JPH07208896A - Polyolefin-based heat-exchanging tubular body - Google Patents

Polyolefin-based heat-exchanging tubular body

Info

Publication number
JPH07208896A
JPH07208896A JP6003297A JP329794A JPH07208896A JP H07208896 A JPH07208896 A JP H07208896A JP 6003297 A JP6003297 A JP 6003297A JP 329794 A JP329794 A JP 329794A JP H07208896 A JPH07208896 A JP H07208896A
Authority
JP
Japan
Prior art keywords
tubular body
organic polymer
thin film
film layer
hydrophilic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003297A
Other languages
Japanese (ja)
Inventor
Mamiko Iwai
麻美子 岩井
Isamu Masuda
勇 増田
Kunio Misoo
久仁夫 三十尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6003297A priority Critical patent/JPH07208896A/en
Publication of JPH07208896A publication Critical patent/JPH07208896A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To improve adhesive properties between a tubular body and embedding resin, simplify processing and eliminate riskiness of leakage caused on the boundary between the tubular body and the embedding resin, by a method wherein a thin film layer comprising a hydrophilic organic polymer having a polar group is made composite and provided on the outer surface of the tubular body. CONSTITUTION:In a tubular body which is used as a heat transfer tube for a multitubular type heat exchanger and, particularly, in a heat-exchanging tubular body which is used for artificial internal organs such as an artificial lung, etc., a thin film layer comprising a hydrophilic organic polymer having a polar group is made composite on an outer surface of a polyolefin-based heat-exchanging tubular body. By this method, adhesive properties between the tubular body and embedding resin are remarkably improved. Further, a conventional etching treatment and the like are not necessary, and processing is simplified. Such a tubular body has a size that an outer diameter is 150 to 1000mum and a ratio of a wall thickness to the outer diameter is 0.05-0.2, and the thin film layer is provided to have its thickness in a range of 0.01 to 20mum. As the hydrophilic organic polymer, an ethylene/vinyl alcohol-based copolymer having the content of ethylene of 20mol% or more is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多管式熱交換器用の伝
熱チューブとして使用される熱交換器用管状体、殊に人
工肺などの人工臓器や、輸液・輸血時の液状体の温度調
節等の医療分野において補助装置として使用される新規
な熱交換用管状体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular body for a heat exchanger used as a heat transfer tube for a multitubular heat exchanger, in particular, an artificial organ such as an artificial lung, or the temperature of a liquid material at the time of infusion or blood transfusion. The present invention relates to a novel heat exchange tubular body used as an auxiliary device in the medical field such as regulation.

【0002】[0002]

【従来の技術】熱交換器は、高温流体から低温流体へ熱
を伝達する装置であり、種々のタイプのものが知られて
いるが、構造が簡略であること、伝熱効率に優れている
ことから多管式構造を有するものが多用されている。例
えば人工肺は、開心術における補助心肺装置、機能が低
下した肺の代替装置として使用されるものであるが、手
術時に体外に取り出された血液の温度を調節する必要が
あり、そのための手段として熱交換器を併用することが
必要不可欠である。
2. Description of the Related Art A heat exchanger is a device for transferring heat from a high temperature fluid to a low temperature fluid, and various types are known, but they have a simple structure and excellent heat transfer efficiency. Therefore, those having a multi-tube structure are often used. For example, an artificial lung is used as an auxiliary cardiopulmonary device in open heart surgery or as an alternative device to a lung with reduced function, but it is necessary to control the temperature of blood taken out of the body during surgery, It is essential to use a heat exchanger together.

【0003】[0003]

【発明が解決しようとする課題】従来開発されてきた熱
交換器用管状体の素材としては、熱伝導率の良好な金属
が最も有効であり、かつ熱交換を行わしめる流体に対す
る耐蝕性に優れるステンレス製のものが用いられてき
た。ところが、ステンレスパイプを熱交換器中に設置す
る場合、ポッテイング樹脂を使用することが有効である
が、ステンレスパイプの硬度とポッテイング材の硬度の
差が大きすぎるため、ポッテイング部の端面加工が難し
く、パイプ端面に金属の鋭いエッジ面がでて、血球など
の粒子体を含む液体を処理する際には粒子体が破壊を受
けやすいことが問題となっている。
As a material of the tubular body for a heat exchanger which has been developed so far, a metal having a good thermal conductivity is most effective, and a stainless steel having an excellent corrosion resistance against a fluid for heat exchange. The ones made have been used. However, when installing a stainless steel pipe in a heat exchanger, it is effective to use a potting resin, but since the difference between the hardness of the stainless steel pipe and the hardness of the potting material is too large, it is difficult to process the end surface of the potting portion. There is a problem that a sharp metal edge surface appears on the end surface of the pipe, and the particles are easily broken when processing a liquid containing the particles such as blood cells.

【0004】また細いパイプが使えないため単位容積当
りの伝熱面積が小さいという欠点もある。更にステンレ
スと複雑な組成の血液成分との反応性についても心配さ
れている。先に、本出願人は上記問題点を改良した有機
重合体を管状体に用いた熱交換器を提案した(特開昭6
1−83898号、特開昭62−26493号公報)。
There is also a drawback that the heat transfer area per unit volume is small because a thin pipe cannot be used. Furthermore, there is concern about the reactivity between stainless steel and blood components of complicated composition. The applicant of the present invention has previously proposed a heat exchanger using an organic polymer in a tubular body, which has improved the above-mentioned problems (Japanese Patent Laid-open No. Sho 6-62).
1-83898, JP-A-62-26493).

【0005】有機重合体を管状体に使用した熱交換器
は、製作の容易さ、耐蝕性、軽量であるという点で従来
の金属性熱交換器に比べて優れており、広汎な分野での
利用が考えられている。然乍、熱交換器にポリエチレン
やポリプロピレンなどの管状体束を使用した場合、埋込
用樹脂(主にウレタン樹脂)との親和性が所望の程度よ
り低く、管状体と埋込用樹脂との界面に漏れを生じる可
能性があることがわかってきた。
A heat exchanger using an organic polymer as a tubular body is superior to conventional metallic heat exchangers in that it is easy to manufacture, has corrosion resistance, and is lightweight, and is used in a wide variety of fields. It is considered to be used. However, when a tubular body bundle such as polyethylene or polypropylene is used for the heat exchanger, the affinity with the embedding resin (mainly urethane resin) is lower than the desired degree, and the tubular body and the embedding resin are It has been found that leakage can occur at the interface.

【0006】この問題を解決するために、現状ではエッ
チング処理などの前処理工程が必要となっている。これ
に対して、特公表平2−504227号公報にみられる
ようにポリウレタン製管状体を使用した場合、埋込用ウ
レタン樹脂との親和性は良好となるが、前述のポリオレ
フィン系高分子材料に比べて高価であり、より実用性に
富んだ熱交換器の出現が望まれているところである。
In order to solve this problem, a pretreatment process such as an etching treatment is currently required. On the other hand, when a tubular body made of polyurethane is used as disclosed in Japanese Patent Publication No. 2-504227, the affinity with the urethane resin for embedding becomes good, but the above-mentioned polyolefin-based polymer material is used. It is desired to develop a heat exchanger that is more expensive and more practical in comparison.

【0007】特に、人口肺などに使用された場合は、加
熱流体が血液へ漏れるようなことは絶対にあってはなら
ないことであり、熱交換用管状体と埋込用樹脂との親和
性の程度は患者の生命にも関わる重大な問題であるとい
える。また、これらの人口臓器に使用する場合は全て使
い捨てとなるため、より安価な材料が望まれている。
Especially when used for artificial lungs, it is absolutely necessary that the heated fluid does not leak into the blood, and the affinity between the tubular body for heat exchange and the resin for implantation is not guaranteed. It can be said that the degree is a serious problem that also affects the life of the patient. In addition, when used for these artificial organs, all of them are disposable, and therefore cheaper materials are desired.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、外表面
に極性基を有する親水性有機重合体からなる薄膜層が複
合化されてなるポリオレフィン系熱交換用管状体にあ
る。
The gist of the present invention resides in a polyolefin heat exchange tubular body comprising a composite thin film layer comprising a hydrophilic organic polymer having a polar group on its outer surface.

【0009】本発明の熱交換用管状体は、従来のポリオ
レフィン系熱交換用管状体の外表面に極性基を有する親
水性有機重合体からなる薄膜層を複合化することによ
り、管状体と埋込用樹脂との接着性を著しく向上させ
る。このことにより、従来実施していたエッチング処理
などの前処理工程が省略できるため加工が簡略化し、ま
た、管状体と埋込用樹脂との界面で生じていた漏れの危
険性がなくなるのである。
The tubular body for heat exchange of the present invention is embedded with the tubular body by compounding a thin film layer made of a hydrophilic organic polymer having a polar group on the outer surface of the conventional tubular body for heat exchange of polyolefin. It significantly improves the adhesiveness with the resin for mounting. As a result, the pretreatment process such as the etching process which has been conventionally carried out can be omitted, so that the processing is simplified, and the risk of leakage occurring at the interface between the tubular body and the embedding resin is eliminated.

【0010】即ち、この熱交換器を血液処理等に使用し
た場合において、その機能性・信頼性は飛躍的に向上す
る。また、薄膜層の厚みは、管状体の肉厚に比べて極め
て小さいので、複合化することによる熱交換効率の低下
は、実質上起こり得ない。本発明の熱交換用管状体は、
必ずしもその断面形状が円形である必要はない。例え
ば、管状体の外側にフィンをつけることにより、管状体
束の均一分散性を向上させたり、断面方向の表面積を大
きくして熱交換効率をさらに向上させることもできる。
That is, when this heat exchanger is used for blood treatment or the like, its functionality and reliability are dramatically improved. In addition, since the thickness of the thin film layer is extremely smaller than the wall thickness of the tubular body, a decrease in heat exchange efficiency due to compositing cannot substantially occur. The heat exchange tubular body of the present invention,
The cross-sectional shape does not necessarily have to be circular. For example, by providing fins on the outer side of the tubular body, it is possible to improve the uniform dispersibility of the tubular body bundle or increase the surface area in the cross-sectional direction to further improve the heat exchange efficiency.

【0011】本発明の熱交換用管状体の熱交換効率を良
好ならしめるには、用いる管状体の外径を150〜10
00μmとするのが好ましい。単位容積当りの伝熱面積
を大きくするためには管状体の外径をできる限り細くす
ることが望ましいが、細くなればなるほど管状体の内径
も細くなり、管状体の内部を流れる加熱媒体又は被加熱
流体の流動抵抗が高くなる。前述のように管状体の外径
が150μm未満の場合には、管状体内部を流れる流体
の圧力損失が高くなりすぎるので適当ではなく、更に好
ましくは300〜800μmである。
In order to improve the heat exchange efficiency of the heat exchanging tubular body of the present invention, the outer diameter of the tubular body used is 150 to 10
The thickness is preferably 00 μm. In order to increase the heat transfer area per unit volume, it is desirable to make the outer diameter of the tubular body as small as possible, but the smaller the diameter, the smaller the inner diameter of the tubular body, and thus the heating medium or the heating medium flowing inside the tubular body. The flow resistance of the heating fluid increases. As described above, when the outer diameter of the tubular body is less than 150 μm, the pressure loss of the fluid flowing inside the tubular body becomes too high, which is not appropriate, and more preferably 300 to 800 μm.

【0012】一方、管状体の肉厚は、熱交換器が使用さ
れるときの外圧又は内圧によって座屈或は破裂しないよ
うな厚さであることが最低限必要とされる。然し、本発
明が意図するような利用分野についての熱交換器として
は、製品の検査時又は実際の使用時にかかる1.5〜3
kg/cm2 程度の最大外圧によって管状体が座屈或は
破裂しない肉厚であれば良く、かかる条件を満足させる
ためには、肉厚及び外径として、肉厚/外径比を0.0
5以上にすることが必要である。一方、0.2を越える
場合には、内径が過度に細くなり管状体内部を流れる流
体の流動抵抗が高くなったり、肉厚が過度に厚くなり管
状体の伝熱抵抗が高くなりすぎるような不都合が生じ
る。
On the other hand, the wall thickness of the tubular body is required to be at least a thickness that does not buckle or burst due to external pressure or internal pressure when the heat exchanger is used. However, as a heat exchanger in the field of use intended by the present invention, 1.5 to 3 which is required when the product is inspected or actually used.
The wall thickness may be such that the tubular body does not buckle or rupture due to the maximum outer pressure of about kg / cm 2, and in order to satisfy such conditions, the wall thickness / outer diameter ratio is 0. 0
It is necessary to be 5 or more. On the other hand, if it exceeds 0.2, the inner diameter becomes excessively thin and the flow resistance of the fluid flowing inside the tubular body becomes high, or the wall thickness becomes excessively thick and the heat transfer resistance of the tubular body becomes too high. Inconvenience occurs.

【0013】また、極性基を有する親水性有機重合体か
らなる薄膜層は、埋込用樹脂との接着性が発現する必要
最小限の厚みで良い。厚すぎると熱交換効率の低下を引
き起こすばかりでなく、親水性有機重合体はポリオレフ
ィン系高分子化合物に比べて高価なため、製造コストも
高くなる。従って、薄膜層の厚みは0.01〜20μm
が好ましい。
Further, the thin film layer made of a hydrophilic organic polymer having a polar group may have a minimum necessary thickness for exhibiting adhesiveness with the embedding resin. If it is too thick, not only will the heat exchange efficiency be lowered, but since the hydrophilic organic polymer is more expensive than the polyolefin-based polymer compound, the manufacturing cost will be high. Therefore, the thickness of the thin film layer is 0.01 to 20 μm.
Is preferred.

【0014】本発明の管状体の材質は、管状体、即ち中
空管或は中空糸に賦形できる有機重合体であればいかな
るものでも良いが、血液の熱交換手段として用いる場合
安全性・信頼性を確保できる材料として、ポリエチレ
ン、ポリプロピレン、ポリ4−メチルペンテン−1など
のポリオレフィン系高分子化合物が好ましい。
The material of the tubular body of the present invention may be any organic polymer that can be formed into a tubular body, that is, a hollow tube or a hollow fiber, but is safe when used as a heat exchange means for blood. Polyolefin-based polymer compounds such as polyethylene, polypropylene, and poly-4-methylpentene-1 are preferable as materials that can ensure reliability.

【0015】薄膜層の材質も上記の管状体に複合化しう
る親水性有機重合体であればいかなるものでも良いが、
本発明が意図するような利用分野においては、血液適合
性に優れたポリウレタン、エチレン/ビニルアルコール
系共重合体、ポリアミド樹脂が好ましい。特に、ポリオ
レフィン層と親水性有機重合体からなる薄膜層の接着性
を強固なものにするためには、エチレン/ビニルアルコ
ール系共重合体を用いるのが最も好ましい。
The material of the thin film layer may be any hydrophilic organic polymer which can be composited with the above-mentioned tubular body.
In the field of application intended by the present invention, polyurethane, ethylene / vinyl alcohol copolymer, and polyamide resin having excellent blood compatibility are preferable. In particular, in order to strengthen the adhesiveness between the polyolefin layer and the thin film layer made of a hydrophilic organic polymer, it is most preferable to use an ethylene / vinyl alcohol copolymer.

【0016】この場合、ポリオレフィン層と埋込用樹脂
の両者に対する接着性を満足させる組成として、エチレ
ン含量20mol%以上が好ましく、さらに好ましくは
20〜60mol%である。また、ポリオレフィンと親
水性有機重合体との間に両者の親和性を向上させる官能
基を有する接着性ポリオレフィン樹脂を複合化した3層
構造にしてもかまわない。
In this case, as a composition satisfying the adhesiveness to both the polyolefin layer and the embedding resin, the ethylene content is preferably 20 mol% or more, more preferably 20 to 60 mol%. Also, a three-layer structure in which an adhesive polyolefin resin having a functional group that improves the affinity between the polyolefin and the hydrophilic organic polymer is compounded may be used.

【0017】本発明の熱交換用管状体の製造方法は特に
限定されるものではないが、工程が簡便で、製造コスト
が安価である溶融賦形による複合紡糸法が最も好まし
い。具体的には、溶融賦形可能なポリオレフィン系高分
子化合物と親水性有機重合体を溶融し、同心円状に配置
された二つの円管状の吐出口を有する中空糸製造用ノズ
ルの各々の吐出口に供給し溶融紡糸することにより、本
発明の複合化ポリオレフィン系管状体を得ることができ
る。然も溶融賦形法を採用することで、溶媒等を使用し
ないクリーンな管状体の供給が可能であり、また外径を
巻取速度により自由にコントロールすることも可能であ
る。
The method for producing the tubular body for heat exchange of the present invention is not particularly limited, but the composite spinning method by melt shaping, which has simple steps and low production cost, is most preferable. Specifically, each of the discharge ports of the hollow fiber manufacturing nozzle that melts the melt-shapeable polyolefin-based polymer compound and the hydrophilic organic polymer and has two circular tubular discharge ports arranged concentrically Then, the composite polyolefin-based tubular body of the present invention can be obtained by supplying it to the melt-spun fiber. By adopting the melt shaping method, it is possible to supply a clean tubular body without using a solvent or the like, and it is also possible to freely control the outer diameter by the winding speed.

【0018】[0018]

【発明の効果】本発明の目的は、従来のポリオレフィン
系熱交換用管状体の外表面に極性基を有する親水性有機
重合体からなる薄膜層を複合化することにより、管状体
と埋込用樹脂との接着性を著しく向上させることにあ
る。このことにより、従来実施していたエッチング処理
などの前処理工程が省略できるため加工が簡略化し、ま
た、管状体と埋込用樹脂との界面で生じていた漏れの危
険性もなくなるのである。
The object of the present invention is to embed a tubular body and a tubular body for embedding by compounding a thin film layer made of a hydrophilic organic polymer having a polar group on the outer surface of a conventional polyolefin type heat exchange tubular body. It is to significantly improve the adhesiveness with the resin. This simplifies the processing because the pretreatment process such as the etching process which has been conventionally performed can be omitted, and the risk of leakage occurring at the interface between the tubular body and the embedding resin is eliminated.

【0019】即ち、この熱交換器を血液処理等に使用し
た場合、加熱流体が血液へ漏れるようなことはなく、そ
の機能性・信頼性は飛躍的に向上する。また、薄膜層の
厚みは、管状体の肉厚に比べて極めて小さいので、複合
化することによる熱交換効率の低下もなく、ディスポー
ザブル品として使用する分野においても安価に供給する
ことが可能である。
That is, when this heat exchanger is used for blood treatment or the like, the heated fluid does not leak to blood, and the functionality and reliability thereof are dramatically improved. In addition, since the thickness of the thin film layer is extremely smaller than the wall thickness of the tubular body, heat exchange efficiency does not decrease due to compounding, and it can be supplied inexpensively even in the field of use as a disposable product. .

【0020】[0020]

【実施例】以下、本発明を実施例により更に詳しく説明
する。 実施例1 密度0.921g/cm3 、MI値1.5、融点134
℃の低密度ポリエチレン(昭和電工(株)製、ショウレ
ックスM113)と密度1.14g/cm3 、MI値
3.5、融点164℃、エチレン含量44mol%のエ
チレン/ビニルアルコール系共重合体(日本合成化学工
業(株)、ソアノールAT4403)を同心円状に配置
された二つの円管状の吐出口を有する中空糸製造用ノズ
ルを用いて、内側の吐出口から低密度ポリエチレンを吐
出量13.0g/min、外側の吐出口からエチレン/
ビニルアルコール共重合体を吐出量2.0g/minに
てそれぞれ吐出し、吐出温度200℃、巻取り速度20
0m/minで巻き取り、外径450μm、肉厚65μ
m、薄膜層厚10μmの管状体を得た。
EXAMPLES The present invention will now be described in more detail by way of examples. Example 1 Density 0.921 g / cm 3 , MI value 1.5, melting point 134
° C. Low density polyethylene (Showa Denko KK, Shaw Rex M113) and the density 1.14 g / cm 3, MI value 3.5, melting point 164 ° C., an ethylene content 44 mol% of ethylene / vinyl alcohol copolymer ( Nippon Synthetic Chemical Industry Co., Ltd., Soarnol AT4403) is a hollow fiber manufacturing nozzle having two circular tubular discharge ports arranged concentrically, and a low-density polyethylene discharge amount of 13.0 g from the inside discharge port. / Min, ethylene from the outer outlet /
The vinyl alcohol copolymer was discharged at a discharge rate of 2.0 g / min, and the discharge temperature was 200 ° C. and the winding speed was 20.
Winding up at 0m / min, outer diameter 450μm, wall thickness 65μ
m, and a thin film layer having a thickness of 10 μm was obtained.

【0021】該管状体200本をポリカーボネート製パ
イプに充填密度40%になるように充填し、これらの管
状体の両端を開口状態を保ちつつ各々15mmの厚さで
ポリウレタン樹脂により接着したモジュールを作製し
た。本モジュールを用いて接着耐久試験を50℃×3.
5kg/cm2 ×10秒(ON→OFF)のサイクルに
て実施したところ20000回まで繰り返しても管状体
のポッテイング部における漏れは認められなかった。
A module was prepared by filling 200 pipes into a polycarbonate pipe so as to have a filling density of 40%, and adhering both ends of the pipes with a polyurethane resin with a thickness of 15 mm while keeping both ends open. did. Using this module, an adhesion durability test was conducted at 50 ° C x 3.
When it was carried out in a cycle of 5 kg / cm 2 × 10 seconds (ON → OFF), no leakage was found in the potting portion of the tubular body even after repeated up to 20000 times.

【0022】比較例1 実施例1で用いた密度0.921g/cm3 、MI値
1.5、融点134℃の低密度ポリエチレン(昭和電工
(株)製、ショウレックスM113)を、中空糸製造用
ノズルを用いて、吐出量15.0g/min、吐出温度
200℃で吐出し、200m/minの巻取り速度で巻
取り、外径460μm、肉厚75μm、のポリエチレン
単独の管状体を得た。該管状体200本をポリカーボネ
ート製パイプに充填密度40%になるように充填し、こ
れらの中空糸の両端を開口状態を保ちつつ各々15mm
の厚さで実施例1で用いたポリウレタン樹脂により接着
したモジュールを作製した。本モジュールを用いて接着
耐久試験を50℃×3.5kg/cm2 ×10秒(ON
→OFF)のサイクルにて実施したところ、5000回
で管状体のポッテイング界面より漏れが発生した。
Comparative Example 1 Low density polyethylene (Showa Denko KK, Shorex M113) having a density of 0.921 g / cm 3 , an MI value of 1.5 and a melting point of 134 ° C. used in Example 1 was manufactured as a hollow fiber. Was discharged at a discharge rate of 15.0 g / min and a discharge temperature of 200 ° C. and was wound at a winding speed of 200 m / min to obtain a polyethylene-only tubular body having an outer diameter of 460 μm and a wall thickness of 75 μm. . Polycarbonate pipes were filled with 200 tubular bodies so that the packing density was 40%, and both ends of these hollow fibers were kept open at 15 mm.
A module adhered with the polyurethane resin used in Example 1 at a thickness of 1 was manufactured. Using this module, the adhesion durability test was conducted at 50 ° C × 3.5 kg / cm 2 × 10 seconds (ON
When it was conducted in a cycle of (→ OFF), leakage occurred from the potting interface of the tubular body after 5000 times.

【0023】実施例2 密度0.921g/cm3 、MI値1.5、融点134
℃の低密度ポリエチレン(昭和電工(株)製、ショウレ
ックスM113)と密度1.19g/cm3 、MI値
3.2、融点183℃、エチレン含量32mol%のエ
チレン/ビニルアルコール系共重合体(日本合成化学工
業(株)、ソアノールDC3203)を同心円状に配置
された二つの円管状の吐出口を有する中空糸製造用ノズ
ルを用いて、内側の吐出口から前記低密度ポリエチレン
を吐出量15.0g/min、外側の吐出口から前記エ
チレン/ビニルアルコール共重合体を吐出量1.0g/
minにてそれぞれ吐出し、吐出温度220℃、巻取り
速度200m/minで巻き取り、外径470μm、肉
厚73μm、薄膜層厚5μmの管状体を得た。該管状体
200本を用いて、実施例1と同様の方法で接着耐久試
験を行ったところ20000回以上の耐久性能を得た。
Example 2 Density 0.921 g / cm 3 , MI value 1.5, melting point 134
Low-density polyethylene (Showa Denko KK-made, Shorex M113) at ℃, density 1.19 g / cm 3 , MI value 3.2, melting point 183 ° C., ethylene / vinyl alcohol copolymer (ethylene content 32 mol%) ( 15. Using a hollow fiber manufacturing nozzle having two circular tubular discharge ports in which Soarnol DC3203 of Nippon Synthetic Chemical Industry Co., Ltd. is concentrically arranged, the low-density polyethylene is discharged from the inner discharge port. 0 g / min, discharge amount of the ethylene / vinyl alcohol copolymer from the outer discharge port is 1.0 g /
Each was discharged at a discharge temperature of 220 ° C. and a winding speed of 200 m / min to obtain a tubular body having an outer diameter of 470 μm, a wall thickness of 73 μm, and a thin film layer thickness of 5 μm. An adhesion durability test was conducted using 200 tubular bodies in the same manner as in Example 1, and a durability performance of 20,000 times or more was obtained.

【0024】さらに、該管状体1500本を直径36m
m、長さ130mmの円筒状の容器の中に充填し、管状
体の両端を開口状態を保ちつつ各々15mmの厚さでポ
リウレタン接着剤により液密となるように接着し、円筒
状の熱交換器を製作した。この熱交換器について、管状
体の外側に血液を、内側に温水を流し熱交換試験を実施
した。血液流量6.0l/min、温水流量10.0l
/minの条件で、血液入側温度15℃、温水入側温度
40℃としたときの下記式で定義される熱交換効率Eを
測定したところ、0.80であった。
In addition, 1500 of the tubular bodies have a diameter of 36 m.
m into a cylindrical container with a length of 130 mm, and both ends of the tubular body were adhered to each other with a thickness of 15 mm so as to be liquid-tight with a polyurethane adhesive while maintaining the open state, and a cylindrical heat exchange was performed. I made a container. With respect to this heat exchanger, a heat exchange test was carried out by flowing blood outside the tubular body and flowing warm water inside. Blood flow rate 6.0 l / min, warm water flow rate 10.0 l
The heat exchange efficiency E defined by the following formula when the blood inlet side temperature was 15 ° C. and the hot water inlet side temperature was 40 ° C. under the condition of / min was 0.80.

【0025】また、血液側の圧力損失は15mmHg、
温水側の圧力損失は0.22kg/cm2 であった。こ
こで、比較例1に記載したポリエチレン単独の管状体を
用いて同様の熱交換器を作製し、熱交換試験を実施した
ところ、熱交換効率E=0.81であり、複合化したこ
とによる熱交換効率の低下はみられなかった。
The pressure loss on the blood side is 15 mmHg,
The pressure loss on the hot water side was 0.22 kg / cm 2 . Here, a similar heat exchanger was produced using the polyethylene-only tubular body described in Comparative Example 1, and a heat exchange test was carried out. The heat exchange efficiency E was 0.81. No decrease in heat exchange efficiency was observed.

【0026】E=(TBO−TBI)/(TWI−TBI) E:熱交換効率 TBI:血液入側温度 TBO:血液出側温度 TWI:温水入側温度E = (T BO −T BI ) / (T WI −T BI ) E: Heat exchange efficiency T BI : Blood inlet temperature T BO : Blood outlet temperature T WI : Hot water inlet temperature

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月8日[Submission date] February 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】即ち、この熱交換器を血液処理等に使用し
た場合において、その機能性・信頼性は飛躍的に向上す
る。また、薄膜層の厚みは、管状体の肉厚に比べて極め
て小さいので、複合化することによる熱交換効率の低下
は、実質上起こり得ない。本発明の熱交換用管状体は、
必ずしもその断面形状が円形である必要はない。例え
ば、管状体の外側にフィンをつけることにより、管状体
束の均一分散性を向上させたり、断面方向の表面積を大
きくして熱交換効率をさらに向上させることもできる。
また、本発明の管状体を横糸に用いて、縦糸で簾状に織
編した管状体シートを熱交換器に使用すれば、必要量の
管状体を束ねただけの従来タイプの熱交換器に比べ、更
なる熱交換効率の向上が期待できる。
That is, when this heat exchanger is used for blood treatment or the like, its functionality and reliability are dramatically improved. In addition, since the thickness of the thin film layer is extremely smaller than the wall thickness of the tubular body, a decrease in heat exchange efficiency due to compositing cannot substantially occur. The heat exchange tubular body of the present invention,
The cross-sectional shape does not necessarily have to be circular. For example, by providing fins on the outer side of the tubular body, it is possible to improve the uniform dispersibility of the tubular body bundle or increase the surface area in the cross-sectional direction to further improve the heat exchange efficiency.
In addition, the tubular body of the present invention is used as a weft thread and woven in a warp-like manner in a blind shape.
If the knitted tubular body sheet is used in the heat exchanger, the required amount of
Compared with the conventional type heat exchanger that only bundles tubular bodies,
It can be expected to improve the heat exchange efficiency.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外表面に極性基を有する親水性有機重合
体からなる薄膜層が複合化されてなるポリオレフィン系
熱交換用管状体。
1. A tubular body for heat exchange of polyolefin, comprising a composite thin film layer comprising a hydrophilic organic polymer having a polar group on its outer surface.
【請求項2】 外径が150〜1000μm、肉厚/外
径比が0.05〜0.2、極性基を有する親水性有機重
合体からなる薄膜層の厚みが0.01〜20μmである
請求項1記載の管状体。
2. The outer diameter is 150 to 1000 μm, the wall thickness / outer diameter ratio is 0.05 to 0.2, and the thickness of the thin film layer made of the hydrophilic organic polymer having a polar group is 0.01 to 20 μm. The tubular body according to claim 1.
【請求項3】 極性基を有する親水性有機重合体がエチ
レン含量20mol%以上のエチレン/ビニルアルコー
ル系共重合体である請求項1又は2記載の管状体。
3. The tubular body according to claim 1, wherein the hydrophilic organic polymer having a polar group is an ethylene / vinyl alcohol copolymer having an ethylene content of 20 mol% or more.
JP6003297A 1994-01-17 1994-01-17 Polyolefin-based heat-exchanging tubular body Pending JPH07208896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003297A JPH07208896A (en) 1994-01-17 1994-01-17 Polyolefin-based heat-exchanging tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003297A JPH07208896A (en) 1994-01-17 1994-01-17 Polyolefin-based heat-exchanging tubular body

Publications (1)

Publication Number Publication Date
JPH07208896A true JPH07208896A (en) 1995-08-11

Family

ID=11553447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003297A Pending JPH07208896A (en) 1994-01-17 1994-01-17 Polyolefin-based heat-exchanging tubular body

Country Status (1)

Country Link
JP (1) JPH07208896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502596A (en) * 1999-06-10 2003-01-21 エウロコンドッテ エス.ピ.ア. Reinforced flexible hose and its manufacturing method
JP2010223576A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Hollow fiber membrane type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502596A (en) * 1999-06-10 2003-01-21 エウロコンドッテ エス.ピ.ア. Reinforced flexible hose and its manufacturing method
JP2010223576A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Hollow fiber membrane type heat exchanger

Similar Documents

Publication Publication Date Title
EP0046583B1 (en) Hollow fiber-type artificial lung having enclosed heat exchanger
EP0408000B1 (en) Fluid processing apparatus
CA2184868A1 (en) Pvc-free multilayer tube for medical purposes, process for the production thereof and use
US4124509A (en) Haemodialyzer employing hollow fibers
US6797212B2 (en) Method for forming hollow fibers
CN110099705B (en) Heat exchanger and artificial lung
AU709000B2 (en) Surface treatment for micro-conduits employed in blood heat exchange system
JPS5940045B2 (en) Ultrafiltration and reverse osmosis equipment
CN105813666B (en) Partially radial heat exchanger and oxygenator
JPH07208896A (en) Polyolefin-based heat-exchanging tubular body
JPS58169510A (en) Hollow fiber with modified cross section and hollow fiber module therefrom
JP2010502910A (en) Method for circulating selected heat transfer fluid in a closed loop cycle incorporating a high pressure barrier hose
CA2241844C (en) Mesh spacer for heat exchanger
AU760364B2 (en) A method and apparatus for manufacturing wound tube bundles
CA2336630C (en) Apparatus and method for cardioplegia delivery
JPS62153694A (en) Heat exchanger
JPS5828332A (en) Fusion-bonding method for thermoplastic resin hollow units
JP2867040B2 (en) Hollow fiber membrane filtration module
JP2792049B2 (en) Medical heat exchanger
JPS61207614A (en) Hollow fiber for heat-exchanger
JP3497245B2 (en) Heat exchanger and heat exchange fluid supply device
JPS6226493A (en) Tubular body for heat exchanger
US20180369472A1 (en) Heat exchanger tube for a heat exchanger of an oxygenator
JP2015139954A (en) Method for bonding silicone member
CN116408959A (en) Preparation method of e-PTFE membrane tube and e-PTFE membrane tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121