JPS61215709A - Hollow fiber and production thereof - Google Patents

Hollow fiber and production thereof

Info

Publication number
JPS61215709A
JPS61215709A JP60056465A JP5646585A JPS61215709A JP S61215709 A JPS61215709 A JP S61215709A JP 60056465 A JP60056465 A JP 60056465A JP 5646585 A JP5646585 A JP 5646585A JP S61215709 A JPS61215709 A JP S61215709A
Authority
JP
Japan
Prior art keywords
hollow fiber
spinning
outer layer
hollow
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60056465A
Other languages
Japanese (ja)
Other versions
JPH07100882B2 (en
Inventor
Haruhiko Yoshida
晴彦 吉田
Hajime Ito
元 伊藤
Hiroshi Takahashi
洋 高橋
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60056465A priority Critical patent/JPH07100882B2/en
Publication of JPS61215709A publication Critical patent/JPS61215709A/en
Publication of JPH07100882B2 publication Critical patent/JPH07100882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a hollow fiber consisting of two layers and having remarkably improved bonding strength between the layers, by using a spinning nozzle having two ring-shaped concentrically arranged dies, supplying a specific organic polymer separately to the above dies and carrying out the spinning, drawing and heat-setting of the polymer. CONSTITUTION:Organic polymers of different kinds (e.g. polyethylene, poly propylene, etc.) or of the same kind and having different melt viscosity index values (MI values) are supplied separately to the dies of a hollow-fiber spinning nozzle furnished with two ring-shaped concentrically arranged dies and a hollow fiber composed of the outer and the inner layers is produced by the composite melt-spinning of the polymers. The hollow fiber is optionally annealed and is drawn to form a number of minute voids exclusively in the outer layer. The objective hollow fiber composed of an outer layer having minute voids and a continuous inner layer free from through-holes and bonded to the outer layer can be produced by the heat-setting of the above drawn fiber.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は有機重合体からなる中空糸に関し、特に人工肺
用等の熱交換器として利用し几場曾に有用な中空糸に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a hollow fiber made of an organic polymer, and particularly to a hollow fiber useful for use as a heat exchanger for artificial lungs and the like.

く従来の技術〉 人工肺は関心術の補助心肺装置、機能が低下した肺の代
替装置に使用さnるものであり、手術時に体外に取りだ
された血液の温度を調節する必要があり、その九めの手
段としての熱交換器が必要不可欠であり、先行技術とし
て例えば特公昭55−2982号、特開昭57−398
54号公報等にその詳細が記載さnている。
Conventional technology> Artificial lungs are used as heart-lung auxiliary devices for surgical procedures and as replacement devices for lungs whose function has decreased. A heat exchanger is indispensable as the ninth means, and prior art examples include Japanese Patent Publication No. 55-2982 and Japanese Patent Application Laid-Open No. 57-398.
The details are described in Publication No. 54 and the like.

〈発明が解決すべき問題点〉 従来、人工肺の附属装置として使用されてきた熱交換器
のパイプの素材には、熱伝導軍が良く、耐熱性が良いス
テンレス製のものが多く用いらnるが、熱交換器に組み
立てる際に端面のシール方法、端面のエツジによる血液
中の粒子体の破壊、複雑な組成の血液成分との反応性の
問題等がある。
<Problems to be solved by the invention> Conventionally, the material for the pipes of the heat exchanger used as an accessory device for oxygenators is often made of stainless steel, which has good heat conductivity and good heat resistance. However, when assembling it into a heat exchanger, there are problems such as how to seal the end face, destruction of particles in the blood by the edge of the end face, and reactivity with blood components with a complex composition.

有機重合体からなる中空糸に上記のような従来の素材が
有する諸問題を解決するには十分であり、熱交換器用の
パイプとして十分なものであるが、素材が有機重合体の
揚句には若干の問題がある。即ちこれらのパイプを熱交
換器に組み込むとき一般的にパイプを配列し、給熱側と
吸熱側双方の物質を混合させないように仕切る必要があ
り、この手段として有機樹脂によるボッティング技術が
利用さnることか多いが、有機重合体の有機樹脂との接
着性に良くないものである。
Hollow fibers made of organic polymers are sufficient to solve the problems of conventional materials such as those mentioned above, and are sufficient as pipes for heat exchangers. There are some problems. In other words, when these pipes are incorporated into a heat exchanger, it is generally necessary to arrange the pipes and partition them so that the materials on both the heat supply side and the heat absorption side do not mix.Botting technology using organic resin is used as a means for this purpose. Although this is often the case, it is not good for the adhesion of organic polymers to organic resins.

く問題点を解決するための手段〉 そこで本発明者等0:有機重合体からなる熱又換器用中
空糸が有する上記問題を解決するために鋭意検討し友結
果、該中空糸の表層の部分に微小空孔を設けることによ
り、ボッティングに使用する有機樹脂との接着性が飛躍
的に同上することを見いだし本発明を完成し友。
Means for Solving the Problems> Therefore, the present inventors conducted intensive studies to solve the above-mentioned problems of hollow fibers for heat exchangers made of organic polymers, and as a result, the surface layer portion of the hollow fibers was developed. He discovered that by providing micropores in the material, the adhesion to the organic resin used for botting could be dramatically improved, and completed the present invention.

即ち本発明の要旨は、外層と内層とが異種又に溶融粘度
指数(MI値)の異なる同種の有機重合体で構成さn、
微小空孔を有する外層と連続し次頁通孔が存在しない内
層とが接合さn、を中2糸であって、両方の厚さの和が
2〜500μ内径が50〜2000μであることをW徴
とする複合溶融紡糸に15得られる中空糸にあり、かつ
同心円状に配置された二つの円環状の吐出口を有する中
9糸製造用ノズル金用いて、各々の吐出口に異種又は溶
融粘度指数の異なる同種の有機重合体を別々に供給して
溶融複合紡糸し、二つの層を有する中空糸上櫛、該中空
糸をそのままか又はアニール処理を行った後、延伸して
外側の層のみに多数の微小空孔を生ぜしめ、しかる後熱
セットすることr特徴とする異種又は溶融粘度指数の異
なる同種の有機重合体で構成さn、微小空孔tVする外
層と連続し友買通孔が存在しない内層とが接合された中
空糸の製造方法にある。
That is, the gist of the present invention is that the outer layer and the inner layer are composed of different types of organic polymers or the same type of organic polymers having different melt viscosity indexes (MI values),
The outer layer having minute pores and the inner layer which is continuous and has no through holes are bonded to each other, and the sum of the thicknesses of both is 2 to 500μ, and the inner diameter is 50 to 2000μ. A hollow fiber obtained by composite melt spinning with a W characteristic is used, and a hollow fiber with two annular discharge ports arranged concentrically is used for manufacturing the hollow fiber. Organic polymers of the same kind with different viscosity indexes are separately supplied and melt composite spun to form a hollow fiber upper comb having two layers, and the hollow fibers are stretched as they are or after annealing treatment to form an outer layer. It is composed of different types of organic polymers or the same type of organic polymers with different melt viscosity indexes, which are characterized by producing a large number of micropores in the outer layer and then being heat-set. The present invention provides a method for manufacturing a hollow fiber in which a hollow fiber is bonded to an inner layer having no holes.

本発明において便用する有機重合体はポリエチレン、ボ
リグロピレン、ポリ3−メチルブテン−1、ポリ4−メ
チルペンテン−1、ポリ弗化ビニリデン、ポリエチレン
テレフタレート、リオキシメテレン又はこnら金主成分
とするこnらの結晶性重合体、シリコン、ウレタン、エ
チレン酢酸ビニル共重合体、エチレンビニルアルコール
共重合体又はエチレン塩化ビニル共重合体等金挙げるこ
とができる。
The organic polymers conveniently used in the present invention include polyethylene, polyglopylene, poly-3-methylbutene-1, poly-4-methylpentene-1, polyvinylidene fluoride, polyethylene terephthalate, lyoxymethylene, or these metal-based polymers. Crystalline polymers such as silicon, urethane, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer or ethylene vinyl chloride copolymer can be mentioned.

本発明の中空糸の形態は、いかなる形態でも良いが、熱
交換用途に用いらnること全勘案し、十分な機械的強度
があることが好ましいことから、管壁の厚さ2〜500
μ、内径50〜2000P程度が特に好ましい。
The hollow fibers of the present invention may have any shape, but considering that they are used for heat exchange purposes, it is preferable that they have sufficient mechanical strength.
Particularly preferred is μ and an inner diameter of about 50 to 2000P.

本発明の中空糸は同心円状に配置された二つの円環状の
吐出口を有する中空糸製造用ノズルを用いて、各々の吐
出口に異種又iM工値の異なる同種の有機重合体を別々
に供給して溶融紡糸し、二つの層を有する中空糸を得、
該中空糸をそのままか又はアニール処理を行った後、延
伸して外側の層のみに多数の微小9孔會生ぜしめ、しか
る後熱セットすることによって得られる。
The hollow fiber of the present invention uses a hollow fiber manufacturing nozzle having two annular discharge ports arranged concentrically, and separates different kinds of organic polymers or the same kind of organic polymers with different iM values into each discharge port. feeding and melt spinning to obtain a hollow fiber with two layers,
The hollow fiber can be obtained either as it is or after annealing, stretching it to form a large number of nine minute holes only in the outer layer, and then heat-setting it.

本発明において採用する外側の層を構成する有機重合体
のMI値は[11〜10の範囲にあるのが好ましい。M
I値にA8TM  D−1238によって測定さnる値
であり、最も好ましくは1〜6の範囲である。この範囲
は外層に安定して微小空孔tVする中9糸を安定して製
造するのに望ましい範囲であって、(11以下の領域で
は溶融温度が高きに過ぎ、安定し次紡糸が行いにくく、
又10以上のM′L値の領域では延伸による多孔質化に
おいて微小空孔の発現が不充分になることによる。
The MI value of the organic polymer constituting the outer layer employed in the present invention is preferably in the range of [11 to 10]. M
The I value is measured by A8TM D-1238, and most preferably ranges from 1 to 6. This range is a desirable range for stably producing a medium-sized yarn with stable micropores tV in the outer layer. ,
Further, in the region of M'L value of 10 or more, the development of micropores becomes insufficient in making the film porous by stretching.

又、内側の層全構成する有機重合体のMI値は15〜5
0の範囲にあることが好ましい。M工が15未満では内
層に貫通孔が出来易くなり、50tこえると溶゛融粘度
が低くなりすぎ、安定した紡糸が行い難くなることによ
る。異種の重合体を用いる場合には同じ延伸条件で微細
孔が生成しやすいもの全外層に配すnばよい。
In addition, the MI value of the organic polymer that makes up the entire inner layer is 15 to 5.
It is preferably in the range of 0. If M is less than 15, through holes are likely to be formed in the inner layer, and if it exceeds 50 t, the melt viscosity becomes too low, making it difficult to perform stable spinning. When using different types of polymers, it is sufficient to use polymers that tend to form micropores under the same stretching conditions in all outer layers.

有機重合体の紡糸温度に有機重合体を円環状のノズルか
ら押し出せる温度であnばいかなる温度でも良いが、融
解温度が高過ぎる場合には溶融粘度が低きに過ぎ安定し
た紡糸が行い難くなるので、融点〜(融点+80℃)の
範囲であることが好ましい。
Any temperature may be used as long as the spinning temperature of the organic polymer is such that the organic polymer can be extruded from the annular nozzle, but if the melting temperature is too high, the melt viscosity will be too low and stable spinning will be difficult. Therefore, it is preferable that the range is from the melting point to (melting point +80°C).

紡糸ドラフトに30以下の領域でに、中空糸の配向性が
低くなり、後に延伸する際に十分な伸度が得らnず、微
小空孔を開けるのに必要な延伸量1i[保できないこと
にLv、30以上であることが望ましい。
When the spinning draft is less than 30, the orientation of the hollow fiber becomes low, and sufficient elongation cannot be obtained during subsequent drawing, and the amount of drawing required to open micropores is 1i [inability to maintain]. It is desirable that the Lv is 30 or higher.

アニール処理温度は内部の結晶構造?安定化させる様な
温度であ扛ばいかなる温度でも良いが、形態を崩さない
で、結晶構造をより速く安定させる温度として融点〜(
融点−100℃)の範囲が好ましい。
Does the annealing temperature affect the internal crystal structure? Any temperature may be used as long as it stabilizes the temperature, but the melting point ~ (
The melting point is preferably in the range of −100° C.).

延伸に熱処理後の中空糸の外層部分に微小空孔を発現さ
せる工程であり、微小空孔を発現させる友めには結晶自
体の変形が起らず、結晶界面が剥離する様な温度で延伸
する必要がある。
This is a process in which micropores are developed in the outer layer of the hollow fiber after heat treatment during stretching, and in order to develop micropores, the crystal itself is not deformed and the crystal interfaces are stretched at a temperature that causes them to separate. There is a need to.

そのためには(融点−100℃)以下の比較的低温で延
伸するのが好ましい。
For this purpose, it is preferable to stretch at a relatively low temperature below (melting point -100°C).

熱セットニ冷延伸によって発現した微小空孔を場合によ
って孤太し、安定化させる工程であり、構造自体の変形
が少なく、微小空孔構造が安定する様な温度で延伸する
必要がある。そのためには融点〜(融点−60℃)の範
囲が好ましいO 本発明によって得られる中空糸に管壁部分に微小空孔を
有するので、熱交換器に組立てる際に行うボッティング
加工に用いる有機樹脂との接着性を界面の接着力だけで
なく、有機樹脂が微小受孔内部に構造して固化すること
による機械的な結会力によって飛躍的に同上させること
ができ、熱交換器に用い几場合その信頼性全高くするこ
とができる。
Heat setting is a step in which the micropores developed by cold stretching are made thicker and stabilized as the case may be, and it is necessary to draw at a temperature at which the structure itself is less deformed and the micropore structure is stabilized. For this purpose, a range of melting point to (melting point -60°C) is preferable. Since the hollow fiber obtained by the present invention has micropores in the tube wall portion, the organic resin used in the botting process when assembled into a heat exchanger It is possible to dramatically improve the adhesion with the heat exchanger not only by the adhesive force at the interface but also by the mechanical bonding force caused by the structure and solidification of the organic resin inside the microscopic holes. If its reliability can be increased at all.

さらに本発明によって得ら扛る中9糸は励記の様な延伸
法によって賦形しているtめ、配向性が良く、機械的強
度に優:fltものとなる。
Furthermore, since the medium yarn obtained by the present invention is shaped by the drawing method as described above, it has good orientation and excellent mechanical strength.

以下、実施例により本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 密度(L968メルトインデックス5.5のポリエチレ
ン(三井石油化学株式会社展ハイゼツクス 2200J
 )と密度α92メルトインデツクス2のポリエチレン
(三井石油化学株式会社製ウルトゼツクス 5021F
’)Q同心円状に配置された二つの円環状の吐出口金回
する中空糸製造用ノズル金量いて、外側の吐出口から前
記高密度ポリエチレン全吐出温度170℃、吐出線速度
8 cm/ min、内側の吐出口から前記低密度ポリ
エチレンを吐出温度170℃、吐出線速度2α/min
  の条件で押し出し巻取り速度400m/minで巻
取つ友。この時の高密度ポリエチレンの紡糸ドラフト5
000、低密度ポリエチレンの紡糸トラフ)2[]、0
00であった・得らA九未延伸中9糸の寸法は内径30
0μ、高密度ポリエチレン層の厚さ60μ、低密度ポリ
エチレン層の厚さ6μであった。この未延伸中空糸金1
15℃に加熱されたローラー上を足長下に通過せしめて
140秒間、アニール処理した。引き続いて20℃に保
た扛たローラー間で40ts延伸し、さらに105℃で
160%延伸し、さらに115℃に加熱したボックス中
で足長下で熱セラ)1−行い、中空糸を得た。
Example 1 Polyethylene with density (L968 melt index 5.5) (Mitsui Petrochemical Co., Ltd. Exhibition Hi-Zex 2200J
) and polyethylene with a density α92 melt index of 2 (Mitsui Petrochemical Co., Ltd. Ultxex 5021F)
') Q A hollow fiber manufacturing nozzle rotating two annular discharge ports arranged concentrically, the high density polyethylene is discharged from the outer discharge port at a total discharge temperature of 170°C and a discharge linear velocity of 8 cm/min. , the low-density polyethylene was discharged from the inner discharge port at a temperature of 170°C and a linear discharge velocity of 2α/min.
Extrusion and winding at a winding speed of 400 m/min under these conditions. At this time, spinning draft 5 of high density polyethylene
000, low density polyethylene spinning trough) 2[], 0
00 / Obtained A9 undrawn 9 yarn dimensions are inner diameter 30
The thickness of the high-density polyethylene layer was 60 μm, and the thickness of the low-density polyethylene layer was 6 μm. This unstretched hollow fiber gold 1
The film was annealed by passing it along a roller heated to 15° C. for 140 seconds. Subsequently, it was stretched for 40 ts between rollers kept at 20°C, further stretched by 160% at 105°C, and further heated under heat cera in a box heated to 115°C under foot length to obtain a hollow fiber. .

得らnた中空糸の管壁の厚さに50μ、内径は240μ
であつ友。該中空糸をウレタン接着剤(日本ポリウレタ
ン株式会社製 a−aaos/N−4221)でボッテ
ィング加工し、室温で1週間硬化した後、ボッティング
部分を切断した。切断面を光学顕微鏡により肉眼観察し
次結果、ウレタン樹脂から剥離している中空糸は皆無で
あった。
The tube wall thickness of the obtained hollow fiber was 50μ, and the inner diameter was 240μ.
A friend of mine. The hollow fibers were subjected to a botting process using a urethane adhesive (a-aaos/N-4221, manufactured by Nippon Polyurethane Co., Ltd.), and after curing at room temperature for one week, the bottling portion was cut. The cut surface was visually observed using an optical microscope, and the results showed that there were no hollow fibers that had peeled off from the urethane resin.

比較例1 実施例1のアニール処理後の中空糸を実施例1と同様に
ウレタン接着剤でボッティング加工し、1週間硬化した
後、ボッティング部分を切断しt0切断面t−光学顕微
鏡で肉眼観察した結果、殆どの中空糸がウレタン樹脂か
ら剥離していた〇 実施例2 密度α968、メルトインデックスS5のポリエチレン
(三井石油化学株式会社製ハイゼックス 2200J)
と密度α910、メルトインデックス15のポリプロピ
レン(宇部興産株式会社UBFiポリプロJ−115G
)を同心円状に配置さ′nt二つの円環状の吐出口を有
する中空糸製造用ノズルを用いて、外側の吐出口から前
記高密度ポリエチレンを吐出温度190℃、吐出線速度
8 cm/ m1ns内側の吐出口から前記ポリプロピ
レン全吐出温度190℃、吐出線速度CL 7 cm7
 minの条件で押し出し巻取り速度200rn/ m
inで巻取った。この時の高密度ポリエチレンの紡糸ド
ラフト2500、ポリプロピレンの紡糸ドラフト30,
000であった。
Comparative Example 1 The hollow fibers of Example 1 after the annealing treatment were subjected to botting with urethane adhesive in the same manner as in Example 1, and after curing for one week, the botting portion was cut and the t0 cut surface t was examined with the naked eye using an optical microscope. As a result of observation, most of the hollow fibers were peeled off from the urethane resin. Example 2 Polyethylene with density α968 and melt index S5 (Hyzex 2200J manufactured by Mitsui Petrochemical Co., Ltd.)
Polypropylene with density α910 and melt index 15 (Ube Industries, Ltd. UBFi Polypro J-115G)
) were arranged concentrically and had two annular discharge ports, and the high-density polyethylene was discharged from the outer discharge port at a temperature of 190°C and a linear discharge velocity of 8 cm/m1ns inside. The total discharge temperature of the polypropylene from the discharge port was 190°C, and the discharge linear velocity was CL 7 cm7.
Extrusion winding speed 200rn/m under conditions of min.
It was wound up in. At this time, the spinning draft of high density polyethylene was 2500, the spinning draft of polypropylene was 30,
It was 000.

得らnた未延伸中空糸の寸法に内径350μ、高密度ポ
リエチレン層の厚さ35μ、ポリプロピレン層の厚さ5
μであった。この未延伸中受糸を115℃に加熱さf′
L友ローラー上を定長下に通過せしめて140秒間、ア
ニール処理した。
The dimensions of the obtained unstretched hollow fibers were as follows: inner diameter 350μ, high density polyethylene layer thickness 35μ, polypropylene layer thickness 5μ.
It was μ. This undrawn medium receiving yarn was heated to 115°C f'
It was annealed for 140 seconds by passing over an L-shaped roller at a fixed length.

引き続いて20℃に保たnたローラー間で4゜チ延伸し
、さらに105℃で160%延伸し、さらに115℃に
加熱したボックス中で足長下で熱セットv行い、中空糸
を得た。
Subsequently, it was stretched by 4 degrees between rollers kept at 20°C, further stretched by 160% at 105°C, and further heat-set at a foot length in a box heated to 115°C to obtain hollow fibers. .

得らnた中空糸の管壁の厚さに33μ、内径は340μ
であつ友。該中空糸をウレタン接着剤(日本ポリウレタ
ン株式会社製 0−4405/N−4221)でボッテ
ィング加工し、室温で1週間硬化した後、ボッティング
部分全切断した。
The tube wall thickness of the obtained hollow fiber was 33μ, and the inner diameter was 340μ.
A friend of mine. The hollow fibers were subjected to a botting process using a urethane adhesive (0-4405/N-4221 manufactured by Nippon Polyurethane Co., Ltd.), and after curing for one week at room temperature, the bottling portion was completely cut off.

切断面を光学顕微鏡により肉眼観察した結果、ウレタン
樹脂から剥離している中空糸に皆無であつ友。
Visual observation of the cut surface using an optical microscope revealed that there were no hollow fibers that had separated from the urethane resin.

比較例2 実施例2のアニール処理後の中空糸を実施例2と同様に
ウレタン接着剤でボッティング加工し、1週間硬化しt
後、ポツティング部分を切断した。切断面tl−元学顕
微鏡で肉眼観察した結果、殆どの中空糸がウレタン樹脂
から剥離していた。
Comparative Example 2 The hollow fibers of Example 2 after the annealing treatment were subjected to botting processing with urethane adhesive in the same manner as in Example 2, and cured for one week.
After that, I cut the potting part. As a result of visual observation using a cut surface tl-Gengaku microscope, it was found that most of the hollow fibers had peeled off from the urethane resin.

実施例3 メルトインデックス五6のポリオキシメチレン(旭化成
工業株式会社製テナック3010)と密度(L925メ
ルトインデックス30のエチレン酢酸ビニル共重合体(
日本ユニカー株式会社fiNUCエチレン・コポリマー
DQD、T−3868)?同心円状に配置さn九二つの
円環状の吐出口金石する中空糸製膜用ノズルを用いて、
外側の吐出口から前記ポリオキシメチレンを吐出温度1
80℃、吐出線速度 6 cm/ min、内側の吐出
口から前記エチレン酢酸ビニル共重会体金吐出温度18
0℃、吐出線速度115 cm/minの条件で押し出
し、巻き取り速度200m/minで巻取った。この時
のポリオキシメチレンの紡糸ドラフト5333、エチレ
ン酢酸ビニル共重合体の紡糸トラフ)40,000であ
つ次。
Example 3 Polyoxymethylene (Tenac 3010 manufactured by Asahi Kasei Corporation) with a melt index of 56 and ethylene vinyl acetate copolymer (L925 with a melt index of 30)
Nippon Unicar Co., Ltd. fiNUC ethylene copolymer DQD, T-3868)? Using a hollow fiber membrane forming nozzle with two annular discharge ports arranged concentrically,
The polyoxymethylene is discharged from the outer discharge port at a temperature of 1.
80°C, discharge linear velocity 6 cm/min, and the ethylene vinyl acetate copolymer gold discharge temperature 18 from the inner discharge port.
It was extruded at 0° C. and a discharge linear velocity of 115 cm/min, and wound up at a winding speed of 200 m/min. At this time, the spinning draft of polyoxymethylene was 5333, and the spinning trough of ethylene vinyl acetate copolymer was 40,000.

得らnた未延伸中空糸の寸法に内径300μ、ポリオキ
シメチレン層の厚さ30μ、エチレン酢酸ビニル共重合
体層の厚さ4μであつ友。この未延伸中空糸′!!l−
115℃に加熱されたローラー上全定長下に通過せしめ
て140秒間、アニール処理した。引き続いて30℃に
保たtL比定ローラー間40%延伸し、さらに110℃
で、160%延伸し、引き続いて120℃に加熱したボ
ックス中で足長下で熱セットを行い、中空糸を得几。
The dimensions of the obtained undrawn hollow fibers were as follows: inner diameter 300μ, polyoxymethylene layer thickness 30μ, and ethylene vinyl acetate copolymer layer thickness 4μ. This unstretched hollow fiber'! ! l-
The sample was annealed for 140 seconds by passing over a roller heated to 115° C. over a constant length. Subsequently, it was stretched by 40% between tL specific rollers kept at 30°C, and further stretched at 110°C.
Then, the fibers were stretched by 160%, and then heat-set in a box heated to 120°C under foot length to obtain hollow fibers.

得らnた中空糸の管壁の厚さは30μ、内径に292μ
であった。該中空糸をウレタン接着剤(日本ポリウレタ
ン株式会社製 C−44037N−4221)でボッテ
ィング加ニレ、室温で1週間硬化し友後、ボッティング
部分全切断し友。切断面を光学顕微鏡により肉眼観察し
た結果、ウレタン樹脂から剥離している中空糸に皆無で
あった。
The tube wall thickness of the obtained hollow fiber was 30μ, and the inner diameter was 292μ.
Met. The hollow fibers were bonded with a urethane adhesive (C-44037N-4221, manufactured by Nippon Polyurethane Co., Ltd.), cured for one week at room temperature, and then completely cut off at the bottom. As a result of visually observing the cut surface using an optical microscope, no hollow fibers were found to have peeled off from the urethane resin.

比較例3 実施例5のアニール処理後の中空糸を実施例3と同様に
ウレタン接着剤でボッティング加工し、1週間硬化し几
後、ボッティング部分を切断した。切断面t−元生学顕
微鏡肉眼観察し友結果、一部の中空糸がウレタン樹脂か
ら剥離していた口
Comparative Example 3 The annealed hollow fiber of Example 5 was subjected to botting using a urethane adhesive in the same manner as in Example 3, and after curing for one week, the botting portion was cut. Cutting surface T - Visual observation using a biological microscope revealed that some hollow fibers had peeled off from the urethane resin.

Claims (1)

【特許請求の範囲】 1、外層と内層とが異種又は溶融粘度指数(MI値)の
異なる同種の有機重合体で構成され、微小空孔を有する
外層と連続した貫通孔が存在しない内層とが接合された
中空糸であって、両方の厚さの和が2〜500μ、内径
が50〜2000μであることを特徴とする複合溶融紡
糸により得られる中空糸。 2、同心円状に配置された二つの円環状の吐出口を有す
る中空糸製造用ノズルを用いて、各々の吐出口に異種又
は(MI値の異なる)同種の有機重合体を別々に供給し
て溶融複合紡糸し、二つの層を有する中空糸を得、該中
空糸をそのままか又はアニール処理を行った後、延伸し
て外側の層のみに多数の微小空孔を生ぜしめ、しかる後
熱セットすることを特徴とする異種又は溶融粘度指数の
異なる同種の有機重合体で構成され、微小空孔を有する
外層と連続した貫通孔が存在しない内層とが接合された
中空糸の製造方法。 3、中空糸の外層を構成する有機重合体の紡糸時におけ
る溶融粘度指数(MI値)を0.1〜10に設定し、内
層を形成する有機重合体のそれを15〜50に設定する
ことを特徴とする特許請求の範囲第2項記載の中空糸の
製造方法。 4、紡糸温度が有機重合体の融点〜(融点+80℃)で
ある特許請求の範囲第2項又は第3項記載の中空糸の製
造方法。 5、紡糸ドラフトが30以上であることを特徴とする特
許請求の範囲第2項、第3項又は第4項記載の中空糸の
製造方法。 6、熱セット温度が融点〜(融点−60℃)である特許
請求の範囲第2項乃至第5項のいずれかの項に記載の中
空糸の製造方法。
[Claims] 1. The outer layer and the inner layer are composed of different types of organic polymers or the same type of organic polymers with different melt viscosity indexes (MI values), and the outer layer has micropores and the inner layer does not have continuous through holes. A joined hollow fiber obtained by composite melt spinning, characterized in that the sum of both thicknesses is 2 to 500μ and the inner diameter is 50 to 2000μ. 2. Using a hollow fiber production nozzle having two annular discharge ports arranged concentrically, different or similar organic polymers (with different MI values) are separately supplied to each discharge port. Melt composite spinning is performed to obtain a hollow fiber having two layers, and the hollow fiber is stretched as it is or after annealing to create a large number of micropores only in the outer layer, and then heat set. A method for producing a hollow fiber comprising organic polymers of different types or of the same type having different melt viscosity indexes, in which an outer layer having micropores and an inner layer having no continuous through holes are joined. 3. The melt viscosity index (MI value) of the organic polymer forming the outer layer of the hollow fiber during spinning is set to 0.1 to 10, and that of the organic polymer forming the inner layer is set to 15 to 50. A method for manufacturing a hollow fiber according to claim 2, characterized in that: 4. The method for producing hollow fibers according to claim 2 or 3, wherein the spinning temperature is from the melting point of the organic polymer to (melting point +80°C). 5. The method for producing a hollow fiber according to claim 2, 3, or 4, characterized in that the spinning draft is 30 or more. 6. The method for producing a hollow fiber according to any one of claims 2 to 5, wherein the heat setting temperature is from the melting point to (melting point -60°C).
JP60056465A 1985-03-20 1985-03-20 Hollow fiber for heat exchanger and method for producing the same Expired - Fee Related JPH07100882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056465A JPH07100882B2 (en) 1985-03-20 1985-03-20 Hollow fiber for heat exchanger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056465A JPH07100882B2 (en) 1985-03-20 1985-03-20 Hollow fiber for heat exchanger and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61215709A true JPS61215709A (en) 1986-09-25
JPH07100882B2 JPH07100882B2 (en) 1995-11-01

Family

ID=13027850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056465A Expired - Fee Related JPH07100882B2 (en) 1985-03-20 1985-03-20 Hollow fiber for heat exchanger and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07100882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153694A (en) * 1985-08-30 1987-07-08 Kuraray Co Ltd Heat exchanger
JPH0465505A (en) * 1990-07-04 1992-03-02 Teijin Ltd Production of conjugate hollow fiber
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682393B2 (en) * 2010-03-30 2015-03-11 東レ株式会社 Gas-liquid hollow fiber heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPS5710202B2 (en) * 1974-07-02 1982-02-25
JPS6244046B2 (en) * 1983-12-28 1987-09-18 Mitsubishi Rayon Co

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPS5710202B2 (en) * 1974-07-02 1982-02-25
JPS6244046B2 (en) * 1983-12-28 1987-09-18 Mitsubishi Rayon Co

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153694A (en) * 1985-08-30 1987-07-08 Kuraray Co Ltd Heat exchanger
JPH0465505A (en) * 1990-07-04 1992-03-02 Teijin Ltd Production of conjugate hollow fiber
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07100882B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US4713292A (en) Multilayer composite hollow fibers and method of making same
US4741829A (en) Composite hollow fibers and method of making same
TWI355962B (en)
US7413804B2 (en) Braid-reinforced hollow fiber membrane
EP0050399B1 (en) Microporous polyethylene hollow fibers and a process for preparing the same
EP0057328B1 (en) Porous polyethylene film
JPS59199808A (en) Microporous hollow fiber and production thereof
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
JPH02144132A (en) Porous polyolefin film
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH08182921A (en) Polyolefin composite fine porous film
JPS61215709A (en) Hollow fiber and production thereof
JPS58169510A (en) Hollow fiber with modified cross section and hollow fiber module therefrom
CZ2002184A3 (en) Microporous membrane hollow fibers with longitudinally variable mechanical and filtration properties and process of their preparation
EP1063004A1 (en) Composite hollow fiber membrane and its manufacture
JPH07232044A (en) Porous membrane and manufacture of the same
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JPH04215828A (en) Multilayer composite membrane and production thereof
JPH0450053B2 (en)
JPH01127023A (en) Composite hollow fiber membranes
JPH044028A (en) Porous membrane and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees