JPS61205697A - Single crystal growth system for group iii-v compound semiconductor - Google Patents

Single crystal growth system for group iii-v compound semiconductor

Info

Publication number
JPS61205697A
JPS61205697A JP4530785A JP4530785A JPS61205697A JP S61205697 A JPS61205697 A JP S61205697A JP 4530785 A JP4530785 A JP 4530785A JP 4530785 A JP4530785 A JP 4530785A JP S61205697 A JPS61205697 A JP S61205697A
Authority
JP
Japan
Prior art keywords
crystal
melt
single crystal
crystal growth
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4530785A
Other languages
Japanese (ja)
Other versions
JPH0413319B2 (en
Inventor
Takao Matsumura
松村 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4530785A priority Critical patent/JPS61205697A/en
Publication of JPS61205697A publication Critical patent/JPS61205697A/en
Publication of JPH0413319B2 publication Critical patent/JPH0413319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:In the title crystal growth system by the liquid-sealed Chokralsky method, the melt of groups III-V is weighed to calculate the dissipation loss of the volatile element from the measurement and the loss is fed to prevent the crystal lattice from being defected. CONSTITUTION:Chemically equivalent amounts of Ga and As are melted with heat in a crucible and the single crystal of GaAs 9 is allowed to grow by the liquid-sealed Chokralsky method. At this time, the dissipation loss of As in the direct synthesis of GaAs is known from the indication of the melt weight sensor 1 and the loss of As in the crystal growth is calculated with the computer 5 from the values 3, 4 from the melt weight sensor 1 and the crystal weight sensor 2. Then, As corresponding to the dissipation loss is fed by heating the As feeder 8, as the vapor pressure of As is controlled. Thus, the single crystal of 9 is allowed to grow, as the melt of GaAs 11 is controlled in its composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は揮発性元素を含む化合物半導体を液体封じチ璽
りラルスキー法により作製する場合の結晶引上装置に関
するものであり、特に■族と■族の化学量論的組成を1
対1に保ったまま引上げる装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crystal pulling apparatus for producing compound semiconductors containing volatile elements by the liquid-sealed Ralski method, and in particular, ■The stoichiometric composition of the group is 1
This relates to a device for pulling up while maintaining a ratio of 1 to 1.

〔従来の技術〕[Conventional technology]

最近、m−v族化合物半導体は高品質の結晶が得られる
様になり、集積回路、光−電子集積回路、電子素子用材
料などに広く用いられている様になってきた。■−v族
化合物半導体の中でもガリウム砒素(GaAs)は電子
移動度が大きく、発光し易く、また光を検知するなどの
特徴を有し、マイクロ波用トランジスタ、高速集積回路
太陽電池、元−電子用素子材料として広く用いられつつ
ある。
Recently, high-quality crystals of m-v group compound semiconductors have become available, and they have come to be widely used in integrated circuits, opto-electronic integrated circuits, materials for electronic devices, and the like. ■-Among V group compound semiconductors, gallium arsenide (GaAs) has high electron mobility, is easy to emit light, and can detect light.It is used in microwave transistors, high-speed integrated circuit solar cells, It is becoming widely used as an element material.

G a A s単結晶が上述の集積回路用の基板として
用いられるには、比抵抗が107Ωam以上の半絶縁性
を有すること、転位、格子欠陥などの物理的化学的欠陥
がない高品質な単結晶であること、さらに熱処理特性が
良いことなどが要求される。
In order for a GaAs single crystal to be used as a substrate for the above-mentioned integrated circuit, it must have semi-insulating properties with a specific resistance of 107 Ωam or more, and must be a high-quality single crystal free of physical and chemical defects such as dislocations and lattice defects. It is required to be crystalline and to have good heat treatment characteristics.

特に転位や格子欠陥は集積回路の特性に影響を与え歩留
りを低化させる原因となっている。近年、GaAs融液
中にイレジク!(In)?添加して結晶を硬化させるこ
とによって無転位結晶が得られる様になったが、格子欠
陥は依然として結晶中に多数存在し、集積回路の歩留り
は実用的水準迄同上せず、格子欠陥を減少させることが
GaAs集積回路の賽用化のための技術上の大きな問題
点になっている。
In particular, dislocations and lattice defects affect the characteristics of integrated circuits and cause a reduction in yield. In recent years, Irejik! (In)? Although it has become possible to obtain dislocation-free crystals by adding and hardening the crystal, many lattice defects still exist in the crystal, and the yield of integrated circuits has not reached a practical level, so it is necessary to reduce the lattice defects. This has become a major technical problem for the commercialization of GaAs integrated circuits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この格子欠陥は結晶中で■族元素とV族元素の化学量論
的組成が異なることに起因している。■−V族化合物半
導体では■族元素に較べV族元素が揮発性である丸め、
チ璽りラルスキー法による結晶成長では融液を液体封じ
剤(酸化ボロン、 B2O2)に履って引上げている(
これを液体封じチ冒りラルスキーLEC法と呼ぶ)、シ
かし、V族の揮発性元素はこの液体封止剤を通して飛散
し、結晶中の化学量論的組成は固化率の増加に伴って■
族元素過剰な状態にずれてしまうのが通常である、この
事に対して従来のLEC法の技術では何らの措置も講じ
ることができなかった。
This lattice defect is caused by the fact that the stoichiometric compositions of group (I) and group V elements are different in the crystal. ■-In Group V compound semiconductors, Group V elements are more volatile than Group ■ elements.
In crystal growth using the Chirari Ralski method, the melt is pulled through a liquid sealant (boron oxide, B2O2).
However, the volatile elements of group V are scattered through this liquid sealant, and the stoichiometric composition in the crystal changes as the solidification rate increases. ■
It is normal for the group elements to shift to an excessive state, and conventional LEC technology cannot take any measures against this problem.

本発明の目的は格子欠陥が極めて少ない■−■族化合物
半導体単結晶をLEC法により成長するための装置を提
供することである。
An object of the present invention is to provide an apparatus for growing a single crystal of a compound semiconductor of the 1-2 group with extremely few lattice defects by the LEC method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、液体封じ法により化合物半導体を成長させる
装置において、融液の重量を測定しその値からV族の揮
発性元素の飛散量を計算機により自動演算し、飛散量に
相当する■族元素を融液中に注入する機能を有する事を
特徴とする。
The present invention uses an apparatus for growing compound semiconductors using a liquid confinement method, in which the weight of the melt is measured, the amount of scattered group V volatile elements is automatically calculated using a computer, and the amount of group V elements corresponding to the scattered amount is calculated. It is characterized by having the function of injecting into the melt.

〔実施例〕〔Example〕

以下、実施例について詳述しよう。 Examples will be described in detail below.

本発明の一要施例による装置を第1図に示す。An apparatus according to one embodiment of the present invention is shown in FIG.

この装置は結晶重量センサー2.融液重量センサー1.
加熱方式により融液内に■族元素を注入する装置7,8
.さらに各重量センサー1.2の信号3.4ヲ受けて■
族元素の注入量を自動演算する計算機5より成る。LE
CGaAsは直接合成法により成長させる事が多い。直
接合成時のAsの飛散は、融液重量センチ(るりt丁重
量センサー)1の指示値を読むことによって知る事がで
きろ。
This device consists of two crystal weight sensors. Melt weight sensor 1.
Devices 7 and 8 for injecting group III elements into the melt using a heating method
.. In addition, receiving signals 3.4 from each weight sensor 1.2■
It consists of a computer 5 that automatically calculates the amount of the group element to be implanted. L.E.
CGaAs is often grown by direct synthesis. The scattering of As during direct synthesis can be determined by reading the indicated value of the melt weight centimeter (Ruri weight sensor) 1.

−万、結晶成長時の飛散量は融液重量センサ(るつぼ重
量センサー)1と結晶重量センサー2の各々の値3.4
全4ヲ機5に入力して融液と結晶界面での張力補正を行
って得ることができる。この様にして得られた飛散量に
相当するAsを砒素注入装置8のヒータ一部7を加熱し
、 Asの蒸気圧を制御することにより融液9内に注入
する。この過程を結晶成長中自動的に〈9返して行い、
引き上げ結晶全体にわたり化学量論組成を満足した結晶
を成長させることができる。尚、注入装置のノズルは、
PBN製のものを用いるので不純物の混入はない。
-10,000, the amount of scattering during crystal growth is 3.4, which is the value of each of melt weight sensor (crucible weight sensor) 1 and crystal weight sensor 2.
It can be obtained by inputting all four data into the machine 5 and correcting the tension at the interface between the melt and the crystal. As equivalent to the amount of scattering thus obtained is injected into the melt 9 by heating the heater part 7 of the arsenic injection device 8 and controlling the vapor pressure of As. This process is carried out automatically during crystal growth.
It is possible to grow a crystal that satisfies the stoichiometric composition over the entire pulled crystal. In addition, the nozzle of the injection device is
Since it is made of PBN, there is no contamination with impurities.

次に1本装置を用いて製作し九GaAsウェハーの効果
につき示す。
Next, we will show the effects of nine GaAs wafers manufactured using this equipment.

4イン−直径のPBNるりぼ中にGaと人3金等化学当
量ずワ2KfとB20st’300gチャージした。
A 4-inch-diameter PBN roll was charged with 2Kf of Ga, 2Kf of chemical equivalents of gold, and 300g of B20st'.

雰囲気ガスはアルゴンを用い、直接合成時の圧力は75
に4/−す結晶成長時の圧力は10Kf/−である。
The atmospheric gas used was argon, and the pressure during direct synthesis was 75
The pressure during crystal growth is 10 Kf/-.

この様な条件下で通常の結晶作製方法により[径約55
fi長さ100■のGaAs単緒晶人を作製した。
Under these conditions, a crystal with a diameter of about 55
A GaAs monolayer with a fi length of 100 cm was fabricated.

F軸の重量センサーlから検知したこの時のAs飛数量
は算2図の曲lI!16に示す様であり、直接合成時の
飛散量は約25g結晶引上げ終了時で54gであった。
The number of As skipped at this time detected from the weight sensor l on the F axis is the song lI in Figure 2! As shown in Fig. 16, the amount of scattering during direct synthesis was approximately 25 g, and 54 g at the end of crystal pulling.

一万、本装置により飛散した砒素に相当する分だけ砒素
を注入し他は結晶人と同様な育成方法によって結晶Bを
育成した。これらの結晶から結晶の中心を含み縦に切り
出し九ウェハーで引き上げ軸方向のストイキオメトリ−
の変化をX線準禁制反射法により測定した。その結果を
第3図に示す。
10,000, Crystal B was grown using the same growth method as the crystal man except that arsenic was injected in an amount equivalent to the arsenic scattered by this device. Nine wafers were cut vertically from these crystals, including the center of the crystal, and the stoichiometry in the axial direction was measured.
Changes in the values were measured by the X-ray quasi-forbidden reflection method. The results are shown in FIG.

曲線17は従来方法であ91曲線18は本装置を用いた
場合である。このように1人S注入を行い組成制御を行
いながら育成した結晶の組成のずれは極めて少−0 さらに各引上げ結晶についてX線評価を行ったウェハー
と隣接するウェハーでFET’i作製しその素子特性の
バラツキを調べた。用いたFETのパターンはゲート長
2μへゲート幅100#m、  ソース・ドレイン間距
離6μ鴇である。しきい値電圧vthについての変化’
ill!4図に示す。曲線19は従来例によるもので1
曲線20は本装置によるものである。この図かられかる
様に組成制御して育成した結晶Bは引上げ軸方向のvt
hの変動は極めて小さい。
Curve 17 is the case using the conventional method, and curve 18 is the case using the present apparatus. In this way, the compositional deviation of the crystals grown while performing single-person S implantation and controlling the composition is extremely small - 0 Furthermore, FET'i was fabricated using the wafer on which each pulled crystal was subjected to X-ray evaluation and the adjacent wafer, and the device was We investigated the variation in characteristics. The FET pattern used had a gate length of 2μ, a gate width of 100#m, and a source-drain distance of 6μ. Change in threshold voltage vth'
ill! Shown in Figure 4. Curve 19 is based on the conventional example and is 1
Curve 20 is from this device. As shown in this figure, crystal B grown by controlling the composition has a vt in the direction of the pulling axis.
The variation in h is extremely small.

同様なパターンを用いて引上げ軸に垂厘に切9出した(
100)ウェハーについてもVthのバラツキについて
調べた。その結果、第5図の曲線21(従来法)と曲線
22(本装置)とで示す様に組成制御して育成した結晶
についてはvthO面内のバラツキが極めて少いことが
明かになっ友。
Using a similar pattern, cut 9 pieces into the pulling shaft (
100) The variation in Vth of wafers was also investigated. As a result, as shown by curve 21 (conventional method) and curve 22 (this device) in FIG. 5, it was revealed that crystals grown with controlled composition had extremely little variation within the vthO plane.

〔発明の効果〕〔Effect of the invention〕

以上説明し友様に本発明による装置を用いれば、組成制
御された結晶を得ることができ、この結晶から得られる
ウェハーにFETを作製する事により、特性バラツキの
殆どないFETが得られ、GaAsIC=j−高集積化
できる効果がある。尚本発明はG a A s以外の■
−■族化合物半導体GaP  InPについても同様な
理由で効果的と考えられる。
By using the apparatus according to the present invention as explained above, it is possible to obtain a crystal whose composition is controlled, and by fabricating an FET on a wafer obtained from this crystal, an FET with almost no variation in characteristics can be obtained, and a GaAs IC =j- has the effect of increasing integration. In addition, the present invention is applicable to
-■ group compound semiconductor GaP InP is also considered to be effective for the same reason.

【図面の簡単な説明】[Brief explanation of drawings]

w、1図は本発明の一実施例による装置の縦断面図、第
2図は本発明によるるつぼ重量センサー信号を計算機処
理して得られる砒素飛散量と、結晶育成時間の関係を示
す因、第3図はXIW準禁制反射によるストイキオメト
リ−からのずれと結晶長との関係を示す図、l!4図は
FETのしきい値電圧vthと結晶長の関係を示す図、
第5図はしきい値電圧vthのウェハー面内の変動の様
子を示す図である。17,19.21は夫々従来結晶に
おける特性図、18,20.22は夫々本装置による結
晶における特性図。 ψ1回 11−?−+プ゛11イ (目間) 榮2刊
w, Figure 1 is a vertical cross-sectional view of an apparatus according to an embodiment of the present invention, and Figure 2 is a diagram showing the relationship between the amount of arsenic scattered and the crystal growth time obtained by computer processing the crucible weight sensor signal according to the present invention. Figure 3 is a diagram showing the relationship between deviation from stoichiometry due to XIW quasi-forbidden reflection and crystal length, l! Figure 4 shows the relationship between FET threshold voltage vth and crystal length.
FIG. 5 is a diagram showing how the threshold voltage vth varies within the wafer surface. 17, 19.21 are characteristic diagrams for conventional crystals, and 18, 20.22 are characteristic diagrams for crystals produced by the present device, respectively. ψ1 times 11-? -+P11 (Mema) Sei 2nd edition

Claims (1)

【特許請求の範囲】[Claims] 液体封じチョクラルスキー法によるIII−V族化合物半
導体の単結晶成長装置において、III−V族融液の重量
を測定し、その値から揮発性元素の飛散量を算出し、飛
散量に相当する量を前記融液中に注入する機能を有する
事を特徴とするIII−V族化合物半導体の単結晶成長装
置。
In a III-V group compound semiconductor single crystal growth apparatus using the liquid-filled Czochralski method, the weight of the III-V group melt is measured, and the amount of volatile elements scattered is calculated from that value, and the amount equivalent to the amount of scattering is calculated. 1. An apparatus for growing a single crystal of a III-V compound semiconductor, characterized by having a function of injecting a certain amount into the melt.
JP4530785A 1985-03-07 1985-03-07 Single crystal growth system for group iii-v compound semiconductor Granted JPS61205697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4530785A JPS61205697A (en) 1985-03-07 1985-03-07 Single crystal growth system for group iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4530785A JPS61205697A (en) 1985-03-07 1985-03-07 Single crystal growth system for group iii-v compound semiconductor

Publications (2)

Publication Number Publication Date
JPS61205697A true JPS61205697A (en) 1986-09-11
JPH0413319B2 JPH0413319B2 (en) 1992-03-09

Family

ID=12715655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4530785A Granted JPS61205697A (en) 1985-03-07 1985-03-07 Single crystal growth system for group iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61205697A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227985A (en) * 1985-04-02 1986-10-11 Hitachi Cable Ltd Production of compound semiconductor
JPS6230689A (en) * 1985-08-02 1987-02-09 Mitsubishi Metal Corp Growth of iii-v semiconductor crystal and apparatus therefor
JPS63147898A (en) * 1986-12-12 1988-06-20 Nippon Telegr & Teleph Corp <Ntt> Method for growing compound semiconductor single crystal
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
EP0355746A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
EP0355747A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
JP2001342094A (en) * 2000-05-31 2001-12-11 Komatsu Electronic Metals Co Ltd Device and method for monocrystal pulling surely executed with arsenic doping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988393A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Production of iii-v group compound single crystal
JPS59164699A (en) * 1983-03-10 1984-09-17 Agency Of Ind Science & Technol Preparation of ga-as single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988393A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Production of iii-v group compound single crystal
JPS59164699A (en) * 1983-03-10 1984-09-17 Agency Of Ind Science & Technol Preparation of ga-as single crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227985A (en) * 1985-04-02 1986-10-11 Hitachi Cable Ltd Production of compound semiconductor
JPS6230689A (en) * 1985-08-02 1987-02-09 Mitsubishi Metal Corp Growth of iii-v semiconductor crystal and apparatus therefor
JPS63147898A (en) * 1986-12-12 1988-06-20 Nippon Telegr & Teleph Corp <Ntt> Method for growing compound semiconductor single crystal
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
EP0355746A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
EP0355747A2 (en) * 1988-08-19 1990-02-28 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
US5074953A (en) * 1988-08-19 1991-12-24 Mitsubishi Materials Corporation Method for monocrystalline growth of dissociative compound semiconductors
US5091043A (en) * 1988-08-19 1992-02-25 Mitsubishi Materials Corporation Method for monocrystaline growth of dissociative compound semiconductors
JP2001342094A (en) * 2000-05-31 2001-12-11 Komatsu Electronic Metals Co Ltd Device and method for monocrystal pulling surely executed with arsenic doping

Also Published As

Publication number Publication date
JPH0413319B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
Ta et al. Effects of stoichiometry on thermal stability of undoped, semi‐insulating GaAs
US5030315A (en) Methods of manufacturing compound semiconductor crystals and apparatus for the same
JPS61205697A (en) Single crystal growth system for group iii-v compound semiconductor
Fewster et al. The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques
US5456206A (en) Method for two-dimensional epitaxial growth of III-V compound semiconductors
Müller InP-the basic material of integrated optoelectronics for fiber communication systems
JPH0639355B2 (en) Method for producing compound semiconductor single crystal
Gürbulak Growth and absorption properties of Dy-doped and undoped p-type TlGaSe2
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
JPH042559B2 (en)
JPH0670973B2 (en) Compound semiconductor epitaxial wafer
KR940006709B1 (en) Gaas single crystal and manufacturing method thereof
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
US6630697B2 (en) GaAs single crystal as well as method of producing the same, and semiconductor device utilizing the GaAs single crystal
JPS57115821A (en) Manufacture of semiconductor device
JPS60211912A (en) Low-transition semi-insulation substrate
KR940006712B1 (en) Semiconductor device utilizing the gaas single crystal
JP2705682B2 (en) Molecular beam crystal growth method
JPH01138190A (en) Production of single crystal of iii-v group compound semiconductor
KR960005511B1 (en) Growing method of gaas single crystal
JPS60155599A (en) Method for growing crystal of mixed crystal of groups iii[v
Tuomi et al. Synchrotron section topographic study of defects in InP substrates and quaternary laser structures
DE4021252A1 (en) Gallium-arsenide single crystal - has indium added in specified amts. giving reduced dislocation density
Akai Mass-Producing Technologies for Semi-Insulating GaAs Substrates
JPH03159998A (en) In-doped dislocatioin-free pulled gallium arsenide single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees