JPS61207614A - Hollow fiber for heat-exchanger - Google Patents

Hollow fiber for heat-exchanger

Info

Publication number
JPS61207614A
JPS61207614A JP60047934A JP4793485A JPS61207614A JP S61207614 A JPS61207614 A JP S61207614A JP 60047934 A JP60047934 A JP 60047934A JP 4793485 A JP4793485 A JP 4793485A JP S61207614 A JPS61207614 A JP S61207614A
Authority
JP
Japan
Prior art keywords
hollow fiber
melting point
temperature
tube wall
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60047934A
Other languages
Japanese (ja)
Other versions
JPH07111003B2 (en
Inventor
Haruhiko Yoshida
晴彦 吉田
Hajime Ito
元 伊藤
Hiroshi Takahashi
洋 高橋
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60047934A priority Critical patent/JPH07111003B2/en
Publication of JPS61207614A publication Critical patent/JPS61207614A/en
Publication of JPH07111003B2 publication Critical patent/JPH07111003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • External Artificial Organs (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a hollow fiber having remarkably improved adhesivity to a potting resin and suitable for the heat-exchanger of artificial lung, etc., by boring minute pores to the wall of a hollow fiber made of a non-polar organic polymer such as PE. CONSTITUTION:The objective hollow fiber is made of a non-polar organic polymer, having continuous or separated minute pores of <=500Angstrom diameter on the tube wall, and having a wall thickness of 2-500mu and an inner diameter of 50-2,000mu. The fiber can be produced, e.g. by melting PE having a density of preferably >=0.94 or PP having a density of preferable >=0.86, extruding through a ring-shaped nozzle and taken up under cooling. The obtained fiber is annealed preferably at a temperature between the melting point and a temperature lower than the melting point by 100 deg.C, drawn by 5-25% preferably at a temperature lower than the melting point by 80 deg.C to develop minute pores to the tube wall and set preferably at a temperature between melting point and a temperature lower than the melting point by 60 deg.C.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は熱交換器に適した非極性有機重合体からなる中
空糸に関し、特に人工肺用熱交換器として有用に利用し
うる中空糸に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a hollow fiber made of a non-polar organic polymer suitable for a heat exchanger, and particularly to a hollow fiber that can be usefully used as a heat exchanger for an oxygenator. .

く従来の技術〉 人工肺は関心術の補助心肺装置、機能が低下し九肺の代
替装置に使用されるものであり、手術時に体外に取りだ
された血液の温度を調節する必要があり、そのための手
段としての熱交換器を併用することが必要不可欠であり
、先行技術として例えば特公昭55−2982号、特開
昭57−3 j854号公報等にその詳細が記載さnて
いる。
Conventional technology> Artificial lungs are used as heart-lung auxiliary devices for surgical procedures, or as replacement devices for lungs whose function has deteriorated. It is essential to use a heat exchanger as a means for this purpose, and the details thereof are described in, for example, Japanese Patent Publication No. 55-2982 and Japanese Patent Application Laid-Open No. 57-3J854 as prior art.

〈発明が解決すべき問題点〉 従来、人工肺の附属装置として使用されてきた熱交換器
のパイプの素材には、熱伝導率が良く、耐熱性が良いス
テンレス製のものが多く用いらnるが、熱交換器に組み
立てる際に端面のシール方法、端面のエツジによる血液
中の粒子体の破壊、複雑な組成の血液成分と金属との反
応性の問題等がある。
<Problems to be solved by the invention> Conventionally, the material for the pipes of the heat exchanger used as an accessory device for oxygenators is often made of stainless steel, which has good thermal conductivity and good heat resistance. However, when assembling it into a heat exchanger, there are problems such as how to seal the end faces, the destruction of particles in the blood due to the edges of the end faces, and the reactivity of blood components with complex compositions with metals.

有機重合体からなる中空糸を熱交換器として用いると上
記のような従来の素材が有する諸問題を解決するには十
分であり、これら中空糸は熱交換器用のパイプとして十
分なものであるが、これらのパイプを熱交換器に組み込
むとき一般にパイプを配列し、給熱側と吸熱側双方の物
質を混会させないように仕切る必要があり、この手段と
して有機樹脂によるボッティング技術が利用されること
が多いが、ポリエチレン、ポリプロピレン等の非極性の
物質で作らnた中空糸は有機樹脂との接着性が十分でな
く、この接着性を改良することが望まれる。
The use of hollow fibers made of organic polymers as heat exchangers is sufficient to solve the problems of conventional materials as described above, and these hollow fibers are sufficient as pipes for heat exchangers. When incorporating these pipes into a heat exchanger, it is generally necessary to arrange the pipes and partition them so that the materials on both the heat supply side and the heat absorption side do not mix, and botting technology using organic resin is used as a means for this purpose. However, hollow fibers made of non-polar substances such as polyethylene and polypropylene do not have sufficient adhesion to organic resins, and it is desired to improve this adhesion.

そこで本発明者等は有機重合体からなる熱交換器用中空
糸が有する上記問題を解決するために鋭意検討した結果
、該中空糸の管壁の部分に微細孔を設けることにより、
ボッティングに使用する有機樹脂との接着性が飛躍的に
向上することを見いだし本発明を完成した。
Therefore, the inventors of the present invention conducted extensive studies to solve the above-mentioned problems of hollow fibers for heat exchangers made of organic polymers, and found that by providing micropores in the tube wall of the hollow fibers,
The present invention was completed by discovering that the adhesiveness with organic resins used for botting was dramatically improved.

く問題点を解決するための手段〉 即ち本発明の要旨は、非極性有機重合体からなり、管壁
部分に大きさが500λ以下の連続又は独立の微細孔を
有し、管壁の厚さが2〜500戸、内径が50〜200
0/jff+であることを特徴とする熱交換器用中空糸
にある。
Means for Solving the Problems> That is, the gist of the present invention is to provide a tube wall that is made of a non-polar organic polymer, that has continuous or independent micropores with a size of 500λ or less in the tube wall portion, and that the tube wall thickness is 2 to 500 units, inner diameter 50 to 200
0/jff+.

即ち、有機重合体からなる熱交換器用中空糸の管壁の部
分にポリエチレン、ポリプロピレンが本質的に水に濡扛
ない性質を持っていることを利用して熱交換器が使用さ
nる時に受ける圧力では水が通過しないような微細孔を
設けて有機樹脂との間の界面の接着力だけでなく、微細
孔に有機樹脂が浸透して固化することによる機械的な結
合力を利用することにより、より接着性を同上させるも
のである。
That is, by utilizing the fact that polyethylene and polypropylene are essentially water-resistant, the tube wall portion of hollow fibers for heat exchangers made of organic polymers is used to absorb water when the heat exchanger is used. By creating micropores that do not allow water to pass through under pressure, we utilize not only the adhesive force at the interface with the organic resin, but also the mechanical bonding force that results from the organic resin penetrating into the micropores and solidifying. , which improves adhesiveness even more.

以下本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明の熱交換器用中空糸の微細孔の大きさは熱交換器
が使用さnる時の圧力で水が通過しない様な大きさであ
nぽいかなる大きさでも良いが、安全性の点から10 
V4/lyn”以上の圧力がかかつても水が漏れない5
00A以下であることが望ましい。
The size of the micropores in the hollow fiber for a heat exchanger of the present invention may be any size that does not allow water to pass through under the pressure when the heat exchanger is used, but from the viewpoint of safety. from 10
Water will not leak even if the pressure exceeds V4/lyn"5
It is desirable that the current is 00A or less.

本発明の熱交換器用中空糸の形態に熱交換効率を良くし
、十分な機械的強度を得られる様な形態であればいかな
る形態でも良いが、管壁の厚さ2〜500μm1内径5
0〜2000μm程度が特に好ましい。
The hollow fiber for a heat exchanger of the present invention may have any form as long as it improves heat exchange efficiency and provides sufficient mechanical strength, but the tube wall thickness is 2 to 500 μm, the inner diameter is 5
Particularly preferred is about 0 to 2000 μm.

本発明の熱交換器用中空糸は融点以上の温度で融解した
有機重合体t−IJソング状ノズルを介して押出し、冷
却しながら巻取ることによって中空糸を得、融点以下の
温度でアニール処理し、比較的低温下で低倍率に冷延伸
して管壁部に微細孔を発現せしめ、しかる後比較的高温
下で熱セットすることによって得られる。
The hollow fibers for heat exchangers of the present invention are made by extruding an organic polymer t-IJ melted at a temperature above the melting point through a song-shaped nozzle, winding it up while cooling to obtain a hollow fiber, and annealing it at a temperature below the melting point. It is obtained by cold stretching at a low magnification at a relatively low temperature to develop micropores in the tube wall, and then heat setting at a relatively high temperature.

有機重合体の融解温度は有機重合体ヲリング状のノズル
から押し出せる温度であればいかなる温度でも良いが、
融解温度が高過ぎる場合には溶融粘度が低きに過゛ぎ安
定した紡糸が行い難くなるので、融点と融点より100
℃高い温度の間の範囲であることが好ましい。
The melting temperature of the organic polymer may be any temperature as long as it can be extruded from the nozzle of the organic polymer ring.
If the melting temperature is too high, the melt viscosity will be too low, making it difficult to perform stable spinning.
Preferably, the temperature range is between 0.degree.

紡糸ドラフトは50以下の領域でに、中空糸の配向性が
悪くなり、繊維軸方向の強度が不足するので30以上で
あることが望ましい。
If the spinning draft is 50 or less, the orientation of the hollow fibers will deteriorate and the strength in the fiber axis direction will be insufficient, so it is desirable that the spinning draft is 30 or more.

アニール処理温度に内部の結晶構造t−安定化させる様
な温度であればいかなる温度でも良いが、形態全組さな
いで、結晶構造をより速く安定させる温度として融点と
融点より100℃低い温度との間であることが好ましい
Any temperature may be used as long as it stabilizes the internal crystal structure at the annealing temperature, but the melting point and the temperature 100°C lower than the melting point can be used to stabilize the crystal structure more quickly without completely forming the structure. It is preferable that it is between.

冷延伸は熱処理後の中空糸の管壁部分に微細孔を発現さ
せる工程であり、微細孔を発現させるためには結晶自体
の変形が起らず、結晶界面が剥離する様な温度で延伸す
る必要がある。そのためには融点より80℃低い温度以
下の比較的低温で5〜25%延伸するのが好ましい。
Cold stretching is a process that develops micropores in the tube wall of the hollow fiber after heat treatment. In order to develop micropores, the crystal itself must be stretched at a temperature that does not deform and the crystal interfaces peel off. There is a need. For this purpose, it is preferable to stretch the film by 5 to 25% at a relatively low temperature of 80° C. or lower than the melting point.

熱セット、は冷延伸によって発現した微細孔を場合によ
って拡大し、安定化させる工程であり、構造自体の変形
が少なく、微細孔構造が安定する様な温度で熱セットす
る必要がある。そのためには熱セツト温度は融点と融点
より60℃低い温度の間であることが好ましい。
Heat setting is a process of expanding and stabilizing the fine pores developed by cold stretching, as the case may be, and it is necessary to heat set at a temperature that causes little deformation of the structure itself and stabilizes the fine pore structure. For this purpose, the heat set temperature is preferably between the melting point and 60°C below the melting point.

原料となる有機重合体は上記の様なプロセスで構造が形
成でき、水に本質的に濡れないものであればいかなる重
合体でも利用できるが、密度α94以上のポリエチレン
、密度cL86以上のポリプロピレンが特に好ましい。
The structure of the raw organic polymer can be formed by the process described above, and any polymer can be used as long as it is essentially non-wettable by water, but polyethylene with a density of α94 or higher and polypropylene with a density of cL86 or higher are particularly suitable. preferable.

本発明によって得られる中空糸は管壁部分に微細孔を有
するので、熱交換器に組立てる際に行うポツティング加
工に用いる有機樹脂との接着性全界面の接着力だけでな
く、有機樹脂が微細孔内部に浸透して固化することによ
る機械的な結合力によって飛躍的に向上させることがで
き、熱交換器の信頼性を高くすることができる。
Since the hollow fiber obtained by the present invention has micropores in the tube wall portion, it not only has adhesive strength at the entire interface with the organic resin used in the potting process performed when assembling into a heat exchanger, but also the organic resin has micropores. By penetrating into the interior and solidifying, the mechanical bonding force can be dramatically improved, making it possible to increase the reliability of the heat exchanger.

さらに本発明によって得られる中空糸は前記の様な延伸
法によって賦形しているため、配向性が良く、機械的強
度に優れ、た熱交換器用パイプを得ることができる。
Further, since the hollow fibers obtained by the present invention are shaped by the above-described drawing method, it is possible to obtain a pipe for a heat exchanger that has good orientation and excellent mechanical strength.

〔実施例〕〔Example〕

以下実施例により本発明を更に詳しく説明すl:j る。なお管壁の微細孔の孔径の測定に表面の電子顕微鏡
写真から求めた。
The present invention will be explained in more detail with reference to Examples below. The diameter of the micropores in the tube wall was determined from an electron micrograph of the surface.

実施例1 密度[1968,メルトインデックスS、5のポリエチ
レン(三井石油化学株式会社製〕・イゼツクス 220
0J)を160℃で融解し、リング状のノズルから押し
だし、ドラフト比5900で巻と9中窒糸を得た。該中
空糸を115℃で140秒間アニール処理し、30℃で
10%冷延伸し、引き続いて115℃で熱セットした。
Example 1 Polyethylene with density [1968, melt index S, 5 (manufactured by Mitsui Petrochemicals Co., Ltd.] Izex 220
0J) was melted at 160°C and extruded from a ring-shaped nozzle to obtain a 9-volume and 9-middle nitrogen yarn at a draft ratio of 5900. The hollow fibers were annealed at 115°C for 140 seconds, cold stretched 10% at 30°C, and subsequently heat set at 115°C.

得られた中空糸の管壁の厚さは22μm、内径に550
μmであり、管壁部には約400Aの微細孔が多数存在
していた。該中空糸をウレタン接着剤(日本ポリウレタ
ン株式会社製 C−4403/N−4221)でボッテ
ィング加工し、室温で1週間硬化した後、ボッティング
部分を切断した。切断面を光学顕微鏡により肉眼観察し
た結果、ウレタン樹脂から剥離している中空糸は皆無で
あった。
The thickness of the tube wall of the obtained hollow fiber was 22 μm, and the inner diameter was 550 μm.
μm, and there were many micropores of about 400 A in the tube wall. The hollow fibers were subjected to a botting process using a urethane adhesive (C-4403/N-4221 manufactured by Nippon Polyurethane Co., Ltd.), and after curing at room temperature for one week, the bottling portion was cut. As a result of visually observing the cut surface using an optical microscope, no hollow fibers were found to have peeled off from the urethane resin.

比較例1 実施例1のアニール処理後の中空糸を実施例1と同様に
ウレタン接着剤でボッティング加ニレ、1週間硬化した
後、ボッティング部分を切断した。切断面を光学顕微鏡
で肉眼観察した結果、殆どの中空糸がウレタン樹脂から
剥離していた。
Comparative Example 1 The annealed hollow fiber of Example 1 was subjected to botting with a urethane adhesive in the same manner as in Example 1, and after curing for one week, the botting portion was cut. Visual observation of the cut surface using an optical microscope revealed that most of the hollow fibers had peeled off from the urethane resin.

実施例2 密度[191,メルトインデックス15のポリプロピレ
ン(宇部興産株式会社 σBlnボリグロ、T−115
G)を200℃で融解し、リング状のノズルから押しだ
し、ドラフト比7000で巻と9中空糸を得た。該中空
糸を140℃で140秒間アニール処理し、60℃で1
0%冷延伸し、引き続いて145℃で熱セットした。
Example 2 Polypropylene with density [191, melt index 15 (Ube Industries, Ltd. σBln Boligro, T-115)
G) was melted at 200° C. and extruded from a ring-shaped nozzle to obtain a volume and 9 hollow fibers at a draft ratio of 7000. The hollow fibers were annealed at 140°C for 140 seconds, and then annealed at 60°C for 140 seconds.
0% cold stretching followed by heat setting at 145°C.

得らnた中空糸の管壁の厚さは20μm5内径は500
μmであり、胃壁部には平均孔径約25OAの微細孔が
多数存在してい友。該中空糸をウレタン接着剤(日本ボ
リクレタン株式会社製C! −44037N −422
1)でボッティング加工し、室温で1週間硬化した後、
ボッティング部分を切断した。切断面を光学顕微鏡によ
り肉眼観察した結果、ウレタン樹脂から剥離している中
空糸に皆無であった。
The thickness of the tube wall of the obtained hollow fiber was 20 μm5, and the inner diameter was 500 μm.
μm, and there are many micropores with an average pore size of about 25 OA in the stomach wall. The hollow fibers were bonded with urethane adhesive (C!-44037N-422 manufactured by Nippon Polycretan Co., Ltd.).
After botting in step 1 and curing at room temperature for one week,
The botting part was cut off. As a result of visually observing the cut surface using an optical microscope, no hollow fibers were found to have peeled off from the urethane resin.

W鯨伺12 実施例2のアニール処理後の中空糸を実施例2と同様に
ウレタン接着剤でボッティング加工し、1週間硬化した
後、ボッティング部分を切断した。切断面を光学顕微鏡
で肉眼観察した結果、殆どの中空糸がウレタン樹脂から
剥離してい六〇
W Kujira 12 The annealed hollow fiber of Example 2 was subjected to a botting process using a urethane adhesive in the same manner as in Example 2, and after curing for one week, the botting portion was cut. Visual observation of the cut surface using an optical microscope revealed that most of the hollow fibers had peeled off from the urethane resin.

Claims (1)

【特許請求の範囲】 1、非極性有機重合体からなり、管壁部分に大きさが5
00Å以下の連続又は独立の微細孔を有し、管壁の厚さ
が2〜500μm、内径が50〜2000μmであるこ
とを特徴とする熱交換器用中空糸。 2、非極性有機重合体がポリエチレン又はポリプロピレ
ンであることを特徴とする特許請求の範囲第1項記載の
中空糸。 3、ポリエチレンの密度が0.94以上であることを特
徴とする特許請求の範囲第2項記載の熱交換器用中空糸
。 4、ポリプロピレンの密度が0.86以上であることを
特徴とする特許請求の範囲第2項記載の熱交換器用中空
糸。
[Claims] 1. Made of a non-polar organic polymer, with a size of 5 on the tube wall portion.
A hollow fiber for a heat exchanger, characterized in that it has continuous or independent micropores of 00 Å or less, a tube wall thickness of 2 to 500 μm, and an inner diameter of 50 to 2000 μm. 2. The hollow fiber according to claim 1, wherein the nonpolar organic polymer is polyethylene or polypropylene. 3. The hollow fiber for a heat exchanger according to claim 2, wherein the polyethylene has a density of 0.94 or more. 4. The hollow fiber for a heat exchanger according to claim 2, wherein the polypropylene has a density of 0.86 or more.
JP60047934A 1985-03-11 1985-03-11 Hollow fiber for heat exchanger Expired - Lifetime JPH07111003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047934A JPH07111003B2 (en) 1985-03-11 1985-03-11 Hollow fiber for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047934A JPH07111003B2 (en) 1985-03-11 1985-03-11 Hollow fiber for heat exchanger

Publications (2)

Publication Number Publication Date
JPS61207614A true JPS61207614A (en) 1986-09-16
JPH07111003B2 JPH07111003B2 (en) 1995-11-29

Family

ID=12789201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047934A Expired - Lifetime JPH07111003B2 (en) 1985-03-11 1985-03-11 Hollow fiber for heat exchanger

Country Status (1)

Country Link
JP (1) JPH07111003B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682393B2 (en) * 2010-03-30 2015-03-11 東レ株式会社 Gas-liquid hollow fiber heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137026A (en) * 1976-04-30 1977-11-16 Toyobo Co Ltd Microporous hollow fibers and their production
JPS5710202A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Moisture detector
JPS5739854A (en) * 1980-08-25 1982-03-05 Terumo Corp Hollow fiber type artificial lung building in heat exchanger
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS599270A (en) * 1982-06-21 1984-01-18 ファイバ−・インダストリ−ズ・インコ−ポレ−テド High strength yarn comprising thermotropic liquid crystal polymer fiber and reinforced cord and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137026A (en) * 1976-04-30 1977-11-16 Toyobo Co Ltd Microporous hollow fibers and their production
JPS5710202A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Moisture detector
JPS5739854A (en) * 1980-08-25 1982-03-05 Terumo Corp Hollow fiber type artificial lung building in heat exchanger
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS599270A (en) * 1982-06-21 1984-01-18 ファイバ−・インダストリ−ズ・インコ−ポレ−テド High strength yarn comprising thermotropic liquid crystal polymer fiber and reinforced cord and production thereof

Also Published As

Publication number Publication date
JPH07111003B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
EP0299381B1 (en) Membrane-type artificial lung and method of using it
JP4139456B2 (en) Deaeration membrane
JPH09123314A (en) Medical multilayer tube without using pvc, manufacturing method and application thereof
JP2700170B2 (en) Membrane oxygenator
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JPH07121340B2 (en) Hollow fiber membrane
JP2007245490A (en) Multilayer film and soft bag for medical treatment
JPS61207614A (en) Hollow fiber for heat-exchanger
US20050142280A1 (en) System and method for synthesizing a polymer membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPS58169510A (en) Hollow fiber with modified cross section and hollow fiber module therefrom
EP1897606A3 (en) Process for preparing porous polyvinylidene fluoride resin membrane
JP2010269307A (en) Hollow fiber microporous membrane and membrane oxygenator formed by incorporating the same
JP3250655B2 (en) Potting agent for hollow fiber membrane module, hollow fiber membrane module, and method for producing the same
JP3955643B2 (en) Composite tube with great flexibility
JPS61215709A (en) Hollow fiber and production thereof
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JP2000033245A (en) Fluororesin composite membrane and its production
JP2000317275A (en) Production of hollow fiber membrane module
JPS61225308A (en) Hollow yarn and production thereof
JPH07208896A (en) Polyolefin-based heat-exchanging tubular body
JPH044028A (en) Porous membrane and production thereof
JPS647856B2 (en)
JPH04215828A (en) Multilayer composite membrane and production thereof
JPH06170181A (en) Hollow fiber membrane module and production thereof