JPS61203590A - Heating of metal strip - Google Patents

Heating of metal strip

Info

Publication number
JPS61203590A
JPS61203590A JP4277885A JP4277885A JPS61203590A JP S61203590 A JPS61203590 A JP S61203590A JP 4277885 A JP4277885 A JP 4277885A JP 4277885 A JP4277885 A JP 4277885A JP S61203590 A JPS61203590 A JP S61203590A
Authority
JP
Japan
Prior art keywords
heating
shape
heating coil
coil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4277885A
Other languages
Japanese (ja)
Inventor
鵜木 成輝
康男 渡辺
雅夫 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP4277885A priority Critical patent/JPS61203590A/en
Publication of JPS61203590A publication Critical patent/JPS61203590A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術の分野〕 本発明は長手方向に不定形状な金属条材を誘導加熱によ
り一定温度に加熱したり、長手方向の形状部別に所要の
温度に選択的に加熱する方法に関するものである。
[Detailed Description of the Invention] [Field of Technology] The present invention heats a metal strip having an irregular shape in the longitudinal direction to a constant temperature by induction heating, or selectively heats each shape part in the longitudinal direction to a required temperature. It is about the method.

〔従来の技術〕[Conventional technology]

金属条材をその長さ方向に連続的に加熱する場合、前記
金属条材を環状の加熱コイルの中を通過させ乍ら誘導加
熱する方法が広く採用されている。
When continuously heating a metal strip in its length direction, a method is widely adopted in which the metal strip is passed through an annular heating coil and heated by induction.

この誘導加熱方法は、前記条材が長手方向に均一な形状
の場合は、通常加熱条件が一定であるから、加熱温度を
検出して若干の調整を加えるだけでよいが、長手方向に
不定形状の条材、例えば。
In this induction heating method, if the strip has a uniform shape in the longitudinal direction, the heating conditions are usually constant, so it is only necessary to detect the heating temperature and make slight adjustments. strips, e.g.

アプセット付き鋼管、ランド付きフィンチューブ。Steel tube with upset, finned tube with land.

段差付き条材等を連続して加熱する場合、加熱温度を略
一定にするためには、その形状に応じた加熱電力に調整
する必要がある。
When continuously heating a stepped strip or the like, in order to keep the heating temperature substantially constant, it is necessary to adjust the heating power according to its shape.

一般に、加熱温度を検出し、該温度を一定に制御するこ
とは、電気炉のように長時間に変動するものや、誘導加
熱でも定位置加熱の場合は比較的容易に行なうことが出
来るが、被加熱物または加熱コイルを移動させ乍ら加熱
する移動加熱では、検出位置ずれや、表面状態によりハ
ンチングが生じたりするので、加熱温度を一定に制御に
は容易でない面があり、従って、不定形状物の移動加熱
において加熱温度を一定に制御することは極めて困難で
ある。
In general, it is relatively easy to detect the heating temperature and control the temperature to a constant value when the temperature fluctuates over a long period of time, such as in an electric furnace, or in the case of induction heating or fixed-position heating. In mobile heating, in which the object to be heated or the heating coil is heated while being moved, it is difficult to control the heating temperature at a constant level because detection position shifts and hunting may occur depending on the surface condition. In moving heating of objects, it is extremely difficult to control the heating temperature to be constant.

このような場合、一般に被加熱物の形状や位置を設定又
は検出して、予め定められた電力に切換えるなどの方法
を採ることも行なわれているが、この方法は限定された
長さの同じものを繰返し加熱処理する場合以外は満足す
べき効果を得られていない。
In such cases, it is common practice to set or detect the shape and position of the object to be heated and then switch to a predetermined power. Satisfactory effects have not been obtained except when things are repeatedly heat treated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、本発明が解決しようとする問題点は、前述のア
プセット付き鋼管、ランド付きフィンチューブ、段差付
き条材等の長手方向に不定形状な金属条材を誘導加熱に
より容易にその略全体を同一温度に加熱することであり
、また、例えばランド付きフィンチューブのフィン部を
主目的に加熱する場合のように、長手方向の形状別に所
要の異なる熱処理温度に加熱することである。
Therefore, the problem to be solved by the present invention is that metal strips having irregular shapes in the longitudinal direction, such as steel pipes with upsets, fin tubes with lands, and strips with steps, can be easily made into substantially the same shape by induction heating. In addition, as in the case of heating the fin portion of a fin tube with a land as the main purpose, for example, heating to different required heat treatment temperatures depending on the shape in the longitudinal direction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述のような従来技術の問題点を解決すること
を目的としてなされたもので、その構成は、長手方向に
不定形又は板厚変化のある管体等の金属条材を誘導加熱
により加熱する方法において、前記金属条材と加熱コイ
ルを相対的に移動させ、前記金属条材の形状変化に基ず
く加熱コイルのインピーダンス又は位相角9周波数の変
位を加熱コイルの電源側から検出し、これらの変位量を
用いて、加熱温度を一定又は形状別に所要温度に制御す
ることを主な特徴とするものであり、更に具体的には、
長手方向に不定形又は板厚変化のある管体等の金属条材
を誘導加熱により加熱する方法において、前記金属条材
と加熱コイルを相対的に移動させるようにする一方、前
記加熱コイルとは別に被加熱物の形状を検出する検出コ
イル又は形状状態を検出するセンサを加熱コイルの前方
適宜の位置に配して前記条材の未加熱部分の形状の変化
を検出し、その検出値を一旦記憶させ1位置を計測又は
演算し、検出された位置が加熱コイル内に来た時、前記
検出値に基ずき必要とする加熱電力を前記加熱装置に供
給することにより加熱温度を制御することを特徴とする
ものであって、必要に応じては、検出コイルの変位出力
と、加熱コイルの変位量を比較し補正を加えることによ
り、一層正確に加熱温度を制御出来るようにしたもので
ある。
The present invention has been made with the aim of solving the problems of the prior art as described above, and its configuration is to heat a metal strip such as a tube that has an irregular shape or a change in thickness in the longitudinal direction by induction heating. In the heating method, the metal strip and the heating coil are moved relatively, and the impedance or phase angle 9 frequency displacement of the heating coil based on the change in shape of the metal strip is detected from the power source side of the heating coil, The main feature is to use these displacement amounts to control the heating temperature to a constant temperature or to a required temperature for each shape, and more specifically,
In a method of heating a metal strip such as a tube having an irregular shape or a change in thickness in the longitudinal direction by induction heating, the metal strip and the heating coil are moved relative to each other, while the heating coil is Separately, a detection coil that detects the shape of the object to be heated or a sensor that detects the shape state is placed at an appropriate position in front of the heating coil to detect changes in the shape of the unheated portion of the strip, and the detected value is temporarily stored. Memorize and measure or calculate one position, and when the detected position comes within the heating coil, control the heating temperature by supplying the necessary heating power to the heating device based on the detected value. The heating temperature can be controlled more accurately by comparing the displacement output of the detection coil and the displacement amount of the heating coil and making corrections, if necessary. .

c本発明の原理〕 誘導加熱は数KW〜数千KWの容量で広く応用されてお
り、高周波電源は加熱コイル即ち誘導子に電力を供給す
るため、所要の電圧を安定して発生するための定電圧制
御(AVR)で運転されるのが通常であり、一般の商用
電源となんら変らない。
cPrinciple of the present invention] Induction heating is widely applied with a capacity of several kilowatts to several thousand kilowatts, and since a high frequency power supply supplies power to a heating coil, that is, an inductor, it is necessary to stably generate the required voltage. It is normally operated using constant voltage control (AVR), and is no different from a general commercial power source.

然し、加熱コイルは、同じコイルにおいては、負荷の被
加熱物の形状により、コイル端子から見たインピーダン
スが変化する。従って、高周波電源が定電圧制御(AV
R)である場合には、コイル入力即ち電源の出力が変化
することになる。
However, in the case of the same heating coil, the impedance seen from the coil terminal changes depending on the shape of the object to be heated as a load. Therefore, the high frequency power supply is controlled by constant voltage (AV
R), the coil input, ie, the output of the power supply, will change.

第2図aは加熱コイルの一例、同図すは前記加熱コイル
を電気回路的に示したもので、被加熱物の形状及び加熱
コイルとの結合因数によりインピーダンスが決定される
FIG. 2a shows an example of a heating coil, which is an electrical circuit diagram of the heating coil, and the impedance is determined by the shape of the object to be heated and the coupling factor with the heating coil.

また、第3図aにおいて、 R2は被加熱物の抵抗、x
lは同じくリアクタンス、R1は加熱コイル自体の抵抗
、xlは同じくリアクタンス、 Xgは加熱コイルと被
加熱物との空隙リアクタンス、Xeは加熱コイル外部の
リアクタンスを表わしており、一方、第3図すにおいて
、82′は一次換算の被加熱物の抵抗、xOは一次換算
の合成リアクタンスで、第3図aは同図すのように等価
回路で表わされ、加熱コイルの入力端子から負荷インピ
ーダンス即ち、被加熱物の形状を知ることが出来ること
を示している。
In addition, in Fig. 3a, R2 is the resistance of the heated object, x
Similarly, l is the reactance, R1 is the resistance of the heating coil itself, xl is the reactance, Xg is the gap reactance between the heating coil and the object to be heated, and Xe is the reactance outside the heating coil. , 82' is the resistance of the object to be heated in primary terms, and xO is the combined reactance in primary terms. Figure 3a is represented by an equivalent circuit as shown in the same figure, and the load impedance from the input terminal of the heating coil, that is, This shows that it is possible to know the shape of the object to be heated.

誘導加熱における加熱コイルと被加熱物との関係は通常
の複捲変圧器と同じ原理で等価的に説明されている。た
だ、変圧器は磁路に理想的ともいえる鉄芯で形成されて
いるのに対し、加熱コイルの場合は空隙の多い磁路であ
り、二次コイルに相当する被加熱物とコイルとの間の空
隙によるリアクタンスが、コイル側から見たインピーダ
ンスに大きな影響を与える点で相違している。
The relationship between the heating coil and the object to be heated in induction heating is equivalently explained using the same principle as that of a normal double-wound transformer. However, whereas a transformer is formed with an iron core that can be said to be ideal for a magnetic path, a heating coil has a magnetic path with many air gaps, and there is a gap between the coil and the object to be heated, which corresponds to the secondary coil. The difference is that the reactance due to the air gap greatly affects the impedance seen from the coil side.

これらを第2図a、b及び第3図a、bから関係式を見
ると、次のように示される。
If we look at these relational expressions from Figure 2 a, b and Figure 3 a, b, we can see the following.

R+・Or ・・・・・・・・・・・・・・・(1)R
2ψD1  ・・・・・・・・・・・・・・・(2)ま
た、X2 # Rz y X 1 ” R+Xg ” 
(D+”  ox” )・・・・・・・・・・・(3)
Xs曽り。
R+・Or ・・・・・・・・・・・・・・・(1)R
2ψD1 ・・・・・・・・・・・・・・・(2) Also, X2 # Rz y X 1 ” R+Xg ”
(D+”ox”)・・・・・・・・・・・・(3)
Xs sori.

Zo=(R+ +R2’ )+jXo・・・・・・・・
・・・(6)R1+R2’          R1+
R2’而して、被加熱物の形状の変化による加熱コイル
の入力条件の変化の傾向は表1に示す通りである。(但
し、高周波電源が周波数一定の電源では力率が変化し、
サイリスタインバータ電源では周波数が変化する。また
、加熱温度が変化した場合もインピーダンスの変化とし
て表われる。
Zo=(R+ +R2')+jXo・・・・・・
...(6) R1+R2' R1+
R2'The tendency of the input conditions of the heating coil to change due to the change in the shape of the object to be heated is shown in Table 1. (However, if the high-frequency power source has a constant frequency, the power factor will change,
In a thyristor inverter power supply, the frequency changes. Furthermore, a change in heating temperature also appears as a change in impedance.

このため、本発明においては、表1に示される変化はイ
ンピーダンスや位相角の変化によるもので、これらの単
独又は組合せによる変化量を形状と温度特性に適合する
ように増幅し、高周波電源の出力制御にフィードバック
させることにより温度制御を行なうようにしたのである
。外径形状が同じである場合、インピーダンスの変化割
合が少ないとはいえ、加熱温度によって被加熱物の抵抗
R2は変化する。即ち、加熱部が非磁性体及び磁気変態
点以上では純粋に熱膨張係数に基ずく抵抗値の変化が(
6)式、(7)式のインピーダンス及び位相角の変化と
して表われる。確かに、誘導加熱では力率が悪くコイル
側から見てcosθは0.3程度でリアクタンスXOに
対して抵抗分の変化の影響は少ないとはいえ、移動加熱
では形状変化に基ずくインピーダンス変位に加熱温度の
変化に基ずく被加熱物の抵抗R2の変化が上乗せされる
ことになる。
Therefore, in the present invention, the changes shown in Table 1 are due to changes in impedance and phase angle, and the changes caused by these alone or in combination are amplified to match the shape and temperature characteristics, and the output of the high frequency power source is The temperature was controlled by feeding back the control. When the outer diameter shape is the same, the resistance R2 of the object to be heated changes depending on the heating temperature, although the rate of change in impedance is small. In other words, if the heated part is a non-magnetic material and is above the magnetic transformation point, the resistance value changes purely based on the thermal expansion coefficient (
This is expressed as changes in impedance and phase angle in equations (6) and (7). It is true that induction heating has a bad power factor and cos θ is about 0.3 when viewed from the coil side, so changes in resistance have little effect on reactance XO, but in moving heating, impedance displacement due to shape changes A change in the resistance R2 of the heated object based on a change in heating temperature is added.

終局的には温度制御を行なう上から、これらを補正する
工夫を行う。即ち、形状変化に基ずくインピーダンスの
変位傾向に対し温度変化に基ずく位相角変位が逆方向で
あるから、これらの比率により補正を加えるのである。
Ultimately, we will take measures to correct these factors while controlling the temperature. That is, since the phase angle displacement due to temperature change is in the opposite direction to the impedance displacement tendency due to shape change, correction is applied based on the ratio of these.

また、温度一定制御ではなく形状別に温度差を与える必
要がある場合には、制御変位量にその一部を正又は負に
バイアスを与える工夫を行なっている。
In addition, when it is necessary to provide temperature differences for each shape rather than constant temperature control, a device is used to bias a portion of the control displacement amount positively or negatively.

更に、加熱コイルの前方に検出コイルを配することによ
り、検出したインピーダンス等の変化を一旦記憶し、検
出点が加熱コイルに来た時、加熱電源に制御をかけるよ
うにすれば、検出コイルに与える検出電源として直流か
ら加熱電源周波数以上京で用いることが出来るので、外
径が同じでも肉厚変化のある筒体等の形状変化をも検出
し制御可能となる。
Furthermore, by placing a detection coil in front of the heating coil, the detected changes in impedance etc. can be stored once, and when the detection point comes to the heating coil, the heating power source can be controlled. Since it can be used as a detection power source ranging from direct current to a heating power source frequency in excess of 1,000 yen, it is possible to detect and control changes in the shape of a cylindrical body, etc., which has the same outer diameter but changes in wall thickness.

従って、加熱コイル径が一定の時、被加熱物の径が変化
すると、当然被加熱物の抵抗R2及び加熱コイルと被加
熱物との空隙リアクタンスXgが変化するから、コイル
から見たインピーダンス及び位相角などの変位を出力と
して取出すようにしたのである。
Therefore, when the heating coil diameter is constant, if the diameter of the heated object changes, the resistance R2 of the heated object and the air gap reactance Xg between the heating coil and the heated object naturally change, so the impedance and phase seen from the coil This allows the displacement of corners and other angles to be extracted as output.

また、単純に形状判断を行なうのであれば、センサとし
てラジオアイソトープ等を利用し、被加熱物の厚み即ち
重量を検出して、加熱電力を制御することも可能である
。しかし、検出コイルを設けることは形状センサとして
ばかりでなく、検出コイルと加熱コイルから得られた同
種の変位量を比較し、補正することにより正確な制御を
行なうことが出来るのである。
Furthermore, if the shape is simply determined, it is also possible to use a radioisotope or the like as a sensor to detect the thickness or weight of the object to be heated and control the heating power. However, providing a detection coil not only serves as a shape sensor, but also enables accurate control by comparing and correcting the amount of displacement of the same type obtained from the detection coil and the heating coil.

〔実施例〕〔Example〕

次に本発明方法の実施の一例を図に拠り説明する。 Next, an example of implementation of the method of the present invention will be explained with reference to the drawings.

第4図aは、高周波電源の定電圧制御の回路を切替え、
温度一定の出力制御を行なうようにした例の回路図で、
1は高周波電源(MG又はインバータ)で、整合トラン
ス3を通して加熱コイル4に電力が供給され、被加熱物
9を誘導加熱する。加熱コイル4は大電流が流れるため
、回路を長く出来ないことから、該加熱コイル4の一次
側において、計器用変圧器PT及び計器用変流器C丁か
ら被加熱物9の状態を検出するため、電圧変換器5a、
インピーダンス変換器5b、位相角(又は周波数)変換
器5c及び電流変換器5dを接続し、演算増幅器6で前
記変換器の出力を必要に応じ選択又は組合せて演算増幅
し、設定器8と比較してエキサイタ又は出力制御部7に
入力し、電源1の出力を制御出来る構成となっている。
Figure 4a shows switching the constant voltage control circuit of the high frequency power supply,
This is an example circuit diagram that performs output control at a constant temperature.
Reference numeral 1 denotes a high frequency power source (MG or inverter), and power is supplied to a heating coil 4 through a matching transformer 3 to inductively heat an object 9 to be heated. Since a large current flows through the heating coil 4, the circuit cannot be made long, so the state of the object to be heated 9 is detected from the voltage transformer PT and the current transformer C on the primary side of the heating coil 4. Therefore, the voltage converter 5a,
An impedance converter 5b, a phase angle (or frequency) converter 5c, and a current converter 5d are connected, and the outputs of the converters are selected or combined as necessary and operationally amplified by an operational amplifier 6, and compared with a setting device 8. The configuration is such that the output of the power source 1 can be controlled by inputting it to the exciter or output control section 7.

尚、図示しないが、指示計器及び保護リレーは設置され
ている。
Although not shown, an indicator and a protection relay are installed.

また、第4図すは、検出コイルを設ける場合の系統図で
、検出コイル4′には検出電源1′から低電圧、低電流
が供給され、インピーダンス変換器5′の出力を、信号
遅延回路12で送り速度変換器11の信号により遅延し
て出力させ、電源1の出力の制御を行なうか、または、
前記インピーダンス変換器5′の出力と加熱コイル4に
より検出された出力とを演算増幅器6により演算補正し
て制御を行なう。
Furthermore, Fig. 4 is a system diagram when a detection coil is provided.Low voltage and low current are supplied to the detection coil 4' from the detection power supply 1', and the output of the impedance converter 5' is connected to the signal delay circuit. 12, the output is delayed according to the signal from the feed rate converter 11, and the output of the power source 1 is controlled, or
The output of the impedance converter 5' and the output detected by the heating coil 4 are corrected by an operational amplifier 6 for control.

被加熱物の形状に比例して検出出力が得られても、形状
に比例した加熱電力を与えなければならないとは限らな
い。即ち、被加熱物の重量、材質。
Even if a detection output is obtained in proportion to the shape of the object to be heated, it is not necessarily necessary to apply heating power proportional to the shape. In other words, the weight and material of the heated object.

熱容量又は放熱条件等の違いにより修正する必要がある
。そのため演算増幅器6に、材質設定器6a。
It is necessary to modify it due to differences in heat capacity or heat dissipation conditions. Therefore, the operational amplifier 6 includes a material setting device 6a.

増幅率設定器6b及び温度を指定する補正率設定器6c
を設ける。
Amplification factor setting device 6b and correction factor setting device 6c for specifying temperature
will be established.

而して、第1図aに示したものは、被加熱物として近年
多く見られるランド付フィンチューブであるが、このラ
ンド付フィンチューブのフィン部をランド部と同様に熱
処理する場合、通常の加熱方法ではフィン部はランド部
に比べて単位重量が小さく突部であるから、加熱温度が
高くなるように思われがちであるが、インピーダンスが
大きくなることと放熱のため、第5図aに示すようにフ
ィン部の温度は低下する。このフィン部に満足すべき熱
処理を施すために出力を増加すると、ランド部が過熱し
てしまう。
What is shown in Fig. 1a is a finned tube with a land, which has been frequently seen in recent years as an object to be heated, but when the fin portion of this finned tube with a land is heat treated in the same way as the land portion, the usual method is used. In the heating method, the fin part has a smaller unit weight than the land part and is a protruding part, so it tends to be thought that the heating temperature is higher, but due to the increased impedance and heat dissipation, As shown, the temperature of the fin portion decreases. If the power is increased to provide a satisfactory heat treatment to the fin portion, the land portion will overheat.

然し乍ら、上記本発明方法によれば、フィン部が加熱コ
イルに到達したら、それがインピーダンスの増加として
検出され、これらの変位の組合せ出力を増昇させ、加熱
温度を上昇させる制御を行なうことによって、第5図す
に示すようにフィン部をランド部と同−又は略同一温度
に加熱することが出来るのである。更に、変位量を増幅
し又は補正することによりフィン部の加熱温度をランド
部のそれより高くなるようにすることも可能である。
However, according to the method of the present invention, when the fin portion reaches the heating coil, this is detected as an increase in impedance, and the combined output of these displacements is increased and the heating temperature is controlled to increase. As shown in FIG. 5, the fin portion can be heated to the same or approximately the same temperature as the land portion. Furthermore, it is also possible to make the heating temperature of the fin portion higher than that of the land portion by amplifying or correcting the amount of displacement.

尚、本発明方法において、加熱温度の一定制御を適正に
保つためには、加熱コイルの入力変化を検出した前記各
要素の必要な組合せとそれぞれのゲインで加えることが
必要であり、上記以外に温度を検出し、これを−要素と
して加えることも可能である。
In addition, in the method of the present invention, in order to properly maintain constant control of the heating temperature, it is necessary to apply the input change of the heating coil with the necessary combination of the above-mentioned elements detected and their respective gains, and in addition to the above. It is also possible to detect the temperature and add it as a - element.

また、本発明方法による制御では、表1に示されるよう
な傾向を強調したり、前記と逆の傾向にも制御すること
が出来、更に、被加熱物の形状部側に異なった必要な加
熱温度に制御することも可能である。
Furthermore, with the control according to the method of the present invention, it is possible to emphasize the trends shown in Table 1, or to control the opposite trends to the above, and furthermore, it is possible to control the trends shown in Table 1 to the contrary, and furthermore, it is possible to control the tendency that is the opposite of that shown in Table 1. It is also possible to control the temperature.

〔効 果〕〔effect〕

本発明は上述の通りであるから、例えば、ランド付フィ
ンチューブを熱処理するような場合、この熱処理はフィ
ン加工による加工硬化や材質上の後処理として加熱する
ものであり1両端及び途中のランド部はフィン部より加
熱温度が高過ぎないようにすることが必要であるが、既
拳;述べたように1通常の手段では不可能なため、ラン
ド部に続くフィン部の加熱時にランド部の加熱時より大
きい加熱電力を加熱コイルに供給して加熱し、フィン部
の加熱が終ってフィン部に続くランド部をするときには
、フィン部の加熱温度より高くならないように小さい加
熱電力を加熱コイルに供給して加熱することにより、全
体に均質の熱処理を施すことが出来るのであり、従って
、長手方向に不定形又は板厚変化のある管体等の金属条
材の熱処理に採用して好適である。
Since the present invention is as described above, for example, when heat treating a finned tube with lands, this heat treatment is performed as work hardening due to fin processing or as a post treatment for the material. It is necessary to ensure that the heating temperature is not too high compared to the fin part, but as mentioned above, this is not possible with normal means, so heating the land part when heating the fin part following the land part is necessary. When heating the fin part, a larger heating power is supplied to the heating coil to heat it, and when the land part following the fin part is heated, a smaller heating power is supplied to the heating coil so that the heating temperature does not become higher than the heating temperature of the fin part. By heating, it is possible to perform homogeneous heat treatment on the entire surface, and therefore, it is suitable for use in heat treatment of metal strips such as tubes that have an irregular shape or a change in thickness in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により加熱すべき金属条材を示すも
ので、同図aはランド付フィンチューブ、同図す乃至d
は他の異形管の部分正面図、第2図aは加熱コイルと被
加熱物の関係を示す図、第2図すはその等価回路図、第
3図aは加熱時の加熱コイルの回路図、第3図すはその
等価回路図、第4図aは本発明における高周波電源の制
御系統図、第4図すは同じく検出コイルを設けた系統図
、第5図aはランド付フィンチューブを通常の誘導加熱
により加熱したときのチャート、第5図すは同じく本発
明方法により誘導加熱したときの温度チャートである。 l・・・高周波加熱電源、1′・・・検出用電源、2・
・・整合用コンデンサ、3・・・整合用トランス、4・
・加熱コイル、5a・・・電圧変換器、5b・・・イン
ピーダンス変換器、 5c・・・位相角(又は周波数)変換器、5d・・・電
流変換器、6・・・演算増幅器、6a・・材質設定器、
6b・・・増幅率設定器。 6c・・補正率設定器、7・・・エキサイタ、8・・出
力設定器、9・・被加熱物。 lO・・・ピンチローラ、11・・・速度変換器、12
・・・信号遅延回路
Fig. 1 shows a metal strip to be heated by the method of the present invention, in which a is a fin tube with a land, and d to d in the same figure.
Figure 2a is a partial front view of another irregularly shaped tube, Figure 2a is a diagram showing the relationship between the heating coil and the object to be heated, Figure 2 is its equivalent circuit diagram, and Figure 3a is a circuit diagram of the heating coil during heating. , FIG. 3 is an equivalent circuit diagram thereof, FIG. 4 a is a control system diagram of the high frequency power supply according to the present invention, FIG. 4 is a system diagram similarly equipped with a detection coil, and FIG. FIG. 5 is a temperature chart when heating is performed by ordinary induction heating, and FIG. 5 is a temperature chart when induction heating is also performed by the method of the present invention. l... High frequency heating power supply, 1'... Power supply for detection, 2.
... Matching capacitor, 3... Matching transformer, 4.
- Heating coil, 5a... Voltage converter, 5b... Impedance converter, 5c... Phase angle (or frequency) converter, 5d... Current converter, 6... Operational amplifier, 6a.・Material setting device,
6b...Amplification factor setting device. 6c... Correction factor setting device, 7... Exciter, 8... Output setting device, 9... Heated object. lO...Pinch roller, 11...Speed converter, 12
...Signal delay circuit

Claims (1)

【特許請求の範囲】 1 長手方向に不定形又は板厚変化のある管体等の金属
条材を誘導加熱により加熱する方法において、前記金属
条材と加熱コイルを相対的に移動させ、前記金属条材の
形状変化に基ずく加熱コイルのインピーダンス又は位相
角、周波数の変位を加熱コイルの電源側から検出し、こ
れらの変位量を用いて加熱を一定又は形状別に所要の温
度に制御することを特徴とする金属条材の加熱方法。 2 長手方向に不定形又は板厚変化のある管体等の金属
条材を誘導加熱により加熱する方法において、前記金属
条材と加熱コイルを相対的に移動させるようにする一方
、加熱コイルとは別に被加熱物の形状を検出する検出コ
イル又は形状状態を検出するセンサを加熱コイルの前方
適宜の位置に配して前記条材の未加熱部分の形状の変化
を検出し、その検出値を一旦記憶させ、位置を計測又は
演算し、検出された位置が加熱コイル内に来た時、前記
検出値に基ずいて必要とする加熱電力を前記加熱コイル
に供給することにより加熱温度を制御することを特徴と
する金属条材の加熱方法。
[Scope of Claims] 1. A method of heating a metal strip such as a tube having an irregular shape or a change in thickness in the longitudinal direction by induction heating, in which the metal strip and the heating coil are relatively moved, The displacement of the impedance, phase angle, and frequency of the heating coil based on changes in the shape of the strip is detected from the power supply side of the heating coil, and these displacements are used to control the heating to a constant temperature or to the required temperature for each shape. Characteristic heating method for metal strips. 2. In a method of heating a metal strip such as a tube with an irregular shape or a change in thickness in the longitudinal direction by induction heating, the metal strip and the heating coil are moved relative to each other, while the heating coil is Separately, a detection coil that detects the shape of the object to be heated or a sensor that detects the shape state is placed at an appropriate position in front of the heating coil to detect changes in the shape of the unheated portion of the strip, and the detected value is temporarily stored. control the heating temperature by memorizing the position, measuring or calculating the position, and when the detected position comes within the heating coil, supplying necessary heating power to the heating coil based on the detected value; A method for heating a metal strip, characterized by:
JP4277885A 1985-03-06 1985-03-06 Heating of metal strip Pending JPS61203590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277885A JPS61203590A (en) 1985-03-06 1985-03-06 Heating of metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277885A JPS61203590A (en) 1985-03-06 1985-03-06 Heating of metal strip

Publications (1)

Publication Number Publication Date
JPS61203590A true JPS61203590A (en) 1986-09-09

Family

ID=12645422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277885A Pending JPS61203590A (en) 1985-03-06 1985-03-06 Heating of metal strip

Country Status (1)

Country Link
JP (1) JPS61203590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168591A (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp Inductive heating device
JPH02194119A (en) * 1989-01-20 1990-07-31 Mitsubishi Motors Corp High frequency quenching apparatus
JP2013138036A (en) * 2007-09-13 2013-07-11 Neturen Co Ltd Method of determining positional relation between heating coil and work

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258142A (en) * 1975-11-08 1977-05-13 Mitsubishi Electric Corp Induction heating device
JPS5278607A (en) * 1975-12-25 1977-07-02 Nippon Steel Corp Method and apparatus for uniformly heating metallic pipe in induction heating system
JPS5336048A (en) * 1976-09-14 1978-04-04 Mitsubishi Electric Corp Induction heater for metallic pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258142A (en) * 1975-11-08 1977-05-13 Mitsubishi Electric Corp Induction heating device
JPS5278607A (en) * 1975-12-25 1977-07-02 Nippon Steel Corp Method and apparatus for uniformly heating metallic pipe in induction heating system
JPS5336048A (en) * 1976-09-14 1978-04-04 Mitsubishi Electric Corp Induction heater for metallic pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168591A (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp Inductive heating device
JPH02194119A (en) * 1989-01-20 1990-07-31 Mitsubishi Motors Corp High frequency quenching apparatus
JP2013138036A (en) * 2007-09-13 2013-07-11 Neturen Co Ltd Method of determining positional relation between heating coil and work

Similar Documents

Publication Publication Date Title
US4506131A (en) Multiple zone induction coil power control apparatus and method
EP2897443B1 (en) Induction-heated roller apparatus
JP2004114098A (en) Output control method for welding power supply device
JPS61203590A (en) Heating of metal strip
US2813186A (en) Heat treatment apparatus
JPS583720A (en) Method and apparatus for conditioning cooling degree of passing rolled wire material
JP4965031B2 (en) Temperature control method in high frequency heating
JPS584432B2 (en) Metal pipe induction heating device
JP2925727B2 (en) Method and apparatus for detecting melting state of charged raw material in arc furnace and water cooling panel for arc furnace
JPS61212422A (en) Manufacture of thick steel plate
JPH01219127A (en) Method for operating continuous annealing furnace
JP7060737B1 (en) Inverter device and control method of inverter device and billet heater
JPS60151709A (en) Temperature controller for industrial furnace
JPS6011432B2 (en) induction heating device
JP7351868B2 (en) Inverter device, control method for inverter device, and billet heater
JPS59134588A (en) Method of inductively heating metal piece side terminal
JP4105780B2 (en) Decarburization annealing method and apparatus for grain-oriented electrical steel sheet
RU2144259C1 (en) Method for temperature error correction of differential-transformer converter sensitivity
JPS6093325A (en) Temperature detecting apparatus
JPH07208906A (en) Amplification circuit of eddy current sensor
JP2003323967A (en) Control method of induction heating device
JPH0654206B2 (en) Eddy current distance measuring device
JPH0242416B2 (en)
JPH045729B2 (en)
JPS6317551B2 (en)