JPS61209748A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPS61209748A
JPS61209748A JP4941385A JP4941385A JPS61209748A JP S61209748 A JPS61209748 A JP S61209748A JP 4941385 A JP4941385 A JP 4941385A JP 4941385 A JP4941385 A JP 4941385A JP S61209748 A JPS61209748 A JP S61209748A
Authority
JP
Japan
Prior art keywords
slit
cooling
slits
molten metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4941385A
Other languages
Japanese (ja)
Other versions
JPH0256981B2 (en
Inventor
Masashi Kawamoto
河本 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4941385A priority Critical patent/JPS61209748A/en
Publication of JPS61209748A publication Critical patent/JPS61209748A/en
Publication of JPH0256981B2 publication Critical patent/JPH0256981B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the cooling effect of copper plates and to improve remarkably production efficiency by forming the cooling slits and molten metal level measuring slits provided on the rear of a surface in contact with a molten metal to the same depth and specifying the shape of each slit part. CONSTITUTION:The cooling slits 28 formed on the same shape (width X depth Xbase shape) are provided to cooling water paths of copper plates 11 for continuous casting over the entire length from the bottom to top end thereof and the molten metal level measuring slits 30 are provided to molten metal level measuring parts 22, 24. The slits 28 and the slits 30 are formed to the same depth and the base of each molten metal level measuring slit is curved to decrease the concentration of thermal stress. Each slit 30 is made wider than the width of the slits 28 and the ratio thereof is preferably made 1:1.4-1:4. The production efficiency is thus remarkably improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 、本発明は、連続鋳造用鋳型、特に、最近注目されてい
る高速鋳造゛用鋳型、電磁ブレーキ付鋳型等の新技術の
採用により鋳型銅板に加わる熱負荷の大きくなる鋳型冷
却に適する連続鋳造用鋳型に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides continuous casting molds, particularly high-speed casting molds that have recently attracted attention, molds with electromagnetic brakes, and other new technologies. The present invention relates to a continuous casting mold suitable for mold cooling, which places a large heat load on the continuous casting mold.

(従来の技術) 連続鋳造用鋳型は第1図に略式で示すように、鋳型lO
を構成する銅板11は溶湯12に接する面13の背面か
ら冷却水によって絶えず冷却されている。
(Prior art) As shown schematically in Fig. 1, a continuous casting mold has a mold lO
The copper plate 11 constituting the molten metal 12 is constantly cooled by cooling water from the back side of the surface 13 in contact with the molten metal 12.

冷却水は給水口16から冷却水路18を上昇し、その間
溶湯からの熱を銅板11の背面から奪いつつ排水口20
に至り、装置外へ排出される。このとき冷却水路18で
の熱交換効率を高めるために、該冷却水路の銅板側には
多数の縦長のスリット(溝)(第2図参@)が設けであ
る。さらに鋳型内における湯面レベル検出用のγ線源2
2およびシンチレーション部24が鋳型近辺に設けられ
ており、そのために銅板11には上記の冷却用スリット
とは別に湯面レベル計測用スリット30(第2図参照)
も同様にして設けられている0図中、T線透過領域を一
点鎖線で示している。このようにして、γ線源22から
のT線をその対向側に設けられたシンチレーション部2
4で受けてそのときのT線透過率を計測して湯面レベル
を測定するのである。そのため、T線透過用にシンチレ
ーション部24の前面の銅板11には他の冷却スリット
と比較して深さの深い(つまり、銅板部の厚さが薄くな
るということ)、そして巾広のスリットが設けられてい
る。第1図において、この部分の構成を階段部25で表
わしている。符号26は鋳型バックフレームを示す。
The cooling water rises through the cooling waterway 18 from the water supply port 16, while absorbing heat from the molten metal from the back surface of the copper plate 11.
and is ejected from the device. At this time, in order to increase the heat exchange efficiency in the cooling channel 18, a large number of vertically long slits (grooves) (see Fig. 2) are provided on the copper plate side of the cooling channel. Furthermore, a gamma ray source 2 for detecting the level of the hot water inside the mold.
2 and a scintillation section 24 are provided near the mold, and for this purpose, the copper plate 11 has a slit 30 for measuring the level of the hot water (see Fig. 2) in addition to the above-mentioned cooling slit.
In Figure 0, which is provided in the same manner, the T-ray transmission area is indicated by a chain line. In this way, the T-rays from the γ-ray source 22 are transmitted to the scintillation section 2 provided on the opposite side.
4 and measure the T-ray transmittance at that time to measure the hot water level. Therefore, the copper plate 11 in front of the scintillation part 24 has a deep slit (that is, the thickness of the copper plate is thinner) and a wider slit compared to other cooling slits for transmitting T-rays. It is provided. In FIG. 1, the configuration of this portion is represented by a staircase portion 25. Reference numeral 26 indicates a mold back frame.

第2図は、このときの鋳型銅板の一部の横断面を示すも
ので、これには冷却用スリット28と湯面レベル計測用
スリット30との両者が設けられている。
FIG. 2 shows a cross section of a part of the mold copper plate at this time, in which both a cooling slit 28 and a molten metal level measuring slit 30 are provided.

ところで、従来は、第2図に示すように、銅板自身を冷
却する冷却スリット28と、T線透過用の湯面レベル計
測用スリット30(以下、「γ線源スリット」とも云う
)が全く別のスリットとして考えられており、各々の機
能のみ100%発揮するように設計されてきた。そのた
めγ線源スリットは、計測の精度を上げるため計測範囲
に相当する銅板部を可及的に薄く削り込んでいた。した
がって、γ線源スリット内は広巾で深さが深くなるため
、そこを流れる水は前述の階段部25で急速に流れが遅
くなり、一般に冷却スリット部を流れる流速の20〜3
0%程度である。
By the way, conventionally, as shown in FIG. 2, the cooling slit 28 for cooling the copper plate itself and the slit 30 for measuring the hot water level for T-ray transmission (hereinafter also referred to as "γ-ray source slit") are completely different. It has been designed to perform 100% of each function. Therefore, in order to improve measurement accuracy, the γ-ray source slit was cut into the copper plate portion corresponding to the measurement range as thin as possible. Therefore, since the inside of the gamma ray source slit is wide and deep, the water flowing there rapidly slows down at the aforementioned step section 25, and generally the flow rate of the water flowing through the cooling slit section is 20 to 3
It is about 0%.

この結果、rllA源スリラスリット内能力が大巾に落
ち、銅板の局部変形となって表われてくる。
As a result, the capacity within the rllA source slit is greatly reduced, which appears as local deformation of the copper plate.

しかもスリット形状、断面の違い等からくる応力集中が
作用し、亀裂発生の原因となっていた。
Moreover, stress concentration caused by differences in slit shape, cross section, etc. acted, causing cracks to occur.

(発明が解決すべき問題点) ところで、近年に至り高速鋳造時の鋳型および電磁攪拌
装置付鋳型、電磁ブレーキ(EMBr)付鋳型等が一般
に広く使用されるようになってきたが、それらの方式に
あっては急速冷却あるいは多量の熱を短時間で除去しな
けらばならず、それらに使用される鋳型銅板は、一般の
鋳型銅板に比べ熱負荷が大きく、従来形の銅板冷却方法
では、γ線源スリットの底部より亀裂、あるいは溶鋼メ
ニスカス近傍の局部変形、つまりγ線源スリットの頂部
より〜100mm程度までの領域における局部変形、等
が短期間に発生し、銅板寿命を縮めると同時に、これを
交換するための生産障害をきたしていた。
(Problems to be Solved by the Invention) In recent years, molds for high-speed casting, molds with electromagnetic stirring devices, molds with electromagnetic brakes (EMBr), etc. have become widely used, but these methods In these cases, rapid cooling or large amounts of heat must be removed in a short period of time, and the molded copper plates used in these applications have a higher heat load than ordinary molded copper plates, so conventional copper plate cooling methods Cracks from the bottom of the γ-ray source slit or local deformation near the molten steel meniscus, that is, local deformation in an area up to about 100 mm from the top of the γ-ray source slit, occur in a short period of time, shortening the life of the copper plate, and at the same time, This caused production problems due to replacement.

かくして、本発明が目的とするのは、冷却能力の著しく
高い連続鋳造用鋳型を提供することであり、さらに前述
のような高速鋳造、電磁攪拌鋳造さらには電磁ブレーキ
鋳造に際しても亀裂、変形の全(生じない長寿命の連続
鋳造用鋳型を提供することである。
Thus, an object of the present invention is to provide a continuous casting mold with extremely high cooling capacity, and furthermore, to completely eliminate cracks and deformation during high-speed casting, electromagnetic stirring casting, and electromagnetic brake casting as described above. (The purpose is to provide a continuous casting mold with a long life that does not occur.

(問題点を解決するための手段) 本発明者らは、上述の目的を達成すべく種々検討を重ね
たが、このような問題を解決するため、γ線源スリット
内を流れる流速に着目した場合、次のような条件を満足
することが必要であることを知見した。
(Means for Solving the Problems) The present inventors have made various studies to achieve the above-mentioned objective, and in order to solve such problems, they focused on the flow velocity flowing inside the γ-ray source slit. In this case, we found that it is necessary to satisfy the following conditions.

■Tγ線源スリット内も流速は6 s/g+in以上を
保持し、しかも、途中で流速の変化をさせない溝形状が
必要である。
(2) It is necessary to maintain a flow velocity of 6 s/g+in or higher in the Tγ ray source slit, and to have a groove shape that does not allow the flow velocity to change midway.

■Tγ線源スリット内流速がγ線源スリット部分以外の
冷却スリット内の流速より大となる溝形状とする。
(2) The groove shape is such that the flow velocity in the T gamma ray source slit is higher than the flow velocity in the cooling slit other than the gamma ray source slit portion.

■Tγ線源スリットの熱応力集中をさけ、且つ、冷却水
流のよどみをな(すべきスリット形状とする。
(2) Shape the slit to avoid concentration of thermal stress in the Tγ-ray source slit and to prevent stagnation of the cooling water flow.

そこで、かかる条件を満足するスリット形状を追求した
結果、予備実験的に各スリット形状を鋳型の下端、上端
を通じて同一形状として流速抵抗、冷却効果をみてみた
ところ、流速で約4倍、鋳型銅板の表面温度で約76℃
低下、総合的な寿命で2〜3倍すぐれていることが分か
り、さらに改良を加え、本発明に到達したものである。
Therefore, as a result of pursuing a slit shape that satisfies these conditions, we conducted a preliminary experiment to examine the flow velocity resistance and cooling effect by making each slit shape the same shape through the lower and upper ends of the mold. Approximately 76℃ at surface temperature
It was found that the overall lifespan was 2 to 3 times better, and further improvements were made to arrive at the present invention.

すなわち、本発明の要旨とするところは、溶湯に接する
面の背面に冷却スリットと湯面レベル計測用スリットを
設けた鋳型銅板から構成される連続鋳造用鋳型であって
、前記冷却スリットと湯面レベル計測用スリットとの深
さ、つまり前述の溶湯に接する面に向かう方向の深さを
同一とし、各スリットの底面のコーナ部に丸みを設けた
横断面形状に形成し、且つ鋳型下端から鋳型上端まで同
一断面形状とし、さらに好ましくは、前記冷却スリット
の巾と前記湯面レベル計測用スリットの巾との比を1:
1.4〜titとなるようにしたことを特徴とする、連
続鋳造用鋳型である。
That is, the gist of the present invention is to provide a continuous casting mold consisting of a mold copper plate having a cooling slit and a slit for measuring the level of the molten metal on the back side of the surface in contact with the molten metal. The depth of the slit for level measurement, that is, the depth in the direction toward the surface in contact with the molten metal described above, is the same, and the bottom corner of each slit is formed in a cross-sectional shape with rounding. The cross-sectional shape is the same up to the upper end, and more preferably, the ratio of the width of the cooling slit to the width of the slit for measuring the hot water level is 1:
This is a continuous casting mold characterized by having a tit of 1.4 to 1.4.

ここに各スリットの底面のコーナ部に丸みを設けるとい
うことは、スリットの横断面における底面形状がいずれ
も曲面から成り、直線部分を有しないことをいう、これ
は熱応力集中をさけるためと冷却水の流れを乱さないた
めである。
The fact that the corners of the bottom of each slit are rounded means that the bottom shape in the cross section of each slit is a curved surface and does not have a straight part.This is to avoid concentration of thermal stress and to improve cooling. This is to avoid disturbing the flow of water.

ただし、後述するようにそのときの曲率半径の最大値を
5R(ただし、Rはスリット巾)とし、それを越えると
きは底部中心部はフラット面としてもよい。
However, as will be described later, the maximum value of the radius of curvature at that time is set to 5R (where R is the slit width), and when exceeding this value, the center portion of the bottom may be a flat surface.

一般に湯面レベル計測用スリットは一本であるが、冷却
スリットは冷却効果を高めるためできるだけ多く設ける
のが良く、通常、4.5〜6.5c+s当り約3本位設
けられている0本発明において湯面レベル計測用スリッ
トの巾と各冷却スリットの巾との比を1.4:1〜4:
1としているが、それは、湯面レベル計測用スリットが
これより狭いとγ線透過量が十分でな(、一方、4倍超
に広巾になると、本発明の場合、この部分だけ冷却が過
度に生じるからである。
Generally, there is one slit for measuring the hot water level, but it is better to provide as many cooling slits as possible to enhance the cooling effect, and usually about three slits are provided for every 4.5 to 6.5 c+s. The ratio of the width of the slit for measuring the hot water level to the width of each cooling slit is 1.4:1 to 4:
1, but this is because if the slit for measuring the level of the hot water level is narrower than this, the amount of gamma rays transmitted will not be sufficient. This is because it occurs.

次に図面を参照して本発明をさらに説明すると、第3図
は本発明において採用する各スリットの横断面を示す、
第3図に示すように鋳型下端から上端の全長に渡って、
銅板11に同一形状(巾×深さ×底形状)の冷却スリッ
ト28および湯面レベル計測用スリット30を設ける。
Next, the present invention will be further explained with reference to the drawings. FIG. 3 shows a cross section of each slit employed in the present invention.
As shown in Figure 3, over the entire length of the mold from the bottom end to the top end,
A cooling slit 28 and a hot water level measuring slit 30 having the same shape (width x depth x bottom shape) are provided on the copper plate 11.

このような形状にすることにより、冷却スリットおよび
特に湯面レベル計測用スリットの途中での断面変化をな
くし、そこを流れる冷却水の流速の低下および形状変化
部における流れのよどみをなくした。
By adopting such a shape, cross-sectional changes in the middle of the cooling slit, especially the slit for measuring the hot water level, are eliminated, and a decrease in the flow rate of the cooling water flowing therethrough and stagnation of the flow in the shape-changing portion are eliminated.

なお、冷却スリット28および湯面レベル計測用スリッ
ト30の底面は曲面で構成されているが、これは冷却水
の流れを一定にするということから特に必要とされるも
のではないが、断面形状の変化を可及的になくすことに
より熱応力集中をできるだけ少なくするためにそうして
いるのである。
Note that the bottom surfaces of the cooling slit 28 and the slit 30 for measuring the level of the hot water level are configured with curved surfaces, but this is not particularly necessary in order to maintain a constant flow of cooling water. This is done to minimize thermal stress concentration by eliminating changes as much as possible.

すでに述べたように、湯面レベル計測用スリット30は
他の冷却スリット28の巾よりも、広くし、その比率は
、i:t、4〜1:4になるようにすることが好ましい
、この範囲はγ線透過量とこの部分の冷却効果がバラン
スする範囲である。
As already mentioned, it is preferable that the slit 30 for measuring the hot water level be made wider than the width of the other cooling slits 28, and that the ratio is i:t, 4 to 1:4. The range is a range where the amount of γ-ray transmission and the cooling effect of this part are balanced.

なお、γ線源スリットと、他の冷却スリット中が同一な
らば流速は同一である。ちなみに、第1図の鋳型を使っ
た場合、γ線源スリットと他の冷却スリットの巾の比が
、2:1のときの流速の比較を下掲第1表に示す、この
ようにγ線源スリットの方が流速が早いのは、他よりも
広巾であるため流水抵抗が少ないためである。
Note that if the γ-ray source slit and other cooling slits are the same, the flow velocity is the same. By the way, when the mold shown in Figure 1 is used, the comparison of the flow velocity when the width ratio of the gamma ray source slit and the other cooling slit is 2:1 is shown in Table 1 below. The reason why the flow rate is faster in the source slit is because it is wider than the other slits, so there is less water resistance.

第1表 れぞれ同一にし、銅板残厚を同一にすることにより、r
llAR部の銅板許容応力を下げることになり、γ線源
スリットの底部に丸みを設ける(ただし、R5を越える
とフラット面+コーナ一部R5)ことにより応力集中を
さけることができ、これにより熱亀裂や変形を防止でき
る。また、その場合、冷却水の流れの乱れもなく、流水
抵抗は最少となる。
By making each first surface the same and making the remaining thickness of the copper plate the same, r
This will lower the allowable stress of the copper plate in the llAR section, and by rounding the bottom of the γ-ray source slit (however, if it exceeds R5, the flat surface + corner part R5) can avoid stress concentration. It can prevent cracks and deformation. Further, in this case, there is no disturbance in the flow of cooling water, and the water flow resistance is minimized.

次に、同様にして鋳込み速度を変えたときの鋳型表面温
度が各スリット形状の変化によってどのように変化する
かをみてみた。結果は下掲第2表にまとめて示す0表中
、地点A、地点Bというのは第2図および第3図におけ
るA点、B点での測定温度をいう。
Next, we looked at how the mold surface temperature changes when the casting speed is changed in the same way as the shape of each slit changes. The results are summarized in Table 2 below. In Table 0, points A and B refer to the temperatures measured at points A and B in FIGS. 2 and 3.

第2表 このように、本発明によれば、各スリットを鋳型下端か
ら上端に同一形状で通すことにより、各スリット入口で
の流速からスリット出口迄の流速が一定速となる。  
Table 2 As described above, according to the present invention, by passing each slit in the same shape from the lower end of the mold to the upper end, the flow velocity from the inlet of each slit to the outlet of the slit becomes constant.
.

したがうて、T線源部(鋳型頂部近傍を含む)の流速が
大巾に向上し、銅板冷却効果が向上した。
Therefore, the flow velocity in the T-ray source (including the vicinity of the top of the mold) was greatly improved, and the copper plate cooling effect was improved.

この結果、T線源部の局部変形がなくなり、銅板寿命が
従来の2〜3倍あるいはそれ以上となった。
As a result, there is no local deformation of the T-ray source, and the lifespan of the copper plate is two to three times longer than that of the conventional one.

また、冷却能率が向上したため、鋳込速度に応じて銅板
材質を高強度の高級品に替える必要がなくなった、した
がって、銅板のコストダウン、例えば30〜40%ダウ
ンが図られる。
Furthermore, since the cooling efficiency has been improved, it is no longer necessary to change the material of the copper plate to a high-strength, high-grade product depending on the casting speed.Therefore, the cost of the copper plate can be reduced, for example, by 30 to 40%.

さらに、銅板の各スリット形状を本発明により改良する
ことにより、γ線源スリットへの応力集中が卵常に小さ
くなり、亀裂の発生が皆無となった。このように亀裂が
なくなったのは、冷却効果と、断面形状との相乗効果で
あると考えられる。
Furthermore, by improving the shape of each slit in the copper plate according to the present invention, the stress concentration on the γ-ray source slit was constantly reduced, and no cracks were generated. This elimination of cracks is thought to be due to the synergistic effect of the cooling effect and the cross-sectional shape.

(発明の効果) か(して、本発明によれば、実際の操業上の利益として
= ■鋳型取替数が減少し、生産能率の大巾向上が図られる
; ■鋳型取替数が減少し、整備コストの大巾削減が可能で
ある;そして ■安定操業による、品質向上、エネルギー回収の高効率
化が実現できる 等の効果、利益が得られるのである。
(Effects of the invention) According to the present invention, the actual operational benefits are as follows: ■ The number of mold replacements is reduced, and production efficiency is greatly improved; ■ The number of mold replacements is reduced. It is possible to significantly reduce maintenance costs; and ■ benefits such as improved quality and highly efficient energy recovery can be achieved through stable operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、連続鋳造鋳型の略式縦断面図;第2図は、従
来の鋳型銅板の一部の横断面図;および 第3図は、本発明に係る鋳型銅板の一部の横断面図であ
る。 10 : n型     11 : #l;4板12:
溶湯    13:面 16:給水口    18:冷却水路 20:排水口    22:γ線源 24:シンチレーション部
FIG. 1 is a schematic longitudinal cross-sectional view of a continuous casting mold; FIG. 2 is a partial cross-sectional view of a conventional mold copper plate; and FIG. 3 is a partial cross-sectional view of a mold copper plate according to the present invention. It is. 10: n-type 11: #l; 4 plates 12:
Molten metal 13: Surface 16: Water supply port 18: Cooling channel 20: Drain port 22: γ-ray source 24: Scintillation section

Claims (2)

【特許請求の範囲】[Claims] (1)溶湯に接する面の背面に冷却スリットと湯面レベ
ル計測用スリットを設けた鋳型銅板から構成される連続
鋳造用鋳型であって、前記冷却スリットと湯面レベル計
測用スリットとの深さを同一とし、各スリットの底面の
コーナ部に丸みを設けた横断面形状に形成し、且つ鋳型
下端から鋳型上端まで同一断面形状としたことを特徴と
する、連続鋳造用鋳型。
(1) A mold for continuous casting consisting of a copper plate with a cooling slit and a slit for measuring the level of the molten metal on the back side of the surface in contact with the molten metal, the depth of the cooling slit and the slit for measuring the level of the molten metal A mold for continuous casting, characterized in that each slit has the same cross-sectional shape with rounded bottom corners, and has the same cross-sectional shape from the lower end of the mold to the upper end of the mold.
(2)前記冷却スリットの巾と前記湯面レベル計測用ス
リットの巾との比を1:1.4〜1:4となるようにし
た、特許請求の範囲第1項記載の連続鋳造用鋳型。
(2) The mold for continuous casting according to claim 1, wherein the ratio of the width of the cooling slit to the width of the slit for measuring the level of hot water is 1:1.4 to 1:4. .
JP4941385A 1985-03-14 1985-03-14 Mold for continuous casting Granted JPS61209748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4941385A JPS61209748A (en) 1985-03-14 1985-03-14 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4941385A JPS61209748A (en) 1985-03-14 1985-03-14 Mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS61209748A true JPS61209748A (en) 1986-09-18
JPH0256981B2 JPH0256981B2 (en) 1990-12-03

Family

ID=12830370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4941385A Granted JPS61209748A (en) 1985-03-14 1985-03-14 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS61209748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611390A (en) * 1994-06-06 1997-03-18 Danieli & C. Officine Meccaniche Spa Continuous-casting crystalliser with increased heat exchange and method to increase the heat exchange in a continuous-casting crystalliser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152351A (en) * 1981-03-16 1982-09-20 Mishima Kosan Co Ltd Mold for continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152351A (en) * 1981-03-16 1982-09-20 Mishima Kosan Co Ltd Mold for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611390A (en) * 1994-06-06 1997-03-18 Danieli & C. Officine Meccaniche Spa Continuous-casting crystalliser with increased heat exchange and method to increase the heat exchange in a continuous-casting crystalliser

Also Published As

Publication number Publication date
JPH0256981B2 (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US3447592A (en) Cooling apparatus for differentially cooling a continuous casting
CN108838352B (en) Crystallizer with double water jacket structure
ITMI961243A1 (en) DIVER FOR CONTINUOUS CASTING OF THIN SLABS
US4079911A (en) Battery grid casting mold
JPH01210153A (en) Casting device for continuous casting
RU2142863C1 (en) Plate mould for production of copper ingots
JPS61209748A (en) Mold for continuous casting
RU2414986C1 (en) Continuous casting crystalliser with coolant duct
JPH11267794A (en) Casting mold cooled by liquid
EP3909703A1 (en) Method for continuous casting of slab
CA2415517C (en) Chill tube
JP3930761B2 (en) Tube type continuous casting mold
US4480679A (en) Chill mold for multiple continuous casting of wires and casting strands with small cross-sections from metal
CN109475930B (en) Continuous casting mold and method for continuous casting of steel
CN103008584B (en) The cooling device of Casting Al-Li Alloy slab ingot and application process
US3542119A (en) Cooling device for continuous casting of strip metal
US2224303A (en) Process and mechanism for treating metals or metal alloys in a molten state
JP4261272B2 (en) Continuous casting mold
CN109843473B (en) Continuous casting mold and method for continuous casting of steel
JP2020121329A (en) Mold and method for steel continuous casting
CN105328172A (en) Aluminium alloy circular ingot cast shunting plate
CN218744744U (en) Horizontal continuous casting graphite crystallizer
JP2020138223A (en) Manufacturing method and manufacturing device for metal continuously cast bar
JPH0810905A (en) Continuous casting mold for slab
JP4219123B2 (en) Continuous casting mold