JPS61207487A - Method of recovering gas generated in coke oven - Google Patents

Method of recovering gas generated in coke oven

Info

Publication number
JPS61207487A
JPS61207487A JP4754285A JP4754285A JPS61207487A JP S61207487 A JPS61207487 A JP S61207487A JP 4754285 A JP4754285 A JP 4754285A JP 4754285 A JP4754285 A JP 4754285A JP S61207487 A JPS61207487 A JP S61207487A
Authority
JP
Japan
Prior art keywords
carbonization
gas
generated
recovering
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4754285A
Other languages
Japanese (ja)
Inventor
Yoshio Yoshino
吉野 良雄
Koji Dobashi
幸二 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4754285A priority Critical patent/JPS61207487A/en
Publication of JPS61207487A publication Critical patent/JPS61207487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To effectively utilize a gas generated from a chamber coke oven, by recovering a gas having a high calorific value generated in the first half of carbonization and a gas having a high hydrogen concentration generated in the second half of carbonization using different recovering systems by conducting the changeover of the recovering system in recovering a gas generated in a chamber coke oven. CONSTITUTION:A gas having a high calorific value generated in the first half of carbonization from a carbonization chamber 1 of a chamber coke oven is introduced into tar traps 5, 6 where the gas is sprayed with an ammonia liquor to cool it. The cooled gas is recovered with a pump 9 and used as a fuel etc. A gas having a high hydrogen concentration generated in the second half of carbonization is introduced into another recovering system by operating a passage changeover damper 10 and a passage changeover valve 11. The gas is recovered without spray of the ammonia liquor to efficiently recover a high sensible heat which is effectively used as a hydrogen source. It is preferred that the changeover of the recovering system is conducted when the temperature of the carbonization chamber 1 at its central portion 3 reaches 450 deg.C or higher or when the hydrogen concentration of the generated gas reaches 60vol.% or higher.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、室炉式コークス炉において、冶金用。[Detailed description of the invention] [Industrial application field] The present invention is for use in metallurgy in a chamber furnace type coke oven.

燃料用等のコークスを製造する際に炭化室より発生する
ガスの回収方法に関するものである。
The present invention relates to a method for recovering gas generated from a carbonization chamber when producing coke for fuel, etc.

〔従来技術〕[Prior art]

室炉式コークス炉において炭化室から発生するガスは、
各炭化室毎に設置された上昇管を通り1炉団又は複数炉
団に設置された1本のコレクチングメインに導かれ、各
炭化室毎に乾留開始から火落ちまで一括して回収される
The gas generated from the carbonization chamber in a chamber coke oven is
It passes through a riser pipe installed in each carbonization chamber and is led to a collecting main installed in one furnace group or multiple furnace groups, and is collected all at once from the start of carbonization to the end of the fire in each carbonization chamber. .

このガスの回収においては、発生ガス中に高濃度タール
蒸気が存在するために、上昇管ベンド部で安水をスプレ
ーして発生ガスを冷却し、これによってタール分を凝縮
分離してからガスを回収するのが一般的である。
When recovering this gas, since there is highly concentrated tar vapor in the generated gas, ammonium water is sprayed at the bend of the riser pipe to cool the generated gas, which condenses and separates the tar before releasing the gas. It is common to collect them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の回収方法によると、発生ガスが通常
700究〜800℃という高温であるが本来その必要が
ない部分に対しても安水にてスプレーして発生ガスを無
駄に冷却することになり、或はまた安水スプレー前にこ
の高い顕熱を回収しようとすると、上昇管毎に特殊な熱
交換器を設置する必要を生じて極めて不経済であると共
にタールの凝縮温度以上での操作が必要なため、かかる
高顕熱を充分に回収出来ず非効率的となる難点を有して
いる。又発生ガスは乾留の進行とともにその組成が変化
し、特に乾留末期に発熱量の低い水素の濃度が高くその
ため発生ガス全体の発熱量が低下する。しかもコークス
炉は多数の炉室が配置された、構成の炉団よりなってい
て第1の炉室の乾留開始から任意時間後に次の第2の炉
室の乾留を開始すると云うようにすべての炉室に対して
順に時間をずらして乾留が行なわれる。そのために従来
の一括回収する方法においては、乾留開始からの経過時
間の異なる多数の炉室からの発生ガスを同時に回収する
ことになる。つまり組成の異なる発生ガスを同時に回収
することになり例えば前述の発熱量の低い水素ガスを多
量に含むものとなシ発熱量の高い乾留前半での発生ガス
も発熱量を低下せしめられた状態にて回収されることと
なる。他方産業上有用な水素ガスは乾留前半の水素ガス
の少ない発生ガスと同時に回収されるためにこれを利用
することが出来ない。
According to the conventional recovery method described above, the generated gas is usually at a high temperature of 700°C to 800°C, but the generated gas is unnecessarily cooled by spraying with cheap water even in areas that do not need it. Or, if we try to recover this high sensible heat before spraying the ammonium water, it will be necessary to install a special heat exchanger for each riser pipe, which is extremely uneconomical and will cause the temperature to rise above the condensation temperature of the tar. Since this method requires operations, it has the disadvantage that such high sensible heat cannot be sufficiently recovered, resulting in inefficiency. Further, the composition of the generated gas changes as the carbonization progresses, and the concentration of hydrogen, which has a low calorific value, is particularly high at the end of the carbonization, and therefore the calorific value of the entire generated gas decreases. Moreover, a coke oven consists of a furnace group with a large number of furnace chambers arranged, and carbonization in the second furnace chamber starts at an arbitrary time after the start of carbonization in the first furnace chamber. Carbonization is carried out in the furnace chambers at different times. Therefore, in the conventional bulk recovery method, gases generated from a large number of furnace chambers having different elapsed times from the start of carbonization are recovered at the same time. In other words, generated gases with different compositions are collected at the same time.For example, gases that contain a large amount of hydrogen gas, which has a low calorific value as mentioned above, and gases generated during the first half of carbonization, which have a high calorific value, are also collected in a state where the calorific value is reduced. It will be collected. On the other hand, industrially useful hydrogen gas cannot be used because it is recovered at the same time as the gas produced in the first half of carbonization, which is low in hydrogen gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、乾留前半にて発生するガスの回収と、乾留後
半にて発生するガスの回収とをそれぞれ異なる回収系統
により回収することによって前記の従来方法の問題点を
解決するようにしたものである。
The present invention solves the problems of the conventional method by recovering the gas generated in the first half of carbonization and the gas generated in the second half of carbonization using different recovery systems. be.

本発明の発明者等は、炭化室内での乾留の進行と発生ガ
スの組成変化とを詳細に検討した結果、発生ガスの組成
変化に応じた回収方法を適用すれば、付加価値の高い状
態で発生ガスを回収し得て、しかも発生ガスの組成に応
じた有効利用が可能であることを見出した。本発明はこ
のような知見にもとづいて完成したものである。
As a result of a detailed study of the progress of carbonization in the carbonization chamber and changes in the composition of the generated gas, the inventors of the present invention found that by applying a recovery method that corresponds to the change in the composition of the generated gas, a high value-added state can be obtained. It has been found that the generated gas can be recovered and can be used effectively depending on the composition of the generated gas. The present invention was completed based on such knowledge.

第1図は、いずれも本発明の発明者等によって研究され
た結果をもとにして示したグラフである。
FIG. 1 is a graph based on the results of research conducted by the inventors of the present invention.

これら図のうち第1図(A)は、乾留の際の乾留経過時
間と炭化室中心部の温度との関係を示す図である。又第
1図(B)は、乾留経過時間と発生ガスの発生量との関
係を示す図である。
Among these figures, FIG. 1(A) is a diagram showing the relationship between the carbonization elapsed time and the temperature at the center of the carbonization chamber during carbonization. Further, FIG. 1(B) is a diagram showing the relationship between the carbonization elapsed time and the amount of generated gas.

第1図(B)より明らかなように、発生ガスの組成の変
化は、大きく分けて二つに区分し得る。即ち、図面に区
分Iにて示す乾留前半と、区分■にて示す乾留後半の部
分とに分けられる。この区分のうち区分Iは乾留開始初
期の短時間を除く発生ガスの発熱量は5000K ca
t/ Nn+”以上であり、H2の濃度は50〜55容
量%であり、CH4は30〜35容量%であって止壁的
安定に推移し、又タール分は漸次減少するが発生ガス中
に存在している。
As is clear from FIG. 1(B), changes in the composition of the generated gas can be roughly divided into two types. That is, it is divided into the first half of carbonization shown in section I in the drawing and the second half of carbonization shown in section ■. Among these categories, in Category I, the calorific value of the generated gas is 5000K ca, excluding the short period at the beginning of carbonization.
t/Nn+" or more, the concentration of H2 is 50 to 55% by volume, and the concentration of CH4 is 30 to 35% by volume, which remains stable as if it were a dead wall.Although the tar content gradually decreases, it remains in the generated gas. Existing.

一方区分■においては、H2の一度は、55容量%から
90容量%まで著しくしかも急激に増加し、CH4は著
しく減少する。このように発熱量の高いCH4が減少す
るため発生ガスの発熱量は著しく減少する。またタール
分は、区分■においては発生ガス中にはほとんど存在し
ない。
On the other hand, in category (2), H2 increases significantly and rapidly from 55% by volume to 90% by volume, and CH4 significantly decreases. Since CH4, which has a high calorific value, is reduced in this way, the calorific value of the generated gas is significantly reduced. In addition, almost no tar is present in the generated gas in category ①.

このように、研究結果にもとづく検討から乾留前半にお
いてはタール分が存在するので従来性なわれている上昇
管ペンV部での安水スプレーを行なっての回収方法が有
効である。
As described above, based on research results, tar is present in the first half of carbonization, so the conventional recovery method of spraying ammonium water at the V section of the riser pen is effective.

一方乾留後半においては、タール分がほとんど存在しな
いので安水スプレーを行なう必要はない。
On the other hand, in the second half of carbonization, there is almost no tar content, so there is no need to spray ammonium water.

したがって乾留前半での発生ガスの回収系統とは異なっ
た別の回収系統により回収すれば高水素濃度の発生ガス
を冷却せずに回収することが可能である0 以上のことから、本発明の発明者らは前述のように乾留
前半にて発生するガスの回収と、乾留後半にて発生する
ガスの回収とを異なるようにした発生ガスの回収方法を
発明したものである。
Therefore, it is possible to recover the generated gas with a high hydrogen concentration without cooling it if it is recovered using a separate recovery system different from the recovery system for the generated gas in the first half of carbonization. From the above, the invention of the present invention As mentioned above, these authors have invented a method for recovering gas generated in which the recovery of gas generated in the first half of carbonization is different from the recovery of gas generated in the second half of carbonization.

次に本発明を実施する方法について説明する。Next, a method for implementing the present invention will be explained.

まず乾留の前半は、従来の方法と同様に安水スプレーを
行ないながら第1のコレクチングメインにより回収し後
処理を行なう。ついで乾留後半は、第2のコレクチング
メインを設置して適当な連結管にて炭化室と接続し、こ
れを通して回収し後処理を行なう。この場合に用いられ
る第2のコレクチングメインおよび各炭化室との連結管
の設置方法は、特別な限定は必要なく、装入炭性状によ
る腐食性ガス濃度および乾留温度による発生ガス温度更
に回収された高水素ガスの利用形態等を勘案して任意に
定めればよい。
First, in the first half of the carbonization, as in the conventional method, ammonium water is sprayed while collecting and post-processing is performed in the first collecting main. Then, in the second half of the carbonization, a second collecting main is installed and connected to the carbonization chamber through a suitable connecting pipe, through which the waste is collected and post-processed. The method of installing the second collecting main used in this case and the connecting pipes with each carbonization chamber does not require any special limitations. It may be determined arbitrarily, taking into account the utilization form of hydrogen-rich gas, etc.

次に乾留前半と乾留後半との回収系統の切替時期の設定
に関しては、例えば下記の(a)〜(d)の時点が考え
られる。
Next, regarding the setting of the switching timing of the recovery system between the first half of carbonization and the second half of carbonization, the following points (a) to (d) can be considered, for example.

(a)  乾留温度によって決まる火落時間をもとにし
て経験的、統計的に切替時間を予め設定する方法で、例
えば火落時間の4時間前である。
(a) A method in which the switching time is empirically and statistically preset based on the fire-off time determined by the carbonization temperature, for example, 4 hours before the fire-off time.

(b)  炭化室中心部温度が450°C以上、好まし
くは500°C以上になった時点を切替時期にする。
(b) The switching time is determined when the temperature at the center of the carbonization chamber reaches 450°C or higher, preferably 500°C or higher.

(C)  発生ガスのタール濃度、量を連続的に測定し
てタールが認められなくなった時点を切替時期にする。
(C) Continuously measure the tar concentration and amount of generated gas, and set the time for switching when tar is no longer observed.

(d)  発生ガスの組成を連続的に測定しH2の濃度
が例えば60容量%以上、好ましくは65容量%以上に
なった時点を切替時点とする。
(d) The composition of the generated gas is continuously measured, and the switching point is defined as the point in time when the concentration of H2 becomes, for example, 60% by volume or more, preferably 65% by volume or more.

以上の外に(a)〜(d)のうちの少なくとも二つのも
のつまり複数の任意の組合わせによっても切替時期を設
定出来る。この複数の組合わせによればより精度の高い
回収が可能となる。
In addition to the above, the switching timing can also be set using at least two of (a) to (d), that is, an arbitrary combination of a plurality of them. This combination of a plurality of items enables more accurate collection.

更にH2,OH4等の濃度変化、発生ガスの温度変化等
によっても切替時期の設定が可能であることは第1図よ
シ明らかである。
Furthermore, it is clear from FIG. 1 that the switching timing can be set based on changes in the concentration of H2, OH4, etc., changes in the temperature of the generated gas, etc.

以上のような方法で回収される発生ガスのうち、乾留前
半の発・生ガスは、常法によって処理されるが、乾留後
半の発生ガスは、その利用形態に応じ任意に処理するこ
とが出来る。
Among the generated gases recovered by the above method, the generated gas from the first half of carbonization is treated by conventional methods, but the gas generated from the second half of carbonization can be treated as desired depending on its usage form. .

乾留後半の発生ガスの用途としては、例えば石炭、ピッ
チ、タール等の水添分解用ガスあるいは深冷分離、吸着
分離により水素ガスを製造する方法等が挙げられる。
Examples of uses of the gas generated in the second half of carbonization include gas for hydrogenolysis of coal, pitch, tar, etc., and methods for producing hydrogen gas by cryogenic separation and adsorption separation.

〔実施例〕〔Example〕

次に本発明の発生ガス回収方法の一実施例を示すO ここで示す実施例は、第2図に示すような装置を用いて
行なわれたものである。したがってまず第2図に示す装
置の概要を述べると1図において1は炭化室、2は加熱
壁、3は炭火室1の中心部の温度を測定する測温部、4
は上昇管、5,6はタールトラップ、7は各タールトラ
ップより導びかれたガスの分析装置、8はガスメーター
、9はポンプ、10は流路切替ダンパー、11は流路切
替弁である。尚第2図に示すものは、一方の回収系統を
示すもので、他の回収系統は適宜方法にて同様に設けら
れている。又この実施例における乾留試験は下記の表1
に示す条件の下で行なわれた。
Next, an embodiment of the generated gas recovery method of the present invention will be described. The embodiment shown here was carried out using an apparatus as shown in FIG. Therefore, first we will give an overview of the apparatus shown in Figure 2. In Figure 1, 1 is a carbonization chamber, 2 is a heating wall, 3 is a temperature measuring part that measures the temperature at the center of the charcoal chamber 1, and 4
5 and 6 are tar traps; 7 is an analyzer for the gas guided from each tar trap; 8 is a gas meter; 9 is a pump; 10 is a channel switching damper; and 11 is a channel switching valve. Note that the one shown in FIG. 2 shows one recovery system, and the other recovery systems are similarly provided by an appropriate method. The carbonization test in this example is shown in Table 1 below.
It was carried out under the conditions shown below.

表   1 装入炭の揮発成分   30重量% 装入炭粒匿80重量%(3冒以下) 装入炭水分      8.5重量% 装入炭宣&       0.78 t/n?乾留温度
       1050°C 以上の装置で上記条件にて行なった乾留試験で。
Table 1 Volatile components of charged coal 30% by weight Charged coal particles 80% by weight (less than 3%) Charged coal moisture 8.5% by weight Charged coal density & 0.78 t/n? In a carbonization test conducted under the above conditions in an apparatus with a carbonization temperature of 1050°C or higher.

炭化室中心部温度が500°C(実施例1)および60
0°C(実施例2)になった時点でダンパ〜10および
弁11を操作して発生ガス流路を切替、乾留前半と乾留
後半の発生ガスについて発生量9組成および発熱量を測
定した結果は表2の通りである。
The temperature at the center of the carbonization chamber was 500°C (Example 1) and 60°C.
When the temperature reached 0°C (Example 2), the generated gas flow path was switched by operating the damper ~ 10 and valve 11, and the generated amount 9 composition and calorific value were measured for the generated gas in the first half of carbonization and the second half of carbonization. is as shown in Table 2.

尚比較例としてダンパー操作を行わず(流路の切替を行
なわず)同様の測定を行なったものも表2に併記した。
As a comparative example, a similar measurement was performed without operating the damper (without switching the flow path) and is also listed in Table 2.

表   2 〔発明の効果〕 本発明の発生ガス回収方法によれば乾留前半にて回収さ
れる発生ガスは、従来の方法により一括回収される発生
ガス(多量の水素ガスを含むもの)に比べ高発熱量ガス
で5000 Kcat/ Nrrlのものが得られる。
Table 2 [Effects of the Invention] According to the generated gas recovery method of the present invention, the generated gas recovered in the first half of carbonization has a higher concentration than the generated gas (containing a large amount of hydrogen gas) recovered all at once by the conventional method. A gas with a calorific value of 5000 Kcat/Nrrl can be obtained.

又乾留後半からは高水素濃度ガスが得られる。したがっ
ていずれの場合も有効利用が出来る。特に乾留後半にお
いては冷却することなく回収し得ることと、タール分を
含まないこととから高い顕熱を効率的に回収出来、又産
業上有用な水素源として有効に利用することが出来る。
In addition, high hydrogen concentration gas can be obtained from the latter half of carbonization. Therefore, effective use can be made in either case. Particularly in the latter half of carbonization, high sensible heat can be efficiently recovered because it can be recovered without cooling and it does not contain tar, and it can be effectively used as an industrially useful hydrogen source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は乾留経過時間と炭化室中心部温度1発熱量およ
び発生ガス組成との関係を示す図、第2図は本発明の実
施例において用いた乾留装置および発生ガスの回収、測
定のための構成を示す概略図である。 1・・・炭化室、2・・・加熱室、3・・・炭化室中心
測温部、4・・・上昇管、5,6・・・タールトラップ
、7・・・ガス分析装置、8・・・ガスメータ、9・・
・ポンプ、10・・・流路切替ダンバー、11・・・・
流路切替弁。 出願人  三菱化成工業株式会社 代理人  向    寛   − 化工1゛人赤1戚 (東161・) を整量 庚欠宣中〜・ミit崖じC)
Figure 1 shows the relationship between elapsed carbonization time, temperature at the center of the carbonization chamber, calorific value, and composition of generated gas. Figure 2 shows the carbonization equipment used in the examples of the present invention and the system for collecting and measuring generated gas. FIG. 2 is a schematic diagram showing the configuration of. DESCRIPTION OF SYMBOLS 1... Carbonization chamber, 2... Heating chamber, 3... Carbonization chamber center temperature measuring part, 4... Rising tube, 5, 6... Tar trap, 7... Gas analyzer, 8 ...Gas meter, 9...
・Pump, 10...Flow path switching damper, 11...
Flow path switching valve. Applicant: Hiroshi Mukai, agent for Mitsubishi Chemical Industries, Ltd. - Currently announcing the establishment of a chemical industry (161 East) - Mitsubishi Kasei C)

Claims (5)

【特許請求の範囲】[Claims] (1)室炉式コークス炉炭化室より発生するガスを回収
する方法において、乾留前半に発生するガスと乾留後半
に発生するガスをそれぞれ異なる回収系統により切換回
収するようにしたことを特徴とするコークス炉からの発
生ガス回収方法。
(1) A method for recovering gas generated from a coke oven carbonization chamber, characterized in that the gas generated during the first half of carbonization and the gas generated during the second half of carbonization are selectively recovered using different recovery systems. A method for recovering generated gas from a coke oven.
(2)乾留後半の発生ガスを乾留前半での発生ガスの回
収系統と異なる回収系統への回収に切換える時期が、炭
化室中心部の温度が450℃以上になった時点であるこ
とを特徴とする特許請求の範囲(1)のコークス炉から
の発生ガス回収方法。
(2) The timing at which the gas generated during the second half of carbonization is switched to a recovery system different from the recovery system for the gas generated during the first half of carbonization is when the temperature at the center of the carbonization chamber reaches 450°C or higher. A method for recovering generated gas from a coke oven according to claim (1).
(3)乾留後半の発生ガスを乾留前半での発生ガスの回
収系統と異なる回収系統への回収に切換える時期が発生
ガス中の水素濃度が60容量%以上になった時点である
ことを特徴とする特許請求の範囲(1)のコークス炉か
らの発生ガス回収方法。
(3) The timing at which the gas generated in the second half of the carbonization is switched to a recovery system different from the recovery system for the gas generated in the first half of the carbonization is the point at which the hydrogen concentration in the gas generated reaches 60% by volume or more. A method for recovering generated gas from a coke oven according to claim (1).
(4)乾留後半の発生ガスを乾留前半での発生ガスの回
収系統と異なる回収系統への回収に切換える時期が、火
落ち時間から4時間前以降の時点であることを特徴とす
る特許請求の範囲(1)のコークス炉からの発生ガス回
収方法。
(4) A patent claim characterized in that the timing at which the gas generated in the second half of the carbonization is switched to a recovery system different from the recovery system for the gas generated in the first half of the carbonization is at least 4 hours before the fire-off time. A method for recovering generated gas from a coke oven according to scope (1).
(5)乾留後半の発生ガスを乾留前半での発生ガスの回
収系統と異なる回収系統への回収に切換える時期が炭化
室中心部の温度が450℃以上になった時点、発生ガス
中の水素濃度が60容量%以上になった時点および火落
ち時間から4時間前以降である時点の少なくとも二つの
時点に達した時であることを特徴とする特許請求の範囲
(1)のコークス炉からの発生ガス回収方法。
(5) The time when the gas generated in the second half of carbonization is switched to a recovery system different from the recovery system for the gas generated in the first half of carbonization is when the temperature in the center of the carbonization chamber reaches 450°C or higher, and the hydrogen concentration in the gas generated is The generation from the coke oven according to claim (1), characterized in that the occurrence is at least two points in time: the point in time where the Gas recovery method.
JP4754285A 1985-03-12 1985-03-12 Method of recovering gas generated in coke oven Pending JPS61207487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4754285A JPS61207487A (en) 1985-03-12 1985-03-12 Method of recovering gas generated in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4754285A JPS61207487A (en) 1985-03-12 1985-03-12 Method of recovering gas generated in coke oven

Publications (1)

Publication Number Publication Date
JPS61207487A true JPS61207487A (en) 1986-09-13

Family

ID=12778028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4754285A Pending JPS61207487A (en) 1985-03-12 1985-03-12 Method of recovering gas generated in coke oven

Country Status (1)

Country Link
JP (1) JPS61207487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224206A (en) * 2006-02-24 2007-09-06 Nippon Steel Corp Method for forming high-calorie gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013401A (en) * 1973-04-26 1975-02-12
JPS573882A (en) * 1980-06-09 1982-01-09 Kansai Coke & Chem Co Ltd Method for separating and recovering of coke oven gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013401A (en) * 1973-04-26 1975-02-12
JPS573882A (en) * 1980-06-09 1982-01-09 Kansai Coke & Chem Co Ltd Method for separating and recovering of coke oven gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224206A (en) * 2006-02-24 2007-09-06 Nippon Steel Corp Method for forming high-calorie gas

Similar Documents

Publication Publication Date Title
Krótki et al. Laboratory studies of post-combustion CO 2 capture by absorption with MEA and AMP solvents
CN110848721B (en) Fluorine plastic steel low temperature flue gas advanced treatment device
CN101724467B (en) Method for preparing combustible gas and gas-solid reaction device specially used therefor
Śpiewak et al. PDU-scale experimental results of CO2 removal with AMP/PZ solvent
CN103776272A (en) Converter gas mass-energy conversion and CO2 cycle steelmaking method
CN109399564B (en) Device and method for preparing high-purity hydrogen by directly utilizing high-temperature coke oven crude gas
JPS61207487A (en) Method of recovering gas generated in coke oven
US2494554A (en) Gas composition revision
CN107640768B (en) Preparation method of nitrogen-rich modified desulfurization adsorption material
CN207397583U (en) Glass transverse tube type coke oven gas primary-cooling actual training device
CN115608133A (en) Flue gas carbon capture system and method for capturing carbon in flue gas
CN105986058A (en) Novel dust removing device for flue gas of converter
Idem et al. Evaluation of the performance of various amine based solvents in an optimized multipurpose technology development pilot plant
CN108192649B (en) Process system for directly producing hydrogen based on coke oven and control method thereof
CN204115495U (en) A kind of carbonization treatment apparatus
CA1112870A (en) Method and installation for the pressure gasification of solid fuels
CN201890865U (en) Chemical product recovery apparatus for experimental coke oven
CN106829859B (en) A kind of device for producing hydrogen and method
DE2724030A1 (en) Reheating of combusted waste gases for atmospheric discharge - after wet cleaning to achieve cooling and steam saturation
JPS573882A (en) Method for separating and recovering of coke oven gas
CN220371053U (en) Active carbon regenerating device for desulfurizing blast furnace gas
Sørhuus et al. Ahex-a new, combined waste heat recovery and emission control system for anode bake furnaces
CN218637003U (en) Flue gas carbon dioxide capture system
Ropp et al. Effect of Nuclear Substituents on the C14 Isotope Effect in the Saponification of Carboxyl‐Labeled Ethyl Benzoates at 25° C
CN201864690U (en) Coke product extraction experimental equipment