JPS61208721A - Manufacture of cathode for electron tube - Google Patents

Manufacture of cathode for electron tube

Info

Publication number
JPS61208721A
JPS61208721A JP5190285A JP5190285A JPS61208721A JP S61208721 A JPS61208721 A JP S61208721A JP 5190285 A JP5190285 A JP 5190285A JP 5190285 A JP5190285 A JP 5190285A JP S61208721 A JPS61208721 A JP S61208721A
Authority
JP
Japan
Prior art keywords
suspension
cathode
metal powder
metal
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5190285A
Other languages
Japanese (ja)
Inventor
Masato Saito
正人 斉藤
Keiji Fukuyama
福山 敬二
Keiji Watanabe
渡辺 勁二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5190285A priority Critical patent/JPS61208721A/en
Publication of JPS61208721A publication Critical patent/JPS61208721A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To reduce the decrease in an electron emission current during the life of a cathode, by mixing a powder of a metal with a prescribed lower alcohol ester to prepare a suspension, and by coating the main surface of an Ni base with the suspension, and sintering them in a reducing atmosphere. CONSTITUTION:1 part by volume of a metal Ni powder of 7-8mum in mean grain diameter is mixed with 2.5 parts by volume of a mixed liquid consisting of 20wt% of an isobutyl metaacrylate and the rest of amyl alcohol, to prepare a metal powder suspension 10. The main surface of an Ni base 1 is coated with the suspension 10 by using a punched metal plate 6 and a squeegee 11. The main surface and the suspension 10 coating it are heated at a temperature of 800 deg.C under hydrogen for 10min to make a sintered layer which has a large void ratio and contains less residues. The decrease in an electron emission current during the life of a cathode is thus reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、テレビジョン受像管などに使用される電子
管陰極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an electron tube cathode used in a television picture tube or the like.

〔従来の技術〕[Conventional technology]

第3図はたとえば特開昭58−186128号公報に開
示された従来の電子管陰極の概略を示す縦断面図である
。図において、(1)はNi1陰極基体C以下、Ni基
体という)で、とのNi基体(1)はSt 、Zr、M
g、AI 、Wなどのうち少なくとも一種の還元性元素
を含む。
FIG. 3 is a longitudinal sectional view schematically showing a conventional electron tube cathode disclosed in, for example, Japanese Patent Application Laid-Open No. 186128/1983. In the figure, (1) is the Ni1 cathode substrate C (hereinafter referred to as Ni substrate), and the Ni substrate (1) is St, Zr, M
Contains at least one reducing element among g, AI, W, etc.

(2)はこのNi基体(1)の主面上に層状(被着され
たN1金鵬粉末の焼結層(以下、焼結層という)で、こ
の焼結層(2)は、たとえば7〜50゛ミクロン(μm
)の岸さに形成されている。
(2) is a sintered layer (hereinafter referred to as sintered layer) of N1 gold powder deposited on the main surface of this Ni substrate (1), and this sintered layer (2) is, for example, 50゛micron (μm
) is formed on the shore of the river.

(3)はこの焼結層(2)の上に形成された電子放射性
酸化物層(以下、酸化物層という)、(4)はこの酸化
物層(3)を適正な動作温度に加熱するヒータであるO 上記焼結層および酸化物層は、以下の工程で形成される
(3) is an electron-emitting oxide layer (hereinafter referred to as oxide layer) formed on this sintered layer (2), and (4) is heating this oxide layer (3) to an appropriate operating temperature. The sintered layer and the oxide layer, which are heaters, are formed in the following steps.

まず、粒径3〜4ミクロンのNi金金粉粉末、ニトロセ
ルローズと、酢酸ブチルとを混合してNi金金粉粉末懸
濁液を調整し、それをNi基体(1)の主面上にスプレ
ィ法や印刷法によって、約30ミクロンの厚さに塗布し
、これを水素券囲気中忙おいて約1000℃で10分間
加熱するThM処理を施こして、還元されたNi金金粉
粉末焼1fli層(2)を形成する。
First, Ni gold powder with a particle size of 3 to 4 microns, nitrocellulose, and butyl acetate are mixed to prepare a Ni gold powder suspension, which is sprayed onto the main surface of the Ni substrate (1). This is coated to a thickness of about 30 microns using a printing method, and then subjected to a ThM treatment in which it is heated at about 1000°C for 10 minutes in a hydrogen gas atmosphere to form a 1fli layer of reduced Ni gold powder ( 2) Form.

つぎに、Ba s S r e Caの三元炭酸塩に、
ニトロセルローズと、酢酸ブチルとを加えて混合した懸
濁液を、焼結層(2)の上にスプレィ法や、印刷法によ
って約100ミクロンの厚さに塗布し、乾燥させたのち
、電子管の製造過程において真空中加熱する活性化を施
こして酸化物層(3)を形成する。
Next, to the ternary carbonate of Bas S r e Ca,
A mixed suspension of nitrocellulose and butyl acetate is applied onto the sintered layer (2) to a thickness of about 100 microns by spraying or printing, and after drying, the electron tube is During the manufacturing process, activation is performed by heating in vacuum to form an oxide layer (3).

この活性化処理においては、まず、三元炭酸塩が(1)
式に示すような金属酸化物に分解される。
In this activation process, first, the ternary carbonate is (1)
It decomposes into metal oxides as shown in the formula.

(Ba、Sr、Ca)Co3→ (Ba 、Sr 、Ca )o+co2・・−(1)つ
いで、Ni基体(1)中に含有されているSL。
(Ba, Sr, Ca) Co3→ (Ba, Sr, Ca) o+co2...-(1) Next, SL contained in the Ni base (1).

Z r 、 M g 、 A I 、 Wなどの微量の
還元性元素が焼結層(2)の表面上に拡散し、たとえば
(2)式に示すように、全編酸化物中のBaOを還元す
る。
Trace amounts of reducing elements such as Z r , M g , A I , and W diffuse onto the surface of the sintered layer (2) and reduce BaO in the entire oxide, as shown in equation (2), for example. .

BaO+M’g−+Ba+MgO・・・(2)これによ
って、電子放射に有効なりaを生成し、同時1cNi基
体の表面や、焼結層内にMgOなどの環元性元素の酸化
物が形成される。これらの酸化物は高抵抗で、陰極の導
電性を低下させるけれども、多孔質である焼結層の特質
から、これらの酸化物による導電性低下が抑制され、1
〜2A/dの高電流密度の電子放射が可能な一極が得ら
れる。
BaO+M'g-+Ba+MgO... (2) This produces a, which is effective for electron emission, and at the same time forms oxides of cyclic elements such as MgO on the surface of the 1cNi substrate and within the sintered layer. . Although these oxides have high resistance and reduce the conductivity of the cathode, the porous nature of the sintered layer suppresses the decrease in conductivity due to these oxides, and 1
A single pole capable of electron emission with a high current density of ~2 A/d is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電子管−極の製造方法は、以上のようになされて
訃り、以下の問題があった。
The conventional electron tube-electrode manufacturing method failed as described above and had the following problems.

金属粉末懸濁液には、ニトロセルローズを多く含有して
いるラッカを用いるので、焼結処理工程において、ニト
ロセルローズを十分に分解させ、その浅さによる電子放
射特性への悪影響を避けるためには、1000℃以上の
高温度で加熱する必要があった0このため、焼結層の焼
結状態が過度となり、焼結層の多孔性(空孔率)が不十
分となつ・て、Ni金属粒子と酸化物層との接触面積が
少なくな〕、活性化処理工程における三元炭酸塩の分解
過程、および活性化過程においてs N 1基体内から
StやMgなどの還元性元素が焼結層内に拡散してきて
も、ば化物層内のアルカリ土類金属酸化物との反応が不
十分となり、寿命期間中の電子放出電流の低下が大きい
という問題点があった。
Since a lacquer containing a large amount of nitrocellulose is used for the metal powder suspension, it is necessary to sufficiently decompose the nitrocellulose during the sintering process and avoid any negative effects on the electron emission characteristics due to its shallowness. , it was necessary to heat the sintered layer at a high temperature of 1000°C or higher.As a result, the sintered layer became excessively sintered, and the porosity (porosity) of the sintered layer became insufficient. [The contact area between the particles and the oxide layer is small], and during the decomposition process of the ternary carbonate in the activation treatment process, and during the activation process, reducing elements such as St and Mg from within the sN1 substrate are absorbed into the sintered layer. Even if the electrons diffuse into the interior, the reaction with the alkaline earth metal oxide in the baride layer is insufficient, resulting in a problem in that the electron emission current decreases significantly during the lifetime.

この発明は、かかる間趙点の解消を目的としてなされた
もので、空孔率が十分に大きい焼結層を形成することが
でき、もって寿命期間中の電子放出電流の低下の少ない
電子f@極の製造方法を提供することを目的とする。
This invention was made with the aim of eliminating such a sintered point, and it is possible to form a sintered layer with a sufficiently large porosity, thereby reducing the drop in electron emission current during the life of an electron f@ The purpose of the present invention is to provide a method for manufacturing poles.

〔問題を解決するための手段〕[Means to solve the problem]

この発明による電子管−極の製造方法は、金属粉末と、
低級アルコールと、メタアクリル酸の低級アルコールエ
ステルとを混合してなる懸濁液を、Ni基体の主面上に
層状に被着し、還元性雰囲気で800〜990℃で焼結
することを特徴とする。
The method for manufacturing an electron tube-electrode according to the present invention includes metal powder,
A suspension consisting of a mixture of a lower alcohol and a lower alcohol ester of methacrylic acid is deposited in a layer on the main surface of a Ni substrate and sintered at 800 to 990°C in a reducing atmosphere. shall be.

〔作用〕[Effect]

金属粉末懸濁液の調整に使用するメタアクリル酸低級ア
ルコールエステルは、ニトロセルローズに比べて分解温
度が低く、分解速反も速い。したがって、焼結処理工程
における加熱温度を低くすることができ、焼結層の空孔
率を大きくすることができる。また、焼結層中の浅さも
少なくなシ、電子放射特性への悪影響も軽減できるので
、酸化物層を、良い活性化状態にすることができる。
The methacrylic acid lower alcohol ester used to prepare the metal powder suspension has a lower decomposition temperature and faster decomposition rate than nitrocellulose. Therefore, the heating temperature in the sintering process can be lowered, and the porosity of the sintered layer can be increased. In addition, since the sintered layer is less shallow, the adverse effect on electron emission characteristics can be reduced, so the oxide layer can be brought into a good activated state.

〔発明の実施例〕[Embodiments of the invention]

第1図は、メタル孔版とスキージを用いて、N1基体の
主面上に、金属粉末懸濁液を塗布する状態を示す断面図
、第2図はメタル孔版の平面図で、(5)はNi金属基
板(1)を垂直に保持する固定部材、(6)はメタル孔
版で、中央部にs N im体(1)よりわずかに小さ
い透孔(7)が形成されている薄い金輌板(5)と、こ
れを保持する枠(7)とで構成され、固定部材(5)上
に位置決めして載置したとき、透孔(7)がNi基体(
1)の主面上に同軸に位置し、その透孔(7)の周縁で
、Ni基体(1)の主面に当接するように構成されてい
る。(10)は金属粉末懸濁液、αDはスキージである
Fig. 1 is a cross-sectional view showing a state in which a metal powder suspension is applied onto the main surface of the N1 substrate using a metal stencil and a squeegee, and Fig. 2 is a plan view of the metal stencil. The fixing member that holds the Ni metal substrate (1) vertically, (6) is a metal stencil, a thin metal plate with a through hole (7) slightly smaller than the s N im body (1) formed in the center. (5) and a frame (7) that holds it, and when positioned and placed on the fixing member (5), the through hole (7)
It is located coaxially on the main surface of the Ni substrate (1) and is configured to abut on the main surface of the Ni substrate (1) at the periphery of the through hole (7). (10) is a metal powder suspension, and αD is a squeegee.

まず、比較例として、従来の製法により焼結層を形成し
た。
First, as a comparative example, a sintered layer was formed using a conventional manufacturing method.

平均粒径7〜8μmのNi金金粉粉末、ニトロセルロー
ズと、酢酸ブチルとを混合して金属粉末懸濁液を調整し
、これをスプレィ法によって、焼結層の厚さ20μmを
目標にして、Ni基体(1)の主面上に塗布し、水素中
で、1000℃、10分間加熱する焼結処理を施した。
A metal powder suspension was prepared by mixing Ni gold powder with an average particle size of 7 to 8 μm, nitrocellulose, and butyl acetate, and this was sprayed using a spray method, aiming at a sintered layer thickness of 20 μm. It was applied onto the main surface of the Ni substrate (1) and subjected to a sintering treatment of heating at 1000° C. for 10 minutes in hydrogen.

このようKして製造した試料数30個の膜厚測定を行っ
た結果は、ばらつきは、8〜30μm、平均値は12μ
mであった。また、塗布面を顕微鏡で観察した結果、均
一な塗布状態を示していなかった◎ つき′に、この発明の一実施例を説明する。
As a result of measuring the film thickness of 30 samples manufactured in this way, the variation was 8 to 30 μm, and the average value was 12 μm.
It was m. Further, as a result of observing the coated surface under a microscope, it was found that the coated surface was not uniformly coated.An example of the present invention will be described below.

平均粒径7〜8μmのNi金属粉末1容に、20 w 
t Xのインブチルメタアクリレートと、アミルアルコ
ールとの混合液2..5容とを混合して金属粉末懸濁液
(以下、懸濁液という)を調製した。
20 w per volume of Ni metal powder with an average particle size of 7 to 8 μm
2. Mixture of inbutyl methacrylate of tX and amyl alcohol. .. A metal powder suspension (hereinafter referred to as suspension) was prepared by mixing 5 volumes of the metal powder.

この懸濁液を、メタル孔版(6)と、スキージ(11J
とを用いて、Nl基体(1)の主面上に塗布し、水素中
で800℃、10分間加熱する焼結処理を施して焼結層
(2)を形成した。
Spread this suspension using a metal stencil (6) and a squeegee (11J).
was applied onto the main surface of the Nl substrate (1) and subjected to a sintering treatment of heating at 800° C. for 10 minutes in hydrogen to form a sintered layer (2).

このようにして製造した試料30個の膜厚測定を行なっ
た結果は、はらつきが19〜21μm。
The results of measuring the film thickness of 30 samples produced in this manner showed that the variation was 19 to 21 μm.

平均値が20μmであった。また、塗布面は、均一な塗
布面であった。
The average value was 20 μm. Moreover, the coated surface was a uniform coated surface.

このようにして作成した焼結層(2)の上に、三元炭酸
塩懸濁液をスプレィ法によって100μmの厚さに塗布
した陰極を使用して、二極真空管を製造し°て試験した
ところ、−極温度700〜800℃で1〜2A/−の電
子放射が得られることが確認された。
A diode vacuum tube was manufactured and tested using a cathode coated with a ternary carbonate suspension to a thickness of 100 μm by spraying on the sintered layer (2) thus prepared. However, it has been confirmed that electron emission of 1 to 2 A/- can be obtained at a -polar temperature of 700 to 800°C.

つぎに、上記比較例として従来製法によって製造した陰
極と、上記実施例によって製造した陰極とを、それぞれ
10個ずつカラーブラウン管に実装して1.6A/−の
電流密度で寿命試験を行ない、6000時間動作させた
後の電子放出電流を測定した。結果は、比較例のものが
、初期放出電流の59〜80%で、その平均値は7.1
%であるのに対し、実施例のものは、初期放出電流の8
3〜94%で、その平均値は89%であった。
Next, as a comparative example, 10 cathodes manufactured by the conventional method and 10 cathodes manufactured by the above example were mounted on a color cathode ray tube, and a life test was conducted at a current density of 1.6 A/-. The electron emission current was measured after operating for a certain period of time. The results showed that the comparative example had 59 to 80% of the initial emission current, and the average value was 7.1.
% of the initial emission current, whereas that of the example is 8% of the initial emission current.
The average value was 89%, ranging from 3 to 94%.

このように、この陰極における埒命特性のばらつきが少
なく、かつ、放出電流密度の低下が少ない原因は以下の
理由によるものと考えられる。
The reason why there is little variation in the life characteristics of this cathode and little decrease in emission current density is considered to be due to the following reasons.

バインダであるインブチルメタアクリレートは、分解温
度が低いので、分解時に発生する003などのガスと、
焼結層を構成するNi 、Ni金属基板中のNi、St
、Mgなどとの反応が抑制され、5i02やMgOなど
の高抵抗物質の生成が少なくなる。また、焼結層内の浅
さであるCも少ないので、このCと、酸化物層内のアル
カリ土類金Jii酸化、物との反応が抑制されるので、
電子放射特性への悪影響が少なくなる。また、加熱温度
が低いので、焼結層の空孔率が大となり、焼結層と、酸
化物層との接触面積が増大し、Nl基体中から、焼結層
の中に拡散してきたStやMgなどの還元性元素と、ア
ルカリ土類金属酸化物との反応が十分に行なわれ、さら
に、空孔率の増加も相まって。
Inbutyl methacrylate, which is a binder, has a low decomposition temperature, so it is easily separated from gases such as 003 generated during decomposition.
Ni constituting the sintered layer, Ni in the Ni metal substrate, St
, Mg, etc., and the generation of high-resistance substances such as 5i02 and MgO is reduced. In addition, since there is little C at a shallow depth within the sintered layer, the reaction between this C and alkaline earth gold oxidation and materials within the oxide layer is suppressed.
The negative effect on electron emission characteristics is reduced. In addition, since the heating temperature is low, the porosity of the sintered layer increases, and the contact area between the sintered layer and the oxide layer increases, causing St to diffuse into the sintered layer from the Nl substrate. The reaction between reducing elements such as and Mg and alkaline earth metal oxides is sufficiently carried out, and the porosity is also increased.

還元反応の生成物であるStO,やMgOなどによる導
電性の低下が抑制されるためである。
This is because reduction in conductivity due to products of the reduction reaction, such as StO and MgO, is suppressed.

第3図は、焼結処理工程における加熱温匿と、寿命試験
終了時の電流放出電流との関係を示す特性図で、加熱時
間を750℃から1050℃ま÷変え、加熱時間はそれ
ぞれ10分間とした試料を、カラーブラウン管に実装し
、1.6A/cIIの電流密度で6000時間作動後作
動子放出電流を、初期放出電流に対する相対値で示した
ものである。この結果かられかるように、800℃未満
および990℃を越えると、相対放電電流1[ilを急
凍に低下する。この原因は、以下の理由による本のと考
えられる。
Figure 3 is a characteristic diagram showing the relationship between heat retention in the sintering process and the current emission current at the end of the life test.The heating time was varied from 750°C to 1050°C, and the heating time was 10 minutes each. The sample was mounted on a color cathode ray tube, and the actuator emission current after 6000 hours of operation at a current density of 1.6 A/cII is shown as a relative value to the initial emission current. As can be seen from this result, when the temperature is lower than 800°C and higher than 990°C, the relative discharge current 1 [il] decreases to a sudden freeze. This is thought to be due to the following reasons.

加熱温度が800℃未満では、焼結層の焼結不足のため
に、動作時に焼結層とば化物層との間が剥離現象を起し
たり、懸濁液のバインダの残さが残って、筒電流冨夏の
維持が困難になるためと考えられる。また、990℃を
越えると、焼結層の焼結が過度になるため、Ni基体中
の還元性元素の酸化物ノーへの拡散が不十分になったり
、焼結層と酸化物層との接触が不十分となシ、高電流密
度の維持が困難になるためである。
If the heating temperature is less than 800°C, the sintered layer may be insufficiently sintered, resulting in peeling between the sintered layer and the carbide layer during operation, or residues of the binder in the suspension may remain. This is thought to be because it becomes difficult to maintain the tube current. Moreover, if the temperature exceeds 990°C, the sintering of the sintered layer becomes excessive, resulting in insufficient diffusion of reducing elements in the Ni substrate into the oxide layer, or This is because if the contact is insufficient, it will be difficult to maintain a high current density.

ところで、上記実施例では、焼結層を、Ni金属粉末で
形成した例を説明したが、COまたはNiと、Coとを
含む金属粉末で焼結層を形成する場合にも+5J様の効
果が得られる。
Incidentally, in the above embodiment, an example was explained in which the sintered layer was formed with Ni metal powder, but the +5J-like effect can also be obtained when the sintered layer is formed with CO or metal powder containing Ni and Co. can get.

また、上記実施例では、バインダに、インブチルメタア
クリレートを、溶剤にアミルアルコールを用いた例を示
したが、この例のほか、バインダには、メチルメタアク
リレート、エチルメタアクリレートなどのメタアクリル
酸低歌アルコールエステルを一極または二種を混合した
ものを、また、浴剤には、アミルアルコールのほか、ブ
チルアルコールなどの低級アルコールを一種または二種
以上を混合したものを用いて、同様の効果が侍られ九〇 〔発明の効果〕 この発明の詳細な説明したように、NiまたはCoのう
ち少なくとも一種からなる金属粉末と、低級アルコール
と、メタアクリル酸の低級アルコールエステルとを混合
してなる金属粉末懸濁液を、Ni基体の主面上に塗布し
、還元界1気で800〜990℃で焼成して焼結層を形
成するものであるから、空孔率が大きく、浅さの少ない
焼結層を形成することができ、その結果、N命期間中の
電子放出電流の少ない奄子管隙極が侍られる。
In addition, in the above example, an example was shown in which inbutyl methacrylate was used as a binder and amyl alcohol was used as a solvent. Use one or a mixture of two types of low alcohol esters, and use one or a mixture of two or more types of lower alcohols such as amyl alcohol as well as butyl alcohol for bath additives. [Effects of the Invention] As described in detail of this invention, a metal powder made of at least one of Ni or Co, a lower alcohol, and a lower alcohol ester of methacrylic acid are mixed. A sintered layer is formed by applying a metal powder suspension of As a result, a sintered layer with less electron emission current can be formed during the N life period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明で適用するメタル孔版とスキージと
を用いた金属粉末懸濁液の堡布方法を説明するための断
面図、第2図は、メタル孔版の平面図、第3図は、焼結
層の加熱処理温度と、寿命試験後の相対放出電流との関
係を示す特性図、第4図は、を子骨陰極の縦断i1[i
図である。 (1)・・・Ni[極基体、(2)・・・Ni粉末焼結
層、(3)・・・電子放射性は化物層、αα・・・金属
粉末懸濁液。 なお、図中、同一符号はそれぞれ同一部分を示す。
FIG. 1 is a sectional view for explaining the method of spreading a metal powder suspension using a metal stencil and a squeegee applied in the present invention, FIG. 2 is a plan view of the metal stencil, and FIG. , a characteristic diagram showing the relationship between the heat treatment temperature of the sintered layer and the relative emission current after the life test.
It is a diagram. (1)...Ni [polar substrate, (2)...Ni powder sintered layer, (3)...electron emissive compound layer, αα...metal powder suspension. In addition, in the figures, the same reference numerals indicate the same parts.

Claims (3)

【特許請求の範囲】[Claims] (1)還元性元素を含むNi陰極基体の主面に、Niま
たはCoのうち少なくとも一種からなる金属粉末を含む
金属粉末懸濁液を層状に被着したのち焼結して上記金属
粉末の焼結層を形成し、この焼結層上にBaなどのアル
カリ土類金属のうち少なくとも一種のアルカリ土類金属
炭素塩を含む炭酸塩懸濁液を層状に被着して焼結する電
子核陰極の製造方法において、上記金属粉末懸濁液を、
上記金属粉末と、低級アルコールと、メタアクリル酸の
低級アルコールエステルとを混合してなる懸濁液を上記
Ni陰極基体の主面上に被着し、還元性雰囲気で800
〜990℃で焼結する工程を含むことを特徴とする電子
管陰極の製造方法。
(1) A metal powder suspension containing a metal powder made of at least one of Ni or Co is deposited in a layer on the main surface of a Ni cathode substrate containing a reducing element, and then sintered to sinter the metal powder. An electron nuclear cathode in which a carbonate suspension containing at least one kind of alkaline earth metal carbonate among alkaline earth metals such as Ba is deposited on the sintered layer in a layered manner and sintered. In the manufacturing method, the metal powder suspension is
A suspension obtained by mixing the metal powder, a lower alcohol, and a lower alcohol ester of methacrylic acid was deposited on the main surface of the Ni cathode substrate, and
A method for manufacturing an electron tube cathode, comprising a step of sintering at a temperature of ~990°C.
(2)低級アルコールは、アミルアルコールまたはブチ
ルアルコールのうち少なくとも一種からなる特許請求の
範囲第1項記載の電子管陰極の製造方法。
(2) The method for producing an electron tube cathode according to claim 1, wherein the lower alcohol is at least one of amyl alcohol and butyl alcohol.
(3)メタアクリル酸の低級アルコールエステルは、メ
チルメタアクリレイト、エチルメタアクリレイトまたは
ブチルメタアクリレイトのうち少なくとも一種からなる
特許請求の範囲第1項または第2項記載の電子管陰極の
製造方法。
(3) The method for producing an electron tube cathode according to claim 1 or 2, wherein the lower alcohol ester of methacrylic acid is at least one of methyl methacrylate, ethyl methacrylate, and butyl methacrylate. .
JP5190285A 1985-03-13 1985-03-13 Manufacture of cathode for electron tube Pending JPS61208721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190285A JPS61208721A (en) 1985-03-13 1985-03-13 Manufacture of cathode for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5190285A JPS61208721A (en) 1985-03-13 1985-03-13 Manufacture of cathode for electron tube

Publications (1)

Publication Number Publication Date
JPS61208721A true JPS61208721A (en) 1986-09-17

Family

ID=12899806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190285A Pending JPS61208721A (en) 1985-03-13 1985-03-13 Manufacture of cathode for electron tube

Country Status (1)

Country Link
JP (1) JPS61208721A (en)

Similar Documents

Publication Publication Date Title
KR930011964B1 (en) Electron tube cathode
US4675570A (en) Tungsten-iridium impregnated cathode
US2041802A (en) Electron emitter
JPH0690907B2 (en) Electron tube cathode
JPH1021932A (en) Solid electrolyte type fuel cell and its manufacture
JPS61208721A (en) Manufacture of cathode for electron tube
US3384511A (en) Cathode structures utilizing metal coated powders
US6362563B1 (en) Two-layer cathode for electron gun
US3837909A (en) Coated coil emissive electrode
JPH03133021A (en) Cathode for electronic tube and its manufacture
EP0157634B1 (en) Tungsten-iridium impregnated cathode
JPS59191226A (en) Cathode body of electron tube or the like
JPS61203530A (en) Manufacture of electron tube cathode
Tuck The use of platinum metals in modern thermionic emitters
JPS61269828A (en) Manufacture of electron tube cathode
JPS59203343A (en) Impregnated cathode
JPH0221531A (en) Coated particle cathode for electron tube
JPS612226A (en) Impregnated cathode
JP2730260B2 (en) Cathode for electron tube
US4911626A (en) Method of making a long life high current density cathode from tungsten and iridium powders using a mixture of barium peroxide and a coated emitter as the impregnant
JP2590283B2 (en) Coating layer formation method
JPS6032232A (en) Impregnated cathode
JPH04220924A (en) Cathode for electron tube
US2506466A (en) Electron emitters
JPH0690906B2 (en) Electron tube cathode