JP5682393B2 - Gas-liquid hollow fiber heat exchanger - Google Patents

Gas-liquid hollow fiber heat exchanger Download PDF

Info

Publication number
JP5682393B2
JP5682393B2 JP2011065479A JP2011065479A JP5682393B2 JP 5682393 B2 JP5682393 B2 JP 5682393B2 JP 2011065479 A JP2011065479 A JP 2011065479A JP 2011065479 A JP2011065479 A JP 2011065479A JP 5682393 B2 JP5682393 B2 JP 5682393B2
Authority
JP
Japan
Prior art keywords
hollow fiber
heat exchanger
hollow
water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065479A
Other languages
Japanese (ja)
Other versions
JP2011226768A (en
Inventor
長部 真博
真博 長部
菅谷 博之
博之 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011065479A priority Critical patent/JP5682393B2/en
Publication of JP2011226768A publication Critical patent/JP2011226768A/en
Application granted granted Critical
Publication of JP5682393B2 publication Critical patent/JP5682393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空糸を用いた気体−液体系熱交換器に関するものであり、自動車の電気系冷却用途や、パソコン、液晶プロジェクター、エアコン等の冷却用熱交換器として使用することができる。   The present invention relates to a gas-liquid heat exchanger using a hollow fiber, and can be used as an electric system cooling for automobiles or as a heat exchanger for cooling a personal computer, a liquid crystal projector, an air conditioner or the like.

熱交換器は、熱を一方の物質から他方の物質へ伝える機器の総称であり、コンピュータや家電機器などに用いられる熱交換器では、一般的に、小さく、軽く、そして熱交換効率が高いものが望まれている。   A heat exchanger is a general term for devices that transfer heat from one substance to the other. Generally, heat exchangers used in computers and home appliances are small, light, and have high heat exchange efficiency. Is desired.

近年、熱交換効率を向上させるために、金属チューブもしくは樹脂チューブを細径化する方法が知られている(特許文献1)。   In recent years, in order to improve heat exchange efficiency, a method of reducing the diameter of a metal tube or a resin tube is known (Patent Document 1).

細径化したチューブを用いた熱交換器では、多数のチューブをヘッダー(媒体注入ヘッダーおよび媒体集合ヘッダー)に取り付ける必要から、組み付け性がよくない。   In a heat exchanger using thin tubes, it is necessary to attach a large number of tubes to a header (medium injection header and medium assembly header), so that the assemblability is not good.

組み付け性を向上させるために、中空糸を接着剤でポッティングする方法で作製された熱交換器が存在している(特許文献2)。   In order to improve the assembly property, there is a heat exchanger manufactured by a method of potting a hollow fiber with an adhesive (Patent Document 2).

しかし、上記の熱交換器に用いられた中空糸は、人工腎臓用途に用いられているものであり、表面に孔が開いており、水を透過させるものであった。上記の熱交換器は中空糸内部・外部共に液体を流す液−液熱交換器であり、中空糸内部に液体、中空糸外部に気体を流す気−液系の熱交換器ではなかったが、この液−液系の熱交換器を気−液系の熱交換器に適応した場合は、中空糸から液体が漏れ、熱交換器として成り立たないと考えられた。   However, the hollow fiber used in the above heat exchanger is used for artificial kidneys, and has a hole in the surface and allows water to pass therethrough. The above heat exchanger is a liquid-liquid heat exchanger that allows liquid to flow inside and outside the hollow fiber, and not a gas-liquid heat exchanger that flows liquid inside the hollow fiber and gas outside the hollow fiber, When this liquid-liquid type heat exchanger was applied to a gas-liquid type heat exchanger, it was considered that liquid leaked from the hollow fiber and could not be realized as a heat exchanger.

ここで、表面に孔が開いていない中空糸を接着剤でポッティングする方法で作製された熱交換器も存在している(特許文献3,4)。しかし、本発明者らは、ここでも上記の熱交換器は中空糸内部・外部共に液体を流す熱交換器であり、液−液系では、中空糸表面が水で湿っているため膨張してシールされ、漏れの抑制ができているが、液−気系では、中空糸表面が乾燥し、水が漏れてくると考えた。また、気−液系では中空糸の外部に空気を流すことになり、一般に、水を流すよりも流速が大きく、中空糸の揺れが大きくなることによって、剥離が起きやすくなると考えた。さらに、熱交換器として熱変化が大きいと、接着剤と中空糸の熱膨張差が生じ、水がもれやすくなると考えた。すなわち、接着剤と中空糸の接着不良が起こりやすく、接着不良の箇所から液体が漏れだすという課題を見出した。本発明者らは、表面に孔が開いていないため、接触面積がかせげず、またアンカー効果が生じにくいためと考えた。   Here, there is also a heat exchanger manufactured by a method of potting a hollow fiber having no hole on the surface with an adhesive (Patent Documents 3 and 4). However, the present inventors also here say that the above heat exchanger is a heat exchanger that allows liquid to flow inside and outside the hollow fiber, and in the liquid-liquid system, the surface of the hollow fiber is wet with water and expands. Although it was sealed and leakage was suppressed, it was considered that in the liquid-gas system, the hollow fiber surface dries and water leaks. In addition, in the gas-liquid system, air was allowed to flow outside the hollow fiber, and generally, the flow rate was larger than that of flowing water, and the hollow fiber was greatly shaken, so that it was thought that peeling easily occurred. Furthermore, it was considered that when the heat change as a heat exchanger is large, a difference in thermal expansion between the adhesive and the hollow fiber occurs, and water easily leaks. That is, the present inventors have found a problem in that poor adhesion between the adhesive and the hollow fiber is likely to occur, and liquid leaks from the location of poor adhesion. The present inventors considered that the surface area is not perforated, so that the contact area cannot be increased and the anchor effect is difficult to occur.

特開2004−320417号公報JP 2004-320417 A 特開平3−47271号公報JP-A-3-47271 特開昭63−189796号公報JP 63-189796 A 特開昭62−155858号公報JP 62-155858 A

上記のとおり、気−液系の熱交換器においては、表面に孔が開いている中空糸を用いれば、接着効果は高いが、液体が漏れやすく、一方、表面に孔が開いていない中空糸を用いれば、接着剤と中空糸の接着不良が起こりやすく、液体が漏れやすいという課題を見出した。本発明の目的は、かかる従来技術の欠点を改良し、小さく、軽く、そして熱交換効率が高く、組み付け性の良好な、液体漏れのない、気−液系の中空糸熱交換器を提供することにある。   As described above, in a gas-liquid heat exchanger, if a hollow fiber having a hole on the surface is used, the bonding effect is high, but the liquid is easy to leak, whereas the hollow fiber having no hole on the surface is used. As a result, the present inventors have found a problem that poor adhesion between the adhesive and the hollow fiber is liable to occur and the liquid is liable to leak. The object of the present invention is to improve the drawbacks of such prior art, and to provide a gas-liquid hollow fiber heat exchanger that is small, light, has high heat exchange efficiency, good assembly, and does not leak liquid. There is.

本発明者らは、接着効果を有しながら液体漏れが生じないように、孔をコントロールすることに着目し、上記課題を達成するため鋭意検討を進めた結果、下記構成によって達成されることを見出した。
(1)外表面に孔の開いた中空糸を用いた気体−液体系熱交換器であって、中空糸外表面を電子顕微鏡1000倍で観察し、0.1μm以上の孔の外表面開孔率が2〜10%であり、0.1μm以上の孔の平均直径が0.2〜1.0μmである中空糸を用い、接着用樹脂が中空糸外表面から中心方向に厚さの1/4以上浸透して接着されていることを特徴とする、気体−液体系熱交換器。
The present inventors paid attention to controlling the holes so that liquid leakage does not occur while having an adhesive effect, and as a result of intensive studies to achieve the above-mentioned problems, the following configuration is achieved. I found it.
(1) A gas-liquid heat exchanger using a hollow fiber having a hole on the outer surface, the outer surface of the hollow fiber being observed with an electron microscope at a magnification of 1000 times, and having an outer surface opening of 0.1 μm or more The hollow fiber having a rate of 2 to 10% and an average diameter of pores of 0.1 μm or more of 0.2 to 1.0 μm is used, and the adhesive resin has a thickness 1 / A gas-liquid heat exchanger characterized in that 4 or more are permeated and bonded.

本発明によって、小さく、軽くそして熱交換効率が高く、組み付け性の良好な、液体漏れのない、気−液系の中空糸熱交換器を提供できる。   According to the present invention, it is possible to provide a gas-liquid type hollow fiber heat exchanger that is small, light, high in heat exchange efficiency, good in assembly property, and free from liquid leakage.

中空糸の外表面をSEMにて観察した写真(観察倍率1000倍)。The photograph which observed the outer surface of the hollow fiber in SEM (observation magnification 1000 times). 接着用樹脂が膜厚に浸透しているかの確認方法。A method for confirming whether the adhesive resin penetrates the film thickness. 図2の膜厚部の拡大写真。The enlarged photograph of the film thickness part of FIG. ポッティング後の中空糸端面の断面写真(通常糸)。Cross-sectional photograph of the end face of hollow fiber after potting (normal thread). ポッティング後の中空糸端面の断面写真(不通糸)。Cross-sectional photograph of hollow fiber end face after potting (non-threading). ポッティング後の中空糸端面の断面写真(剥離)。Cross-sectional photograph (peeling off) of the hollow fiber end face after potting 接着用樹脂が中空糸膜厚部に浸透していない例。An example in which the adhesive resin does not penetrate the hollow fiber film thickness portion. 中空糸にカバリングを施した様子。A state of covering the hollow fiber. 熱交換器の一例(中空糸)。An example of a heat exchanger (hollow fiber). 熱交換器の一例(金属)。An example of a heat exchanger (metal). 熱交換実験の様子。A heat exchange experiment.

本発明の熱交換機は、外表面に孔の開いた中空糸を用いた気体−液体系熱交換器であって、中空糸外表面の孔としては、後述するように、電子顕微鏡1000倍で観察できる視野角において、0.1μm以上の孔の外表面の孔の大きさと個数を掛け合わせた孔総面積と観察面積から求められる外表面開孔率が2〜10%であることが必要であり、3〜8%がより好ましい。外表面開孔率が2%以上であると接着剤樹脂が膜厚部に浸透し接着力が強固になる。さらに、外表面が開孔していることにより、中空糸内部に冷媒として水を通水した時に、若干の加湿効果も期待される。図1には中空糸の外表面を電子顕微鏡1000倍で観察した一例を示す。外表面の開孔率が2%未満であると接着用樹脂の膜厚部へ浸透が起こらず、中空糸と接着樹脂間に隙間が生じ、漏れの原因となる場合がある。一方、外表面開孔率が10%を超えた場合は、中空糸から冷媒がしみ出してくるため、熱交換器としては使用できなくなる場合がある。   The heat exchanger of the present invention is a gas-liquid heat exchanger using a hollow fiber having a hole on the outer surface, and the hole on the outer surface of the hollow fiber is observed with an electron microscope 1000 times as described later. In the viewing angle that can be obtained, it is necessary that the outer surface open area ratio obtained from the total area of the holes obtained by multiplying the size and the number of holes on the outer surface of the hole of 0.1 μm or more and the observation area is 2 to 10%. 3 to 8% is more preferable. When the outer surface opening ratio is 2% or more, the adhesive resin penetrates into the film thickness portion, and the adhesive strength is strengthened. Further, since the outer surface is open, a slight humidification effect is expected when water is passed through the hollow fiber as a refrigerant. FIG. 1 shows an example in which the outer surface of the hollow fiber is observed with an electron microscope of 1000 times. When the opening ratio of the outer surface is less than 2%, the penetration of the adhesive resin into the film thickness portion does not occur, and a gap is formed between the hollow fiber and the adhesive resin, which may cause leakage. On the other hand, when the outer surface open area ratio exceeds 10%, the refrigerant oozes out from the hollow fiber, and thus may not be used as a heat exchanger.

該中空糸外表面の0.1μm以上の孔の平均直径は0.2〜1.0μmであることが必要である。より好ましくは0.3μm〜0.8μmである。ポッティングに用いる接着用樹脂を膜厚中に浸透させるためには直径0.2μm以上の平均直径が必要である。外表面孔径の平均直径0.2μm未満の場合は接着用樹脂が浸透せず、中空糸と接着用樹脂間に隙間ができ冷媒が漏れる原因となる場合がある。一方、平均直径1.0μmより大きい場合は中空糸から冷媒が漏れる原因ともなりかねない。   The average diameter of the pores of 0.1 μm or more on the outer surface of the hollow fiber needs to be 0.2 to 1.0 μm. More preferably, it is 0.3 micrometer-0.8 micrometer. In order for the adhesive resin used for potting to penetrate into the film thickness, an average diameter of 0.2 μm or more is required. When the average diameter of the outer surface pores is less than 0.2 μm, the adhesive resin does not penetrate, and a gap may be formed between the hollow fiber and the adhesive resin, which may cause the refrigerant to leak. On the other hand, when the average diameter is larger than 1.0 μm, the refrigerant may leak from the hollow fiber.

中空糸外表面の0.1μm以上の孔の外表面開孔率は、電子顕微鏡1000倍、すなわち縦92.3μm×横104.2μm角の範囲を観察し求めた。   The outer surface open area ratio of the pores of 0.1 μm or more on the outer surface of the hollow fiber was determined by observing an electron microscope 1000 times, that is, a range of 92.3 μm long × 104.2 μm square.

中空糸を接着させる接着用樹脂が中空糸膜厚の厚み方向に1/4以上浸透していることが必要であり、1/2以上浸透していることがより好ましい。これは中空糸と接着用樹脂の断面を電子顕微鏡で観察する事によって確認できる。   It is necessary that the adhesive resin for adhering the hollow fiber penetrates 1/4 or more in the thickness direction of the hollow fiber film thickness, and more preferably penetrates 1/2 or more. This can be confirmed by observing the cross section of the hollow fiber and the adhesive resin with an electron microscope.

ここで浸透とは、中空糸外径上にラインを引き、そのラインよりも中空糸内側に樹脂が浸透している状態とする。図2は中空糸断面全体が電子顕微鏡で観察できる倍率で観察した写真である。中空糸外径10は中空糸外径を強調させるために描いた線であり、中空糸内径20は中空糸内径を強調させるために描いた線である。該中空糸外径と内径を垂直になるように結んだ線が中空糸外径、内径から導き出される垂線30となる。中空糸外径、内径から導き出される垂線30の部分を拡大した写真が図3である。図2で示した様に中空糸外径・内径を強調した線を中空糸膜厚部を示す線40とした。電子顕微鏡の観察倍率は中空糸の糸径によって異なるが、中空糸全体が確認できる倍率で観察することが好ましい。しかし、接着用樹脂が膜厚部分よりも中空糸内部に浸透すると接着用樹脂によって中空糸内部が埋まり不通糸として中空糸が使用できなくなる。図4は中空糸の膜厚部分に接着用樹脂が浸透しているが、中空部には浸透していない正常状態の一例であり、図5は中空糸の中空部に接着用樹脂が浸透している不通糸の一例である。その為、接着用樹脂は膜厚中のみに浸透させる必要がある。中空糸接着用樹脂が1/4以上浸透していない場合は図6のように接着用樹脂と中空糸の間に隙間が発生し、冷媒漏れの原因となる。図7は中空糸膜厚部に接着用樹脂が浸透していない状態の一例である。図3と比べると接着用樹脂が膜厚部90に浸透していないため、膜の断面構造が確認できる。   Here, the term “penetration” refers to a state in which a line is drawn on the outer diameter of the hollow fiber and the resin penetrates into the hollow fiber from the line. FIG. 2 is a photograph of the entire cross section of the hollow fiber observed at a magnification that can be observed with an electron microscope. The hollow fiber outer diameter 10 is a line drawn to emphasize the hollow fiber outer diameter, and the hollow fiber inner diameter 20 is a line drawn to emphasize the hollow fiber inner diameter. A line connecting the outer diameter and the inner diameter of the hollow fiber perpendicularly becomes a perpendicular line 30 derived from the outer diameter and the inner diameter of the hollow fiber. FIG. 3 is an enlarged photograph of the portion of the perpendicular line 30 derived from the hollow fiber outer diameter and inner diameter. As shown in FIG. 2, the line emphasizing the outer diameter and inner diameter of the hollow fiber was defined as a line 40 indicating the film thickness portion of the hollow fiber. The observation magnification of the electron microscope varies depending on the yarn diameter of the hollow fiber, but it is preferable to observe at a magnification at which the entire hollow fiber can be confirmed. However, when the bonding resin penetrates into the hollow fiber rather than the film thickness portion, the hollow fiber is filled with the bonding resin, and the hollow fiber cannot be used as a thread breakage. FIG. 4 is an example of a normal state in which the adhesive resin penetrates into the hollow fiber film thickness portion but does not penetrate into the hollow portion, and FIG. 5 shows the adhesive resin penetrates into the hollow fiber hollow portion. This is an example of a thread breakage. Therefore, the adhesive resin needs to penetrate only into the film thickness. When the hollow fiber bonding resin does not penetrate more than 1/4, a gap is generated between the bonding resin and the hollow fiber as shown in FIG. FIG. 7 shows an example of a state where the adhesive resin does not penetrate into the hollow fiber film thickness portion. Compared with FIG. 3, since the adhesive resin does not penetrate into the film thickness portion 90, the cross-sectional structure of the film can be confirmed.

該中空糸の透水性能は37.5×10−3mL/hr/Pa/m以下であることが好ましく、7.5×10−3mL/hr/Pa/m以下がより好ましい。 The water permeability of the hollow fiber is preferably 37.5 × 10 −3 mL / hr / Pa / m 2 or less, and more preferably 7.5 × 10 −3 mL / hr / Pa / m 2 or less.

中空糸の透水性能が37.5×10−3mL/hr/Pa/mより大きい場合は中空糸内部に冷媒を流したときに、中空糸からの漏れが発生する。一方、透水性能によって冷媒による潜熱による冷却効果も望め、さらには、外表面の開孔率が伴うことによって冷媒の加湿効果も期待できる。その為、透水性能は0.75×10−3mL/hr/Pa/m以上であることが好ましい。 When the water permeability of the hollow fiber is greater than 37.5 × 10 −3 mL / hr / Pa / m 2 , leakage from the hollow fiber occurs when a refrigerant is flowed into the hollow fiber. On the other hand, the cooling effect by the latent heat by the refrigerant can be expected due to the water permeation performance, and further, the humidification effect of the refrigerant can be expected due to the porosity of the outer surface. Therefore, the water permeability is preferably 0.75 × 10 −3 mL / hr / Pa / m 2 or more.

中空糸単糸の糸外径は1000μm以下であることが好ましく、900μm以下であることがより好ましい。糸外径は熱交換器において表面積を増やし、熱交換効率を向上させるための大きなパラメーターである。その為、糸外径が1000μmよりも大きくなる場合は熱交換器としての熱交換効率が低下する。一方、糸外径が細くなると組み立て時の中空糸の強度低下による糸切れが起こるため、中空糸外径は100μm以上であることが好ましい。   The yarn outer diameter of the hollow fiber single yarn is preferably 1000 μm or less, and more preferably 900 μm or less. The yarn outer diameter is a large parameter for increasing the surface area and improving the heat exchange efficiency in the heat exchanger. For this reason, when the yarn outer diameter is larger than 1000 μm, the heat exchange efficiency as a heat exchanger is lowered. On the other hand, if the yarn outer diameter is reduced, yarn breakage occurs due to a decrease in the strength of the hollow fiber during assembly. Therefore, the outer diameter of the hollow fiber is preferably 100 μm or more.

本発明の中空糸は、中空糸にスペーサーヤーンが用いられ、該スペーサーヤーンが中空糸に螺旋状巻き付けられている事が好ましい。熱交換器は中空糸内部に冷媒を流し、中空糸外部に空気を流すことによって用いられる。中空糸内部に冷媒を流すことは中空糸が開孔していることで流量を確保できるが、中空糸外部に空気を流すことは精密な設計を要する。その為、中空糸にスペーサーヤーンを巻き付ける事により、中空糸と中空糸の間隔を一定にし、外部空気の流れを一定にすることが可能である。該スペーサーヤーンの素材としては特に限定はしないが、ポリエステルなどの捲縮糸、加工糸、紡績糸を用いることも一例として挙げられる。図8は中空糸にスペーサーヤーンを施した場合の一例を示す。中空糸60にスペーサーヤーン50を付与したものである。   In the hollow fiber of the present invention, a spacer yarn is used for the hollow fiber, and the spacer yarn is preferably spirally wound around the hollow fiber. The heat exchanger is used by flowing a refrigerant inside the hollow fiber and flowing air outside the hollow fiber. Flowing the coolant inside the hollow fiber can secure the flow rate because the hollow fiber is open, but flowing air outside the hollow fiber requires precise design. Therefore, by winding the spacer yarn around the hollow fiber, the distance between the hollow fiber and the hollow fiber can be made constant, and the flow of external air can be made constant. The material of the spacer yarn is not particularly limited, and examples thereof include the use of crimped yarn such as polyester, processed yarn, and spun yarn. FIG. 8 shows an example in which a spacer yarn is applied to a hollow fiber. A hollow yarn 60 is provided with a spacer yarn 50.

本発明の中空糸の素材としては、特に限定しないが、一般的に使用されているポリマーを用いることが好ましい。例えば、ポリ塩化ビニル、セルロース系ポリマー、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリウレタン、ポリアクリロニトリル、ポリスルホン系ポリマーなどが挙げられる。使用用途として、高温下で使用する場合は耐熱性のあるポリマーを用いれば良い。一方、金属チューブを用いる事も可能であるが、中空管の外表面加工、スペーサーヤーンの付与などを考慮するとポリマーを用いることが好ましいと思われる。   Although it does not specifically limit as a raw material of the hollow fiber of this invention, It is preferable to use the polymer generally used. For example, polyvinyl chloride, cellulose polymer, polystyrene, polymethyl methacrylate, polycarbonate, polyurethane, polyacrylonitrile, polysulfone polymer and the like can be mentioned. As a use application, when using at high temperature, a heat-resistant polymer may be used. On the other hand, it is possible to use a metal tube, but it is considered preferable to use a polymer in consideration of the outer surface processing of the hollow tube, the provision of spacer yarns, and the like.

ここでは中空糸の作製方法として一例を挙げてみる。   Here, an example is given as a method for producing a hollow fiber.

作製方法には溶液紡糸や溶融紡糸などが挙げられる。   Examples of the production method include solution spinning and melt spinning.

例えば、ポリスルホンの溶液紡糸で、中空糸を作製する方法としては、以下のような方法が挙げられる。ポリスルホンを良溶媒(N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン、ジオキサンなどが好ましい)および貧溶媒(水、またはポリエチレングリコールまたはポリプロピレングリコールが好ましい)の混合溶液に溶解させた製膜原液(ポリスルホン濃度は、10〜50重量%が好ましく、15〜40重量%がより好ましい)を二重環状口金から吐出する際に内側に注入液(ポリスルホンの良溶媒と貧溶媒の混合液)を流し、乾式部を走行させた後、凝固浴へ導く。注入液組成としてはプロセス適性から原液に用いた溶媒、貧溶媒を基本とする組成からなるものを用いることが好ましい。注入液濃度としては、例えばジメチルアセトアミドを用いたときは、80重量%以下、70重量%以下が好ましく、さらに60重量%以下であり、残りの組成を貧溶媒とする事が好ましい。   For example, as a method for producing a hollow fiber by solution spinning of polysulfone, the following method may be mentioned. Polysulfone was dissolved in a mixed solution of a good solvent (preferably N, N-dimethylacetamide, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane, etc.) and a poor solvent (preferably water, or polyethylene glycol or polypropylene glycol). When a film-forming solution (polysulfone concentration is preferably 10 to 50% by weight, more preferably 15 to 40% by weight) is discharged from the double annular die, an injection solution (mixed solution of polysulfone good and poor solvents) is injected inside. ) And run the dry section, and then lead to the coagulation bath. As the injection solution composition, it is preferable to use a composition composed of a solvent based on a stock solution and a poor solvent based on process suitability. For example, when dimethylacetamide is used, the injection solution concentration is preferably 80% by weight or less and 70% by weight or less, more preferably 60% by weight or less, and the remaining composition is preferably a poor solvent.

この際、乾式部の湿度が中空糸外表面の孔径、開孔率に大きく影響を与えるために、乾式部の温度、湿度を調整する必要がある。具体的には温度が20℃以上、相対湿度が50%以上であることが好ましく、温度25℃以上、相対湿度60%がより好ましい。乾式部走行中は製膜原液の温度による粘度変化、湿度により中空糸外表面からの水分補給を行うことで、外表面近傍での相中空糸挙動を速め、中空糸の細孔径を拡大、外表面開孔率の向上を行うことが可能である。しかし、温度が高すぎると製膜原液吐出時に口金表面に結露を起こし、製膜困難になる。さらに、相対湿度が高すぎると外表面での原液凝固が支配的になり、細孔径が小さくなる。そのため、細孔径をコントロールする一例ではあるが、温度は20℃〜60℃にコントロールする事が好ましい。相対湿度としては50〜95%が好ましい。   At this time, it is necessary to adjust the temperature and humidity of the dry part because the humidity of the dry part greatly affects the hole diameter and the hole area ratio of the outer surface of the hollow fiber. Specifically, the temperature is preferably 20 ° C. or higher and the relative humidity is preferably 50% or higher, more preferably 25 ° C. or higher and the relative humidity 60%. While running the dry section, by replenishing moisture from the outer surface of the hollow fiber by changing the viscosity according to the temperature of the membrane forming stock solution and humidity, the phase hollow fiber behavior near the outer surface is accelerated, and the pore diameter of the hollow fiber is expanded. It is possible to improve the surface area ratio. However, if the temperature is too high, condensation occurs on the surface of the die when the film-forming stock solution is discharged, making film formation difficult. Furthermore, when the relative humidity is too high, the solid solution coagulation on the outer surface becomes dominant and the pore diameter becomes small. Therefore, although it is an example which controls a pore diameter, it is preferable to control temperature to 20 to 60 degreeC. The relative humidity is preferably 50 to 95%.

紡糸され、凝固浴を通過させた後の中空糸を、水洗浴を通過させることで、残留溶媒を洗浄する。この後、中空糸の外周にオンライン上でスペーサーヤーンを螺旋状に巻き付け巻き取る。ここでのオンラインとは、吐出された中空糸を巻き取るまでの工程内を示す。   The hollow fiber after spinning and passing through the coagulation bath is passed through a water-washing bath to wash away the residual solvent. Thereafter, the spacer yarn is spirally wound and wound on the outer periphery of the hollow fiber online. The term “online” as used herein refers to the process until the discharged hollow fiber is wound up.

このようにして得られた中空糸は、中空糸外表面に孔を有している。   The hollow fiber thus obtained has holes on the outer surface of the hollow fiber.

熱交換器として中空糸を用いる場合は、中空糸が乾燥状態である事が好ましい。これは湿潤している中空糸を用いた場合、中空糸外部に空気を流すと中空糸が乾いて特性が変化する場合が出てくる。その為、中空糸を巻き取り後に定長にカットし、あらかじめ乾燥機でポリマーの融点、もしくはガラス転移点以下で乾燥することが好ましい。上記で挙げたポリスルホンを一例とすると、40℃〜175℃の温度下で乾燥することが好まししく、50℃〜150℃で乾燥させることがより好ましい。   When using a hollow fiber as a heat exchanger, it is preferable that the hollow fiber is in a dry state. In the case of using a wet hollow fiber, when the air is allowed to flow outside the hollow fiber, the hollow fiber is dried and the characteristics may change. For this reason, it is preferable to cut the hollow fiber into a fixed length after winding, and to dry in advance with a dryer below the melting point of the polymer or the glass transition point. Taking the polysulfone mentioned above as an example, it is preferable to dry at a temperature of 40 ° C. to 175 ° C., and more preferable to dry at 50 ° C. to 150 ° C.

なお、中空糸膜をモジュール化する方法としては、特に限定されないが、一例を示すと次の通りである。まず、中空糸膜を必要な長さに切断し、必要本数を束ねた後、ケースに入れる。気−液熱交換器の場合は中空糸内部を流れる冷媒と中空糸外部に流れる空気をクロスフローで流すことが好ましとされている。その後、中空糸の端面を目止めし、中空糸両端に注型用のキャップを取り付ける。   The method for modularizing the hollow fiber membrane is not particularly limited, but an example is as follows. First, the hollow fiber membrane is cut to a required length, bundled in a necessary number, and then put into a case. In the case of a gas-liquid heat exchanger, it is preferred to flow the refrigerant flowing inside the hollow fiber and the air flowing outside the hollow fiber in a cross flow. Thereafter, the end face of the hollow fiber is sealed, and casting caps are attached to both ends of the hollow fiber.

次いで、中空糸両端部に接着用樹脂を流し入れる。流し入れる方法としては、遠心機を用いてモジュールを高速回転させながら接着用樹脂を入れる方法が知られている。この方法は接着用樹脂が遠心力によって均一中空糸間に広がり、充填されるために好ましい。この時の遠心力としては50G〜150Gが好ましく、60〜100Gがより好ましい。50G以下の場合は、遠心力が低く、接着用樹脂が中空糸膜厚部に入らないと考えられる。一方、遠心力を150G以上にした場合は遠心力が強いため、中空糸の中空部にも接着用樹脂が入り、不通糸となる。   Next, an adhesive resin is poured into both ends of the hollow fiber. As a method of pouring, a method of putting an adhesive resin while rotating a module at high speed using a centrifuge is known. This method is preferable because the adhesive resin is spread and filled between the uniform hollow fibers by centrifugal force. The centrifugal force at this time is preferably 50G to 150G, and more preferably 60 to 100G. In the case of 50 G or less, it is considered that the centrifugal force is low and the adhesive resin does not enter the hollow fiber film thickness portion. On the other hand, when the centrifugal force is set to 150 G or more, the centrifugal force is strong, so that the adhesive resin enters the hollow portion of the hollow fiber, and the thread is not threaded.

接着用樹脂が固化した後、中空糸両端面の中空部が開口するように切断する。この時、不通糸が存在するか確認できる。この様にして、熱交換器用中空糸モジュールを得る。   After the adhesive resin is solidified, it is cut so that the hollow portions on both ends of the hollow fiber are open. At this time, it can be confirmed whether there is a thread breakage. In this way, a hollow fiber module for a heat exchanger is obtained.

図9はスペーサーヤーンを施した中空糸に接着用樹脂70を両端に流し込み作製した中空糸熱交換器の一例である。   FIG. 9 shows an example of a hollow fiber heat exchanger produced by pouring adhesive resin 70 into both ends of a hollow fiber having spacer yarns.

図10は金属管を用いた熱交換器の一例であり、実験方法としては図11の様に冷却用ファン80をモジュール横面の開口部付近に置き、風を流すことによって実験を行った。   FIG. 10 shows an example of a heat exchanger using a metal tube. As an experimental method, an experiment was conducted by placing a cooling fan 80 near the opening on the side of the module and flowing air as shown in FIG.

以下実施例と比較例を挙げて本発明を説明するが、本発明はこれらの例によって限定さ測定方法
(1)中空糸外表面開孔率、平均直径の測定方法
電界放射型走査型電子顕微鏡(日立社製、S−800)で中空糸膜外表面の1000倍画像を撮影した。画像サイズは655×740ピクセルとした。Matrox Inspector2.2(Matrox Electronic Systems Ltd.)で画像処理を行った。孔部分を白く、それ以外を黒く反転させ、白い部分のピクセル数を測定した。各孔部分のピクセル数の総和(総開孔面積)を画像全体のピクセル数で除し、百分率で表したものを開孔率とした。
開孔率(%)=(各孔のピクセル数の総和)/(画像全体のピクセル数)×100
なお、画像の解像度は0.140845μm/ピクセルであったので、縦92.3μm×横104.2μm角となり、上記電子顕微鏡画像の面積Sは、9615.2μmと算出された。さらに、求められた解析データから孔の個数、直径が求まり、この数値から平均直径を求めた。外表面開孔率、平均直径とも、中空糸5本からランダムに観察箇所を10カ所選び、10カ所の平均値をそれぞれの数値とした。
Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is limited by these examples. (1) Measuring Method of Hollow Fiber Outer Surface Opening Ratio and Average Diameter Field Emission Scanning Electron Microscope A 1000 times image of the outer surface of the hollow fiber membrane was taken with (S-800, manufactured by Hitachi, Ltd.). The image size was 655 × 740 pixels. Image processing was performed with Matrox Inspector 2.2 (Matrox Electronic Systems Ltd.). The hole portion was turned white and the others were turned black, and the number of pixels in the white portion was measured. The sum of the number of pixels in each hole portion (total opening area) was divided by the number of pixels in the entire image, and the percentage expressed as a percentage.
Opening ratio (%) = (total number of pixels in each hole) / (number of pixels in the entire image) × 100
Since the resolution of the image was 0.140845 μm / pixel, it was 92.3 μm long × 104.2 μm square, and the area S of the electron microscope image was calculated to be 9615.2 μm 2 . Furthermore, the number of holes and the diameter were obtained from the obtained analysis data, and the average diameter was obtained from these numerical values. For the outer surface open area ratio and the average diameter, ten observation points were randomly selected from five hollow fibers, and the average values at the ten points were used as the respective numerical values.

(2)中空糸膜厚部への接着用樹脂浸透確認
ポッティング後の中空糸端面を電界放射型走査型電子顕微鏡(日立社製、S−800)を用いて観察することによって確認できる。倍率は中空糸径によって変わってくるため、中空糸全体が観察画面上に入る倍率であれば容易に確認できる。中空糸端面を観察した画像に中空糸外径、中空糸内径を描きその中空糸の中心から中空糸内径まで垂直になるように直線を引き、その延長ラインとして中空糸外径まで結ぶ。該ラインから膜厚の長さを求め膜厚の長さに対して接着用樹脂がどの程度浸透しているか確認する。中空糸端面の中空糸を5本観察し、平均値を求めて判断する。
(2) Confirmation of penetration of resin for adhesion into hollow fiber film thickness portion It can be confirmed by observing the end surface of the hollow fiber after potting using a field emission scanning electron microscope (Hitachi, S-800). Since the magnification varies depending on the hollow fiber diameter, it can be easily confirmed as long as the entire hollow fiber falls on the observation screen. A hollow fiber outer diameter and a hollow fiber inner diameter are drawn on the image of the end surface of the hollow fiber, and a straight line is drawn so as to be perpendicular from the center of the hollow fiber to the hollow fiber inner diameter. The length of the film thickness is obtained from the line, and the degree of penetration of the adhesive resin with respect to the length of the film thickness is confirmed. Five hollow fibers at the end face of the hollow fiber are observed, and an average value is obtained and judged.

(3)透水性試験
プラスチック管に中空糸膜を通して両端を接着剤で固定した有効長10cmのプラスチック管モジュールを作製(以下、ミニモジュール)し、中空糸膜の内側に水圧1.3×10Paをかけ、外側に流出してくる単位時間あたりの濾過量を測定した。透水性能は下記の式で算出した。
(3) Water permeability test A plastic tube module having an effective length of 10 cm in which both ends are fixed to each other with an adhesive through a hollow fiber membrane (hereinafter referred to as a mini module), and a water pressure of 1.3 × 10 4 is formed inside the hollow fiber membrane. Pa was applied and the amount of filtration per unit time flowing out was measured. The water permeability was calculated by the following formula.

透水性能(mL/hr/Pa/m)=Q/(T×P×A)
ここで、Qは濾過量(mL)、Tは処理時間(hr)、Pは圧力(Pa)、Aは中空糸膜の内表面積(m)を意味する。
Water permeability (mL / hr / Pa / m 2 ) = Q W / (T × P × A)
Here, Q W is the filtration amount (mL), T is the treatment time (hr), P is the pressure (Pa), and A is the inner surface area (m 2 ) of the hollow fiber membrane.

(4)中空糸の糸径測定
中空糸束から無作為に抜き取った16本の中空糸膜をレーザー変位計(KEYENCE社製、LS5040T)で中空糸外径を測定した。この16本の平均値を中空糸外径とする。中空糸膜厚と中空糸内径の測定においては、マイクロウォッチャーの1000倍レンズ(KEYENCE社製、VH−Z100)で測定して中空糸膜厚を求め、膜厚の値を2倍して中空糸膜外径から引いた値を中空糸膜内径とした。
(4) Measurement of hollow fiber diameter The hollow fiber outer diameter of 16 hollow fiber membranes randomly drawn from a hollow fiber bundle was measured with a laser displacement meter (LS5040T, manufactured by KEYENCE Corp.). The average value of these 16 pieces is taken as the hollow fiber outer diameter. For the measurement of the hollow fiber film thickness and the hollow fiber inner diameter, the hollow fiber film thickness is determined by measuring with a 1000 × lens (manufactured by KEYENCE, VH-Z100) of a microwatcher. The value subtracted from the membrane outer diameter was defined as the hollow fiber membrane inner diameter.

(5)熱交換試験
熱交換器にIWAKI社製マグネットポンプ容量(MD−15R)を用いて、60℃の温水を流した。この時、熱交換器を通して流れている流量をメスシリンダーで測定し、温水流量を求めた。温水が流れている熱交換器の中空糸に、垂直方向からパソコンで用いられるファン(ULTRA KAZE DFS123812H−3000)を熱交換器から50mm離した箇所に設置し風を当てた。この時の中空糸に当たる前の風速と温度、中空糸に当たった後の風量と温度を測定した。中空糸を通った後の風には湿度計も設置し、湿度も測定した。温水温度に関しては、中空糸の入り、出のラインに熱センサーを入れて温水温度を測定した。
(5) Heat Exchange Test Using a magnet pump capacity (MD-15R) manufactured by IWAKI Co., Ltd., warm water at 60 ° C. was passed through the heat exchanger. At this time, the flow rate flowing through the heat exchanger was measured with a graduated cylinder to obtain the hot water flow rate. A fan (ULTRA KAZE DFS123812H-3000) used in a personal computer from the vertical direction was installed at a location 50 mm away from the heat exchanger, and the wind was applied to the hollow fiber of the heat exchanger through which hot water was flowing. The wind speed and temperature before hitting the hollow fiber at this time, and the air volume and temperature after hitting the hollow fiber were measured. A hygrometer was installed in the wind after passing through the hollow fiber, and the humidity was also measured. Regarding the hot water temperature, the hot water temperature was measured by inserting a heat sensor in the line where the hollow fiber entered and exited.

温度・風速から以下の式を用いて熱量を求めた。   The amount of heat was determined from the temperature and wind speed using the following formula.

Q=(T−T)×F×10−3×D×Hc
Q:交換熱量(W)
:中空糸膜入口の冷媒温度(K)
:中空糸膜出口の冷媒温度(K)
F:冷媒の流量(g/sec)
D:冷媒の比重(g/ml)
Hc:冷媒の比熱(J/Kg/K)
(実施例1)
ポリスルホン(ソルベイアドバンストポリマーズ社製 Udel−P3500)18重量部、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 9重量部をジメチルアセトアミド72重量部、水1重量部を加熱溶解し、製膜原液とした。
Q = (T i −T o ) × F × 10 −3 × D × Hc
Q: Exchange heat (W)
T i : Refrigerant temperature (K) at the entrance of the hollow fiber membrane
T o: coolant temperature of the hollow fiber membrane outlet (K)
F: Flow rate of refrigerant (g / sec)
D: Specific gravity of refrigerant (g / ml)
Hc: Specific heat of refrigerant (J / Kg / K)
(Example 1)
Polysulfone (Udel-P3500, manufactured by Solvay Advanced Polymers) 18 parts by weight, polyvinylpyrrolidone (International Special Products, Inc .; hereinafter abbreviated as ISP) 9 parts by weight K30, 72 parts by weight of dimethylacetamide and 1 part by weight of water were dissolved by heating. A membrane stock solution was obtained.

この原液を温度50℃の紡糸口金部へ送り、外径1.0mm、内径0.7mmの2重スリット管から芯液としてジメチルアセトアミド40重量部、水60重量部からなる溶液を吐出させ、中空糸を形成させた後、温度30℃、露点28℃の、350mmのドライゾーン雰囲気を経て、ジメチルアセトアミド10重量%、水90重量%からなる温度40℃の凝固浴を通過させ、水洗工程を得て中空糸に2本単位で160dtexのポリエステル加工糸をカバリングさせ、さらに4本の中空糸に160dtexポリエステル加工糸でダブルカバリングを施し、紡速20m/minで巻き取った。   This stock solution is sent to a spinneret part at a temperature of 50 ° C., and a solution consisting of 40 parts by weight of dimethylacetamide and 60 parts by weight of water is discharged as a core liquid from a double slit tube having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm. After forming the yarn, after passing through a 350 mm dry zone atmosphere at a temperature of 30 ° C. and a dew point of 28 ° C., it is passed through a coagulation bath at a temperature of 40 ° C. consisting of 10% by weight of dimethylacetamide and 90% by weight of water to obtain a water washing step. Then, 160 dtex polyester processed yarn was covered in units of 2 to the hollow fiber, and 4 hollow fibers were double covered with 160 dtex polyester processed yarn, and wound at a spinning speed of 20 m / min.

該中空糸を50℃の乾熱乾燥下で24時間乾燥させ、さらに、170℃の乾熱乾燥で5時間乾燥させた。中空糸の内径は700μm、膜厚120μmであった。該中空糸膜について、透水性を測定したところ1.5×10−3mL/hr/Pa/mであった。この中空糸の外表面を観察したところ、外表面開孔率は4.9%、平均孔径の直径が0.6μmであった。 The hollow fiber was dried under dry heat drying at 50 ° C. for 24 hours, and further dried by dry heat drying at 170 ° C. for 5 hours. The inner diameter of the hollow fiber was 700 μm and the film thickness was 120 μm. When the water permeability of the hollow fiber membrane was measured, it was 1.5 × 10 −3 mL / hr / Pa / m 2 . When the outer surface of this hollow fiber was observed, the outer surface open area ratio was 4.9%, and the average pore diameter was 0.6 μm.

該中空糸を用いて、縦70mm、横40mm、高さ180mmのアクリルケースに96本の中空糸を等間隔で配置させ、ウレタン系接着樹脂を投入後100Gの遠心力で回転させてポッティングを行った。ポッティング端面をカットしてカット面の中空糸を観察したところ、中空糸断面の外表面から内表面の膜厚部にウレタン接着用樹脂が膜厚部の4/5以上浸透していることが確認できた。   Using these hollow fibers, 96 hollow fibers are arranged at equal intervals in an acrylic case with a length of 70 mm, a width of 40 mm, and a height of 180 mm, and after potting the urethane adhesive resin, it is rotated by a centrifugal force of 100 G for potting. It was. When the potting end face was cut and the hollow fiber on the cut surface was observed, it was confirmed that the urethane adhesive resin had penetrated 4/5 or more of the film thickness part from the outer surface of the hollow fiber cross section to the film thickness part of the inner surface. did it.

その後、該熱交換器の中空糸内部にポンプで温水を送り込んだところ、2400ml/minの温水が流れた。この時、中空糸からの水漏れや、ウレタン樹脂接着部からの水漏れは確認できなかった。この熱交換器に中空糸に垂直になる様に18.7℃、湿度50%で2.5m/secの風を当てると58.7℃から56.0℃に温水の温度は下がった。この時の冷却熱量は452Wであった。この時、熱交換器に対して空気出風速は2.6m/secで、23.3℃、84%であった。
(超純水,比重1g/ml、比熱4184J/kg/Kで計算した。)
(比較例1)
ポリスルホン(ソルベイアドバンストポリマーズ社製 Udel−P3500)16重量部、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 4重量部をK90 2重量部ジメチルアセトアミド77重量部、水1重量部を加熱溶解し、製膜原液とした。
Thereafter, hot water was pumped into the hollow fiber of the heat exchanger, and 2400 ml / min of hot water flowed. At this time, water leakage from the hollow fiber and water leakage from the urethane resin bonded portion could not be confirmed. When a wind of 2.5 m / sec at 18.7 ° C. and 50% humidity was applied to the heat exchanger so as to be perpendicular to the hollow fiber, the temperature of the hot water decreased from 58.7 ° C. to 56.0 ° C. The amount of cooling heat at this time was 452W. At this time, the air blowing speed with respect to the heat exchanger was 2.6 m / sec, 23.3 ° C., and 84%.
(Calculated with ultrapure water, specific gravity 1 g / ml, specific heat 4184 J / kg / K.)
(Comparative Example 1)
16 parts by weight of polysulfone (Udel-P3500 manufactured by Solvay Advanced Polymers), 4 parts by weight of polyvinylpyrrolidone (International Special Products, hereinafter referred to as ISP) K30 2 parts by weight of K90 77 parts by weight of dimethylacetamide and 1 part by weight of water are heated It melt | dissolved and it was set as the film forming stock solution.

この原液を温度50℃の紡糸口金部へ送り、外径1.0mm、内径0.7mmの2重スリット管から芯液としてジメチルアセトアミド63重量部、水37重量部からなる溶液を吐出させ、中空糸を形成させた後、温度30℃、露点28℃の、350mmのドライゾーン雰囲気を経て、ジメチルアセトアミド10重量%、水90重量%からなる温度40℃の凝固浴を通過させ、水洗工程を得て中空糸に2本単位で160dtexのポリエステル加工糸をカバリングさせ、さらに4本の中空糸に160dtexポリエステル加工糸でダブルカバリングを施し、紡速20m/minで巻き取った。   This stock solution is sent to a spinneret part at a temperature of 50 ° C., and a solution comprising 63 parts by weight of dimethylacetamide and 37 parts by weight of water is discharged as a core liquid from a double slit tube having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm. After forming the yarn, after passing through a 350 mm dry zone atmosphere at a temperature of 30 ° C. and a dew point of 28 ° C., it is passed through a coagulation bath at a temperature of 40 ° C. consisting of 10% by weight of dimethylacetamide and 90% by weight of water to obtain a water washing step. Then, 160 dtex polyester processed yarn was covered in units of 2 to the hollow fiber, and 4 hollow fibers were double covered with 160 dtex polyester processed yarn, and wound at a spinning speed of 20 m / min.

該中空糸を50℃の乾熱乾燥下で24時間乾燥させた。中空糸の内径は650μm、膜厚120μmであった。該中空糸膜について、透水性を測定したところ2.5mL/hr/Pa/mであった。この中空糸の外表面を観察したところ、外表面開孔率は10.8%、平均孔径の直径が0.7μmであった。 The hollow fiber was dried under dry heat drying at 50 ° C. for 24 hours. The inner diameter of the hollow fiber was 650 μm and the film thickness was 120 μm. The water permeability of the hollow fiber membrane was measured and found to be 2.5 mL / hr / Pa / m 2 . When the outer surface of this hollow fiber was observed, the outer surface opening ratio was 10.8%, and the average pore diameter was 0.7 μm.

該中空糸を用いて、縦70mm、横40mm、高さ180mmのアクリルケースに96本の中空糸を等間隔で配置させ、ウレタン系接着樹脂を投入後100Gの遠心力で回転させてポッティングを行った。ポッティング端面をカットしてカット面の中空糸を観察したところ、中空糸断面の外表面から内表面の膜厚部にウレタン接着用樹脂が膜厚部の4/5以上浸透していることが確認できた。   Using these hollow fibers, 96 hollow fibers are arranged at equal intervals in an acrylic case with a length of 70 mm, a width of 40 mm, and a height of 180 mm, and after potting the urethane adhesive resin, it is rotated by a centrifugal force of 100 G for potting. It was. When the potting end face was cut and the hollow fiber on the cut surface was observed, it was confirmed that the urethane adhesive resin had penetrated 4/5 or more of the film thickness part from the outer surface of the hollow fiber cross section to the film thickness part of the inner surface. did it.

その後、該熱交換器にポンプで温水を送り込んだところ、ウレタン接着部からの漏れは無かったものの、中空糸から温水が漏れだし熱交換器の実験はできなかった。   Thereafter, when hot water was fed into the heat exchanger by a pump, there was no leakage from the urethane bonded portion, but warm water leaked from the hollow fiber, and the heat exchanger could not be tested.

(比較例2)
縦5mm、横150mm、高さ150mmのアクリルケースにΦ1、肉厚0.1mmのSUS配管を等間隔で57本並べてウレタン接着用樹脂を用いて熱交換器を組み立てた。
(Comparative Example 2)
A heat exchanger was assembled by using 57 urethane pipes arranged at equal intervals in an acrylic case having a length of 5 mm, a width of 150 mm, and a height of 150 mm at regular intervals.

該SUS配管の外表面開孔率は規定の倍率での開孔部は確認できなかった。   As for the opening ratio of the outer surface of the SUS pipe, the opening portion at a specified magnification could not be confirmed.

ポッティング端面をカットしてカット面の中空糸を観察したところ、中空糸膜厚部へのウレタン接着用樹脂の浸透は確認できなかった。   When the potting end face was cut and the hollow fiber on the cut face was observed, penetration of the urethane adhesive resin into the hollow fiber film thickness portion could not be confirmed.

その後、該熱交換器の中空糸内部にポンプで温水を送り込んだところ、中空糸からの漏れは無かったものの、ウレタン接着部からの温水の漏れが確認できた。
熱交換器からの漏れはあったが、そのまま熱交換実験を続けたところ、720ml/minの温水が流れた。この熱交換器に中空糸に垂直になる様に17.8℃、湿度35%で6.0m/secの風を当てると60.0℃から55.6℃に温水の温度は下がった。この時の冷却熱量は222Wであった。この時、熱交換器に対して空気出風速は3.9m/secで、22.9℃、38%であった。その後、ウレタン樹脂接着部の漏れがひどくなり、熱交換器として使用できなくなったので実験を中止した。
(超純水,比重1g/ml、比熱4184J/kg/Kで計算した。)
(比較例3)
ポリスルホン(ソルベイアドバンストポリマーズ社製 Udel−P3500)18重量部、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 6重量部をK90 3重量部ジメチルアセトアミド72重量部、水1重量部を加熱溶解し、製膜原液とした。
Thereafter, when hot water was fed into the hollow fiber of the heat exchanger with a pump, there was no leakage from the hollow fiber, but leakage of warm water from the urethane bonded part was confirmed.
Although there was leakage from the heat exchanger, when the heat exchange experiment was continued as it was, 720 ml / min of hot water flowed. When a wind of 6.0 m / sec at 17.8 ° C. and 35% humidity was applied to the heat exchanger so as to be perpendicular to the hollow fiber, the temperature of the hot water decreased from 60.0 ° C. to 55.6 ° C. The cooling heat quantity at this time was 222W. At this time, the air blowing speed with respect to the heat exchanger was 3.9 m / sec, 22.9 ° C., and 38%. After that, leakage of the urethane resin adhesion became so severe that it could no longer be used as a heat exchanger, so the experiment was stopped.
(Calculated with ultrapure water, specific gravity 1 g / ml, specific heat 4184 J / kg / K.)
(Comparative Example 3)
18 parts by weight of polysulfone (Udel-P3500, manufactured by Solvay Advanced Polymers), 6 parts by weight of polyvinylpyrrolidone (International Special Products, hereinafter referred to as ISP) K30 3 parts by weight of K90 72 parts by weight of dimethylacetamide, and 1 part by weight of water are heated It melt | dissolved and it was set as the film forming stock solution.

この原液を温度50℃の紡糸口金部へ送り、外径1.0mm、内径0.7mmの2重スリット管から芯液としてジメチルアセトアミド75重量部、水25重量部からなる溶液を吐出させ、中空糸を形成させた後、温度30℃、露点28℃の、10mmのドライゾーン雰囲気を経て、ジメチルアセトアミド10重量%、水90重量%からなる温度40℃の凝固浴を通過させ、水洗工程を得て中空糸に2本単位で160dtexのポリエステル加工糸をカバリングさせ、さらに4本の中空糸に160dtexポリエステル加工糸でダブルカバリングを施し、紡速20m/minで巻き取った。   This stock solution is sent to a spinneret part at a temperature of 50 ° C., and a solution consisting of 75 parts by weight of dimethylacetamide and 25 parts by weight of water is discharged as a core liquid from a double slit tube having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm. After forming the yarn, after passing through a 10 mm dry zone atmosphere at a temperature of 30 ° C. and a dew point of 28 ° C., it is passed through a coagulation bath at a temperature of 40 ° C. consisting of 10% by weight of dimethylacetamide and 90% by weight of water to obtain a water washing step. Then, 160 dtex polyester processed yarn was covered in units of 2 to the hollow fiber, and 4 hollow fibers were double covered with 160 dtex polyester processed yarn, and wound at a spinning speed of 20 m / min.

中空糸の内径は580μm、膜厚105μmであった。該中空糸膜について、透水性を測定したところ0.75mL/hr/Pa/mであった。この中空糸の外表面を観察したところ、外表面開孔率は1.8%、平均孔径の直径が0.31μm以下であった。 The inner diameter of the hollow fiber was 580 μm and the film thickness was 105 μm. The water permeability of the hollow fiber membrane was measured and found to be 0.75 mL / hr / Pa / m 2 . When the outer surface of this hollow fiber was observed, the outer surface open area ratio was 1.8%, and the average pore diameter was 0.31 μm or less.

該中空糸を用いて、縦70mm、横40mm、高さ180mmのアクリルケースに96本の中空糸を等間隔で配置させ、ウレタン系接着樹脂を投入後100Gの遠心力で回転させてポッティングを行った。ポッティング端面をカットしてカット面の中空糸を観察したところ、中空糸断面の外表面から内表面の膜厚部にウレタン接着用樹脂が浸透していなかった。   Using these hollow fibers, 96 hollow fibers are arranged at equal intervals in an acrylic case with a length of 70 mm, a width of 40 mm, and a height of 180 mm, and after potting the urethane adhesive resin, it is rotated by a centrifugal force of 100 G for potting. It was. When the potting end surface was cut and the hollow fiber on the cut surface was observed, the urethane adhesive resin did not penetrate from the outer surface of the cross section of the hollow fiber to the film thickness portion of the inner surface.

その後、該熱交換器にポンプで温水を送り込んだところ、ウレタン接着部からの漏れ、中空糸から温水の漏れが確認でき熱交換器の実験はできなかった。   Thereafter, when hot water was fed into the heat exchanger with a pump, leakage from the urethane adhesive part and leakage of hot water from the hollow fiber were confirmed, and the heat exchanger experiment could not be performed.

10 中空糸外径
20 中空糸内径
30 中空糸外径、内径から導き出される垂線
40 中空糸膜厚部を示す線
50 スペーサーヤーン
60 中空糸
70 接着用樹脂
80 冷却用ファン
90 膜厚部
DESCRIPTION OF SYMBOLS 10 Hollow fiber outer diameter 20 Hollow fiber inner diameter 30 Hollow fiber outer diameter, perpendicular line derived | led-out from inner diameter 40 Line which shows hollow fiber film thickness part 50 Spacer yarn 60 Hollow fiber 70 Adhesive resin 80 Cooling fan 90 Film thickness part

Claims (1)

外表面に孔の開いた中空糸を用いた気体−液体系熱交換器であって、中空糸外表面を電子顕微鏡1000倍で観察し、0.1μm以上の孔の外表面開孔率が2〜10%であり、0.1μm以上の孔の平均直径が0.2〜1.0μmである中空糸を用い、接着用樹脂が中空糸外表面から中心方向に厚さの1/4以上浸透して接着されていることを特徴とする、気体−液体系熱交換器。 A gas-liquid heat exchanger using a hollow fiber with a hole on the outer surface, and the outer surface of the hollow fiber is observed with an electron microscope at a magnification of 1000, and the outer surface opening ratio of a hole of 0.1 μm or more is 2 10%, and hollow fibers having an average diameter of 0.2 to 1.0 μm of pores of 0.1 μm or more are used, and the adhesive resin penetrates more than ¼ of the thickness from the outer surface of the hollow fiber toward the center. And a gas-liquid heat exchanger.
JP2011065479A 2010-03-30 2011-03-24 Gas-liquid hollow fiber heat exchanger Expired - Fee Related JP5682393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065479A JP5682393B2 (en) 2010-03-30 2011-03-24 Gas-liquid hollow fiber heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010077071 2010-03-30
JP2010077071 2010-03-30
JP2011065479A JP5682393B2 (en) 2010-03-30 2011-03-24 Gas-liquid hollow fiber heat exchanger

Publications (2)

Publication Number Publication Date
JP2011226768A JP2011226768A (en) 2011-11-10
JP5682393B2 true JP5682393B2 (en) 2015-03-11

Family

ID=45042305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065479A Expired - Fee Related JP5682393B2 (en) 2010-03-30 2011-03-24 Gas-liquid hollow fiber heat exchanger

Country Status (1)

Country Link
JP (1) JP5682393B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111003B2 (en) * 1985-03-11 1995-11-29 三菱レイヨン株式会社 Hollow fiber for heat exchanger
JPH07100882B2 (en) * 1985-03-20 1995-11-01 三菱レイヨン株式会社 Hollow fiber for heat exchanger and method for producing the same
JPS61225308A (en) * 1985-03-25 1986-10-07 Mitsubishi Rayon Co Ltd Hollow yarn and production thereof
JPS62153694A (en) * 1985-08-30 1987-07-08 Kuraray Co Ltd Heat exchanger
JPS62155858A (en) * 1985-12-27 1987-07-10 三菱レイヨン株式会社 Hollow yarn module
JPS63189796A (en) * 1987-01-30 1988-08-05 Daicel Chem Ind Ltd Heat exchanger of hollow yarn type for manufacture of super-pure water of high temperature
JPH0347271A (en) * 1989-07-14 1991-02-28 Terumo Corp Liquid treatment device
JPH03106421A (en) * 1989-09-18 1991-05-07 Toray Ind Inc Fluid separation module and its manufacture
JPH04278183A (en) * 1991-03-05 1992-10-02 Mitsubishi Rayon Co Ltd Cooling tower
JP3547780B2 (en) * 1993-12-13 2004-07-28 三菱レイヨン株式会社 High strength, high modulus polypropylene fiber
JP3551971B1 (en) * 2003-11-26 2004-08-11 東洋紡績株式会社 Polysulfone permselective hollow fiber membrane

Also Published As

Publication number Publication date
JP2011226768A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
KR101596994B1 (en) Water-vapor-permeable membrane, hollow-fiber membrane, and hollow-fiber membrane module
JP6020592B2 (en) Porous hollow fiber membrane and method for producing the same
JP5561369B2 (en) Porous hollow fiber membrane defect inspection apparatus and defect inspection method, and porous hollow fiber membrane manufacturing method
WO2013073828A1 (en) Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
CN104271651A (en) Porous membrane production method, and porous membrane drying device
KR100712393B1 (en) PROCESS FOR PRODUCTION OF POLYm-PHENYLENEISOPHTHAL- AMIDE POROUS HOLLOW FIBER MEMBRANE
JP2006255502A (en) Manufacturing method of porous polyphenylsulfone resin hollow fiber membrane
JP6964680B2 (en) Manufacturing method of polyphenylsulfone hollow fiber membrane for humidifying membrane
CN108136341A (en) The manufacturing method of seperation film, cellulose resin compositions and seperation film
JP5412938B2 (en) Hollow fiber module and manufacturing method thereof
JP5682393B2 (en) Gas-liquid hollow fiber heat exchanger
JP2014012273A (en) Hollow fiber membrane for humidification, and membrane module for humidification
JP4715733B2 (en) Manufacturing method of reverse osmosis membrane
JP2012020232A (en) Polyamide permeable membrane and method of producing the same
JP2011067812A (en) Steam-permeable membrane, hollow fiber membrane, and humidifier
JP2011056458A (en) Method for manufacturing hollow-fiber membrane
CN105435654A (en) Method for preparing single-skin-layer hollow fiber membrane
JPS6159764B2 (en)
JP4894148B2 (en) Hollow fiber membrane manufacturing method and manufacturing apparatus thereof
JP3219445B2 (en) Drying method for hollow fiber bundles
JP2010142747A (en) Method for spinning fiber of hollow-fiber membrane, and hollow-fiber membrane
CN110475605A (en) The manufacturing method of seperation film and seperation film
JP5776918B2 (en) Hollow porous membrane manufacturing apparatus and manufacturing method
JP2007289944A (en) Membrane for humidification, and its manufacturing method
JP2014124563A (en) Membrane-forming stock solution for porous polyethersulfone hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R151 Written notification of patent or utility model registration

Ref document number: 5682393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees