b using the signal output from the air-fuel ratio sensor 10 as described above.

また、エアフローセンサ3又はインジエクタ2
等の構成部分における誤差又は経年変化等を空燃
比のフイードバツク制御中において、偏差として
検出し、その結果により補正する学習制御も最近
導入されつつある。
Also, air flow sensor 3 or injector 2
Recently, learning control has been introduced, which detects errors or secular changes in components such as air-fuel ratios as deviations during feedback control of the air-fuel ratio, and corrects them based on the results.

第4図は動作波形図を示し、第5図は学習制御
を包含する制御手順を示す。
FIG. 4 shows an operating waveform diagram, and FIG. 5 shows a control procedure including learning control.

第5図において、ステツプ101では、エアフ
ローセンサ3からの吸入空気量情報Qaに比例し
た基本燃料噴射量Qfを算出する。ステツプ10
2では、基本燃料噴射量Qfに制御装置8のRAM
83に記憶されている学習値CLを掛けて補正し
た燃料噴射量Q1を算出する。ステツプ103で
は、空燃比センサ10の出力信号により空燃比セ
ンサ10が活性か否かを判定し、活性でなければ
オープンループ制御に移行し、活性であればステ
ツプ104に進む。ステツプ104では、空燃比
センサ10の出力信号がリツチかリーンかを判定
し、リツチならばステツプ105にて空燃比セン
サ10の出力信号を積分して1より小さいフイー
ドバツクの積分係数CFBを求め、リーンならばス
テツプ106にて空燃比センサ10の出力信号を
積分して1より大きいフイードバツクの積分係数
CFBを求める。ステツプ107では、ステツプ1
05又は同106で求めたフイードバツクの積分
係数CFBに上記燃料噴射量Q1を掛けて最終的な燃
料噴射量Q2を算出し、インジエクタ2を駆動す
るためにその演算結果Q2を制御装置8の出力イ
ンタフエース84のレジスタにセツトしてトリガ
ーする。ステツプ108では、フイードバツクの
積分係数CFBを平均化した学習値CLを算出する。
ステツプ109では、この学習値CLをRAM83
に格納して更新する。
In FIG. 5, in step 101, a basic fuel injection amount Q f that is proportional to the intake air amount information Q a from the air flow sensor 3 is calculated. Step 10
2, the RAM of the control device 8 is set to the basic fuel injection amount Q f .
83 by the stored learning value C L to calculate the corrected fuel injection amount Q 1 . In step 103, it is determined whether or not the air-fuel ratio sensor 10 is active based on the output signal of the air-fuel ratio sensor 10. If it is not active, the process moves to open loop control, and if it is active, the process moves to step 104. In step 104, it is determined whether the output signal of the air-fuel ratio sensor 10 is rich or lean, and if it is rich, the output signal of the air-fuel ratio sensor 10 is integrated in step 105 to obtain an integral coefficient CFB of a feedback smaller than 1. If lean, the output signal of the air-fuel ratio sensor 10 is integrated in step 106 to obtain an integral coefficient of feedback greater than 1.
Find C FB . In step 107, step 1
The final fuel injection amount Q2 is calculated by multiplying the feedback integral coefficient CFB obtained in 05 or 106 by the above fuel injection amount Q1 , and the calculation result Q2 is used by the control device to drive the injector 2. 8 to the register of the output interface 84 and trigger it. In step 108, a learning value C L is calculated by averaging the feedback integral coefficients C FB .
In step 109, this learning value C L is stored in the RAM 83.
Store and update.

第4図a,bに示すように、空燃比センサ10
から出力する信号がリツチ側の時においては、空
燃比をリーン側に積分制御し、上記出力信号がリ
ーン側の時においては、リツチ側に積分制御する
ことにより空燃比の平均値を理論的な空燃比(空
気過剰率1.0)に調整することができる。しかし、
エアフローセンサ3又はインジエクタ2に誤差が
ある場合に、フイードバツクの積分係数CFBは中
心値1.0から+CL1だけシフトした値を中心に増量
積分と減量積分とを反復することになる。
As shown in FIGS. 4a and 4b, the air-fuel ratio sensor 10
When the signal output from is on the rich side, the air-fuel ratio is integrally controlled to the lean side, and when the output signal is on the lean side, the air-fuel ratio is integrally controlled to the rich side, so that the average value of the air-fuel ratio is adjusted to the theoretical value. The air-fuel ratio (excess air ratio 1.0) can be adjusted. but,
If there is an error in the air flow sensor 3 or the injector 2, the feedback integral coefficient CFB repeats increasing and decreasing integrals around a value shifted by +C L1 from the center value 1.0.

換言するならば、フイードバツク制御中におけ
る積分係数CFBの平均値が中心値よりの偏差を表
示しており、この+CL1が学習すべき値として
RAM(等速呼出し記憶装置)83に記憶され、
基本的な燃料噴射量を補正する。
In other words, the average value of the integral coefficient C FB during feedback control indicates the deviation from the center value, and this +C L1 is the value to be learned.
Stored in RAM (uniform speed access memory device) 83,
Correct the basic fuel injection amount.

然るに従来装置にあつては燃料タンク11内に
おける燃料の残量が少量となり、インジエクタ2
への燃料の供給が不充分となり空気が混入したよ
うな場合においても、第4図cに示される期間
T1が示すようにフイードバツク制御によりイン
ジエクタ2の駆動パルス幅を大きくして空燃比が
理論的な空燃比となるように調整され、学習値は
+CL2という異常に大きな値となり、RAM83
に記憶される。この+CL2がRAM83に記憶さ
れた状態において、燃料タンク11に燃料が供給
されると、基本的な燃料噴射量に対し大幅な学習
値による補正がなされているため、空燃比が著し
くリツチ側にシフトし、オーブンループ制御にお
いては、可燃限界を超えることがあり、また、フ
イードバツク制御の整定が困難となる。
However, in the conventional device, the amount of fuel remaining in the fuel tank 11 is small, and the injector 2
Even if the fuel supply is insufficient and air is mixed in, the period shown in Figure 4 c.
As shown by T 1 , the drive pulse width of the injector 2 is increased by feedback control to adjust the air-fuel ratio to the theoretical air-fuel ratio, and the learned value becomes +C L2 , an abnormally large value, and the RAM 83
is memorized. When fuel is supplied to the fuel tank 11 with this +C L2 stored in the RAM 83, the basic fuel injection amount has been significantly corrected by the learned value, so the air-fuel ratio becomes extremely rich. In oven loop control, the flammability limit may be exceeded, and it becomes difficult to establish feedback control.

以上のように、従来の学習制御においては、セ
ンサ、演算装置、インジエクタ又は燃料供給装置
等制御システム全体としての誤差を検出し、検出
した誤差を制御に反映させるため、燃料供給の源
である燃料タンク内における燃料の残量が少量と
なり、車体等の振動等により燃料の残量が一時的
に零となり、空気が混入することにより空燃比が
リーン側になるため、空燃比センサの信号が理論
的な空燃比を表示するまで、燃料噴射弁を開放す
る時間を増加させる状態において、学習補正を実
行するため、本来、センサ又はアクチユエータ等
の構成部分には誤差が発生していないにもかかわ
らず、一時的に誤つた学習補正を実行し、結果的
に、空燃比をリツチ側に誤つて補償するという問
題点を有していた。
As described above, in conventional learning control, errors in the entire control system such as sensors, computing devices, injectors, or fuel supply devices are detected, and the detected errors are reflected in control. The amount of fuel remaining in the tank becomes small, and due to vibrations of the vehicle body, etc., the remaining amount of fuel temporarily becomes zero, and air gets mixed in, causing the air-fuel ratio to become lean, so that the signal from the air-fuel ratio sensor becomes Learning correction is performed while increasing the opening time of the fuel injector until the desired air-fuel ratio is displayed. However, there was a problem in that the learning correction was temporarily erroneously executed, and as a result, the air-fuel ratio was erroneously compensated for the rich side.

〔発明の概要〕[Summary of the invention]

本発明は上述のような従来例の問題点を解消す
ることを目的としてなされたものであり、燃料タ
ンク内における燃料の残量が所定量以下の時にお
いては、学習制御を禁止し、誤つた空燃比補正を
実行せしめないようにした空燃比の制御方法を提
供しようとするものである。
The present invention was made with the aim of solving the problems of the conventional example as described above, and when the remaining amount of fuel in the fuel tank is less than a predetermined amount, learning control is prohibited to prevent mistakes. It is an object of the present invention to provide an air-fuel ratio control method that does not execute air-fuel ratio correction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を添付の図面を参照して
説明する。第2図は本発明の一実施例による内燃
機関の空燃比制御方法を実現するための装置構成
を示し、従来例と同一部分又は相当部分には同符
号1〜13を符してあるが、入力インタフエース
80、マイクロプロセツサ81、ROM82、
RAM83及び出力インタフエース84で構成さ
れた制御装置8は、ROM82に第6図のフロー
を制御プログラムにして格納している。本発明の
実施例においては、第2図に示すように従来装置
に対し、制御装置8に燃料計14の信号を付加
し、燃料タンク11における燃料の残量が所定量
以下の時においては学習値のRAM83への記憶
を禁止させるよう構成したものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 shows a device configuration for realizing an air-fuel ratio control method for an internal combustion engine according to an embodiment of the present invention, and the same or equivalent parts as in the conventional example are designated by the same reference numerals 1 to 13. Input interface 80, microprocessor 81, ROM 82,
The control device 8, which is composed of a RAM 83 and an output interface 84, stores the flow shown in FIG. 6 as a control program in the ROM 82. In the embodiment of the present invention, as shown in FIG. 2, in contrast to the conventional system, a signal from the fuel gauge 14 is added to the control device 8, and when the remaining amount of fuel in the fuel tank 11 is less than a predetermined amount, learning is performed. It is configured to prohibit the storage of values into the RAM 83.

第6図に示すように、学習値のRAM83への
記憶は燃料タンク11内における燃料の残量が所
定量以下の場合においては禁止される。
As shown in FIG. 6, storage of the learned value in the RAM 83 is prohibited when the remaining amount of fuel in the fuel tank 11 is less than a predetermined amount.

第6図において、ステツプ201〜207は第
5図のステツプ101〜107に対応して全く同
じであり、その説明を省略する。ステツプ207
の次にステツプ208に進み、燃料タンク11内
に所定量以上の燃料が残つているか否かを燃料計
14の出力信号と閾値との大小を比較して判定し、
燃料残量が所定値未満ならば学習を禁止し、燃料
残量が所定値以上ならばステツプ209にて学習
する。ステツプ209では、第5図のステツプ1
08と同様にして学習値CLを求め、次にステツ
プ210にてその学習値CLをRAM83に格納し
て更新する。
In FIG. 6, steps 201 to 207 correspond to steps 101 to 107 in FIG. 5 and are exactly the same, and their explanation will be omitted. Step 207
Next, the process proceeds to step 208, where the fuel meter checks whether or not more than a predetermined amount of fuel remains in the fuel tank 11.
Compare and determine the magnitude of the 14 output signals and the threshold,
If the remaining fuel amount is less than a predetermined value, learning is prohibited, and if the remaining fuel amount is greater than or equal to the predetermined value, learning is performed in step 209. In step 209, step 1 in FIG.
The learned value C L is obtained in the same manner as in 08, and then in step 210, the learned value C L is stored in the RAM 83 and updated.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、学習値の
RAMへの記憶を燃料タンク内における燃料の残
量が所定量以下の場合においては禁止し、かつ、
以前の学習値の記憶を保持するようにしているた
め、燃料の残量が少量であり、燃料中に空気が混
入するような虞れのある場合に、制御システムの
構成要素であるセンサ又はアクチユエータの誤差
とは関係なしに誤つた大幅な補正の実行を防止す
ることができる。
As explained above, the present invention enables learning values to be
Prohibits storage in RAM when the remaining amount of fuel in the fuel tank is less than a predetermined amount, and
Since the memory of the previous learning value is retained, when there is a small amount of fuel remaining and there is a risk of air being mixed in the fuel, the sensor or actuator that is a component of the control system It is possible to prevent erroneous large-scale corrections from being performed regardless of the errors in the data.

従つて、空燃比を常時最も適正な値に制御する
ことができ、安定な機関の運転が可能となれる優
れた効果を奏するものである。
Therefore, the air-fuel ratio can always be controlled to the most appropriate value, and the excellent effect of enabling stable engine operation is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置を示す構成図、第2図は本発
明の実施例を示す構成図、第3図は空燃比センサ
の特性を示す特性図、第4図は動作状態を表わす
波形図、第5図は従来装置のフローチヤート、第
6図は本発明の一実施例によるフローチヤートで
ある。 1…内燃機関、2…インジエクタ、3…エアフ
ローセンサ、8…制御装置、10…空燃比セン
サ、11…燃料タンク、14…燃料計。図におい
て、同一符号は同一又は相当部分を示すものとす
る。
Fig. 1 is a configuration diagram showing a conventional device, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Fig. 3 is a characteristic diagram showing the characteristics of the air-fuel ratio sensor, and Fig. 4 is a waveform diagram showing the operating state. FIG. 5 is a flow chart of a conventional device, and FIG. 6 is a flow chart of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 2... Injector, 3... Air flow sensor, 8... Control device, 10... Air-fuel ratio sensor, 11... Fuel tank, 14... Fuel gauge. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関が吸入する空気量より算出される燃
料の基本的な供給量に排ガスによる成分より検出
される空燃比と目標値である空燃比との偏差によ
り増減補正を実行して燃料を供給し且つ上記偏差
に対応して燃料供給量を算出する時に使用される
空燃比補正項を学習補正する内燃機関の空燃比制
御方法において、燃料タンク内における燃料の残
量が所定量以下の時には上記学習補正を禁止する
ようにしたことを特徴とする内燃機関の空燃比制
御方法。
1. Fuel is supplied by performing an increase/decrease correction based on the deviation between the air-fuel ratio detected from exhaust gas components and the target air-fuel ratio on the basic supply amount of fuel calculated from the amount of air taken into the internal combustion engine. In addition, in the air-fuel ratio control method for an internal combustion engine that learns and corrects the air-fuel ratio correction term used when calculating the fuel supply amount in response to the above-mentioned deviation, when the remaining amount of fuel in the fuel tank is less than a predetermined amount, the above-mentioned learning is performed. An air-fuel ratio control method for an internal combustion engine, characterized in that correction is prohibited.
JP59038095A 1984-02-27 1984-02-27 Air-fuel ratio controlling method of internal-combustion engine Granted JPS60182326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59038095A JPS60182326A (en) 1984-02-27 1984-02-27 Air-fuel ratio controlling method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59038095A JPS60182326A (en) 1984-02-27 1984-02-27 Air-fuel ratio controlling method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60182326A JPS60182326A (en) 1985-09-17
JPH0129977B2 true JPH0129977B2 (en) 1989-06-15

Family

ID=12515911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59038095A Granted JPS60182326A (en) 1984-02-27 1984-02-27 Air-fuel ratio controlling method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60182326A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844488B2 (en) * 2017-10-03 2021-03-17 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JPS60182326A (en) 1985-09-17

Similar Documents

Publication Publication Date Title
JPH0592444U (en) Fuel supply amount control device for internal combustion engine
US6789534B2 (en) Air-fuel ratio control system and method and engine control unit for internal combustion engine
US6360733B1 (en) Self-adapting method of controlling the mixture ratio of an internal combustion engine injection system
EP1643109B1 (en) Engine air-fuel ratio control system
EP1647689B1 (en) Air-fuel ratio control system of an internal combustion engine
US5921226A (en) Apparatus for controlling the fuel injection quantity
KR940004342B1 (en) Method and device for controlling air-fuel ratio
EP1710420B1 (en) Control apparatus for internal combustion engine
JPH0129977B2 (en)
EP1403504A2 (en) Apparatus and method for controlling the purge flow rate of an internal combustion engine
JP3067489B2 (en) Fuel supply control device for internal combustion engine
JPH0340336B2 (en)
JPS6146435A (en) Air fuel ratio controller
JPS5910764A (en) Control method of air-fuel ratio in internal-combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0321740B2 (en)
JP2631579B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0517398Y2 (en)
JPH051375B2 (en)
JPH0684732B2 (en) Engine idle speed controller
JP2631580B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH02169836A (en) Air-fuel ratio controller of engine
JPH04321741A (en) Air-fuel ratio learning control device for internal combustion engine
JPS61210241A (en) Fuel feed control device for engine
JPH05156988A (en) Air fuel ratio control device of internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term