JPS61202470A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61202470A
JPS61202470A JP60043122A JP4312285A JPS61202470A JP S61202470 A JPS61202470 A JP S61202470A JP 60043122 A JP60043122 A JP 60043122A JP 4312285 A JP4312285 A JP 4312285A JP S61202470 A JPS61202470 A JP S61202470A
Authority
JP
Japan
Prior art keywords
normally
region
fet
ohmic
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043122A
Other languages
Japanese (ja)
Inventor
Toshiharu Tanpo
反保 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60043122A priority Critical patent/JPS61202470A/en
Publication of JPS61202470A publication Critical patent/JPS61202470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the accuracy of a threshold voltage by forming the chan nel directions of normally-ON and normally-OFF type FETs in one direction and the direction perpendicular to the one direction with respect to a crystal axis, thereby forming only by one ion implanting. CONSTITUTION:Ohmic regions 3 to become source and drain regions of FETs are formed on a (100) GaAs semi-insulating substrate 1 so that a channel length direction becomes the same as crystal axis 01-1 direction, a channel region is formed to be interposed between both ohmic regions, and ohmic region 3' and channel region 2' are formed in the same direction as a crystal axis (0-1-1) direction at the channel length direction. At this time, the region 3 to become the drain of the FET 7 and the region 3' to become the source of the FET 3 are formed on the same region. The regions 2, 2' are formed by one heat treatment as one ion implantation to obtain normally-OFF and normally-ON type FETs 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、少なくとも2つの電界効果トランジスタ(以
下rFETJと略す)から成るインバータを含む半導体
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device including an inverter consisting of at least two field effect transistors (hereinafter abbreviated as rFETJ).

従来の技術 従来のG a A ts半導体装置のE/D型インバー
タを第3図に示す。第3図(、)は、E/D型インバー
タの基本構成回路図で、第3図(b)は第3図(、)を
実現した従来のElD型インバータの断面模式図である
。1は半導体基板、2,2′はチャネル領域、3.3′
はオーミック領域、4,4′はオーミック電極、6,5
′はゲート電極、6,6′は空乏領域、。
2. Description of the Related Art A conventional E/D type inverter of a Ga Ats semiconductor device is shown in FIG. FIG. 3(,) is a basic configuration circuit diagram of an E/D type inverter, and FIG. 3(b) is a schematic cross-sectional view of a conventional EID type inverter that realizes FIG. 3(,). 1 is a semiconductor substrate, 2 and 2' are channel regions, and 3.3'
is an ohmic region, 4, 4' are ohmic electrodes, 6, 5
' is a gate electrode, and 6 and 6' are depletion regions.

vDDは駆動用電源、v、nは入力電圧、vou、は出
力電圧、GND は接地である。第3図(、)の負荷用
のノーマリオン型FETaと駆動用のノーマリオフ型F
ET7は第3図(b)のノーマリオン型FET8とノー
マリオフ型FET7に対応している。従来のインバータ
は第3図(ロ)のように構成され、同一基板上に2つの
FET があり、これらのチャネル長方向が同方向であ
る。
vDD is a driving power supply, v and n are input voltages, vou is an output voltage, and GND is a ground. Figure 3 (,) normally-on type FETa for load and normally-off type F for drive
ET7 corresponds to the normally-on type FET8 and the normally-off type FET7 shown in FIG. 3(b). A conventional inverter is constructed as shown in FIG. 3(b), and has two FETs on the same substrate, and their channel lengths are in the same direction.

また活性層3,3′の厚さはノーマリオフ型FETyよ
りノーマリオン型FETaO方が厚い。
Further, the active layers 3 and 3' are thicker in the normally-on type FETaO than in the normally-off type FETy.

発明が解決しようとする問題点 上記のような従来のインバータ構成では、ソース、ドレ
インのオーミック領域と、ノーマリオン型FET のチ
ャネル領域と、ノーマリオフ型のチャネル領域形成のた
めのイオン注入工程を別々に行なっている。このため、
注入時のイオン注入量と加速電圧の制御が難しく、また
注入イオン活性化のために行なう熱処理の不安定によシ
ノーマリオン型FETとノーマリオフ型FET各々の閾
値電圧7丁の同時制御が困難であり歩留りの低下となっ
ている。またゲート金属とチャネル領域表面のショット
キ接触が悪いために相互コンダクタンス9mが上がらな
い。
Problems to be Solved by the Invention In the conventional inverter configuration as described above, the ion implantation process for forming the source and drain ohmic regions, the normally-on FET channel region, and the normally-off channel region is performed separately. I am doing it. For this reason,
It is difficult to control the ion implantation amount and accelerating voltage during implantation, and the instability of the heat treatment performed to activate the implanted ions makes it difficult to simultaneously control the seven threshold voltages of each of the synormal-ion type FET and normally-off type FET, which reduces yield. has decreased. Furthermore, the mutual conductance 9m does not increase because of poor Schottky contact between the gate metal and the surface of the channel region.

本発明は、かかる点に鑑みてなされたもので簡易な構成
で、ノーマリオン型FETとノーマリオフ型FETの閾
値電圧vTの同時制御可能な構造の半導体装置を提供す
ることを目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device having a simple structure and a structure in which the threshold voltage vT of a normally-on type FET and a normally-off type FET can be controlled simultaneously.

本発明は上記の問題点を解決するため、ノーマリオン型
FETとノーマリオフ型FETの各々のチャネル方向を
結晶軸〈01〒〉方向と結晶軸くo〒〒〉方向とするも
のであp、ゲート金属として、埋め込み可能な金属とす
るものである。
In order to solve the above-mentioned problems, the present invention sets the channel directions of the normally-on type FET and the normally-off type FET to be the crystal axis <01〒> direction and the crystal axis o〒〒> direction. The metal is a metal that can be embedded.

作用 本発明は上記した構成により、従来のイオン注入工程と
熱処理工程で起こるE/D型インバータを構成するFE
Tの閾値電圧vTを精度よく安定に制御できるのである
Operation The present invention has the above-described structure, and the FE that constitutes the E/D type inverter that occurs in the conventional ion implantation process and heat treatment process.
The threshold voltage vT of T can be controlled accurately and stably.

実施例 以下、本発明の実施例を第1図、第2図を用いて詳細に
説明する。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to FIGS. 1 and 2.

第1図は本発明の半導体装置の一実施例を示すE/D型
インバータの断面模式図である。
FIG. 1 is a schematic cross-sectional view of an E/D type inverter showing an embodiment of the semiconductor device of the present invention.

第1図において、(100)GaAs半絶縁性基板1上
にチャネル長方向が結晶軸〈01〒〉方向と同じ方向に
なるようにFETのンース、ドレイン領域となるオーミ
ック領域3が形成され、両オーミンク領域をはさんでチ
ャネル領域2が形成されている。一方、チャネル長方向
が結晶軸<oT;>方向と同じ方向にも前記同様のオー
ミック領域3′とチャネル領域2′が形成されている。
In FIG. 1, ohmic regions 3 that will become the source and drain regions of the FET are formed on a (100) GaAs semi-insulating substrate 1 so that the channel length direction is in the same direction as the crystal axis <01〒> direction. A channel region 2 is formed across the ohmink region. On the other hand, an ohmic region 3' and a channel region 2' similar to those described above are also formed in the direction in which the channel length direction is the same as the crystal axis <oT;> direction.

ここで<011>方向に形成されたFETのドレインと
なるオーミック領域3と<oT1″〉方向に形成された
FETのソースとなるオーミック領域3′は同一領域で
形成されている。オーミック領域3,3′上にオーミッ
ク電極4.4′が形成され、オーミック領域をはさんで
、チャネル領域2,2′の中央部にシ町ット電極5,5
′が形成されている。<011〉方向に形成されたオー
ミック領域3、チャネル領域2、オーミック領域3でE
/D型インバータの駆動用FETであるノーマリオフ型
FET7が構成され、<oir>方向に形成されたオー
ミック領域3′、チャンネル領域2′、オーミック領域
3′でE/D型インバータの負荷用のFETであるノー
マリオン型FETが構成される。〈011〉方向に形成
されたFET7のソース電極4を接地GNDに落とし、
ゲート電極6を入力vinとし、く0〒i〉方向に形成
されたFET8のソース電極4とゲート電極5′を短絡
し電源VDD に接続し、ドレイン電極4′を出力V。
Here, the ohmic region 3 formed in the <011> direction and serving as the drain of the FET and the ohmic region 3' formed in the <oT1'' direction and serving as the source of the FET are formed in the same region.Ohmic region 3, Ohmic electrodes 4, 4' are formed on 3', and cut electrodes 5, 5 are formed at the center of the channel regions 2, 2' across the ohmic region.
' is formed. E in the ohmic region 3, channel region 2, and ohmic region 3 formed in the <011> direction.
A normally-off type FET 7, which is a driving FET for a D-type inverter, is configured, and an ohmic region 3', a channel region 2', and an ohmic region 3' formed in the <oir> direction serve as a FET for a load of an E/D-type inverter. A normally-on type FET is constructed. The source electrode 4 of the FET 7 formed in the <011> direction is dropped to the ground GND,
The gate electrode 6 is set as the input vin, the source electrode 4 and the gate electrode 5' of the FET 8 formed in the 0〒i> direction are short-circuited and connected to the power supply VDD, and the drain electrode 4' is set as the output V.

U、とすることによりE/D型インバータが構成される
U, an E/D type inverter is constructed.

この場合<011>方向とく011″〉方向に形成され
るチャネル領域2,2′は、1回のイオン注入で行なわ
れ1回の熱処理により形成されている。
In this case, the channel regions 2, 2' formed in the <011> direction and the <011''> direction are formed by one ion implantation and one heat treatment.

チャネル領域表面上に形成されたゲート電極の金属にP
、を含んだ金属を用い、P、埋め込み(拡散)用のシン
クによシ、GaAs基板表面の表面準位のショットキ特
性劣化を回避するため深い所にショットキ接合を得てい
る。この時P、埋め込み用シンク時間により結晶軸<0
11>方向と<011 >方向のFETのゲート金属の
pt拡散が異なり、<oj’;>方向0FET よp<
o1〒〉方向のFET の方が165倍程変速いため同
じシンク時間でも<0;;>方向のFETが早くエンハ
ンスされる。よって、同一不純物濃度を有するチャネル
領域でも、FETのチャネル長方向を結晶軸<0;;>
方向とく011′〉方向にすることにより、ゲート金属
P、のシンク時間を制御することによりノーマリオフ型
FETとノーマリオン型FETが構成できる。
P is added to the metal of the gate electrode formed on the surface of the channel region.
, a Schottky junction is obtained in a deep place to avoid deterioration of the Schottky characteristic of the surface level of the surface of the GaAs substrate. At this time, P, the crystal axis < 0 due to the embedding sink time
11> direction and <011> direction FET gate metal pt diffusion is different, <oj';> direction 0FET yop<
Since the FET in the o1〒〉 direction changes about 165 times faster, the FET in the <0;;> direction is enhanced faster even with the same sink time. Therefore, even in channel regions having the same impurity concentration, the channel length direction of the FET is aligned with the crystal axis <0;;>
By setting the direction to the 011'> direction, a normally-off type FET and a normally-on type FET can be configured by controlling the sink time of the gate metal P.

第2図において、380 ’CのPtシシンによる上記
の<011〉方向のFET7の閾値電圧vTEと<01
1)方向oFET8(7)閾値電圧vTDの関係をシン
ク時間で記述した。
In FIG. 2, the threshold voltage vTE of the FET 7 in the <011> direction due to the Pt current of 380'C and the <01>
1) The relationship between directional oFET8 (7) threshold voltage vTD was described in terms of sink time.

第2図の関係から、シンク時間により両FETの閾値電
圧が変化し、シンク時間20分の時くo〒〒〉方向のF
ET8の閾値電圧が+0.1■で<oli>方向のFE
T7の閾値電圧が一〇、SVとなり、それぞれノーマリ
オフ型FET 、ノーマリオン型FETが実現される。
From the relationship shown in Figure 2, the threshold voltage of both FETs changes depending on the sink time, and when the sink time is 20 minutes, the FET in the direction of
FE in the <oli> direction when the threshold voltage of ET8 is +0.1■
The threshold voltage of T7 becomes 10 and SV, and a normally-off type FET and a normally-on type FET are realized, respectively.

また1回のイオン注入と熱処理によりFETの設定閾値
電圧に対するバラつきは60%程度であるため、従来の
ノーマリオン型FETとノーマリオフ型FETの2回の
チャネル領域のイオン注入によるE/D型インバータの
歩留シは26チ程度となる。しかし本実施例の半導体装
置による素子構成によれば、1回のイオン注入のみでE
/D型インバータがつくられ歩留りも50%程度となる
Furthermore, since the variation in the set threshold voltage of the FET is about 60% due to one ion implantation and heat treatment, the E/D type inverter is The yield will be about 26 pieces. However, according to the element configuration of the semiconductor device of this embodiment, only one ion implantation is required to achieve E.
/D type inverter is manufactured and the yield is about 50%.

以上のことにより1回のイオン注入で、ゲート金属であ
るP、のシンク時間を変化することによシ両FETの閾
値電圧を精度よく安定に再現できることがわかる。
From the above, it can be seen that the threshold voltages of both FETs can be accurately and stably reproduced by changing the sink time of P, which is the gate metal, with one ion implantation.

なお、本発明の実施例で用いた半導体基板1は、あらか
じめ導電体層が形成された液相成長または気相成長、M
BEなどのエピタキシーによる半導体基板であってもよ
い。
Note that the semiconductor substrate 1 used in the embodiments of the present invention was manufactured by liquid phase growth or vapor phase growth, M
A semiconductor substrate formed by epitaxy such as BE may also be used.

また、本発明の一実施例で説明したゲート金属はP、に
限らず半導体基板に対してショットキ効果をもつ金属で
、シンクによる埋込み可能な金属であればよい。
Furthermore, the gate metal described in the embodiment of the present invention is not limited to P, but may be any metal that has a Schottky effect on the semiconductor substrate and that can be embedded by a sink.

更に、本発明の一実施例で説明した化合物半導体基板は
、G a A gに限らず、その他のInP  などの
■−v族化合物半導体またはZnS  などのn−■族
化合物半導体であってもよい。
Further, the compound semiconductor substrate described in one embodiment of the present invention is not limited to GaAg, but may be other ■-v group compound semiconductors such as InP or n-■ group compound semiconductors such as ZnS. .

一方、本発明の実施例では、ショットキゲートのFET
について説明したが、導電型半導体層に対しp−n接合
を形成する金属を用いたp−n接合型トランジスタであ
ってもよい。
On the other hand, in the embodiment of the present invention, the Schottky gate FET
However, a p-n junction transistor using a metal forming a p-n junction with a conductive semiconductor layer may be used.

発明の効果 以上述べてきたように、本発明の半導体装置は、安定に
精度よ(FETの閾値電圧を制御可能な極めて簡易な素
子構成である。したがって実用的に極めて有用である。
Effects of the Invention As described above, the semiconductor device of the present invention has an extremely simple element configuration that can stably and accurately control the threshold voltage of the FET. Therefore, it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

例のチャネル長方向が<011>、<or1″〉方向と
同一である FETのゲート金属P、のシンク時間に対
する閾値電圧の変化を示す図、第3図(、)は従来のE
/D型インバータの基本回路図、第3図(b)は第3図
(、)の回路を実現した従来のE/D型インバータの断
面図である。 1・・・・・半導体基板、2,2′・・・・・・チャネ
ル領域、3.3′・・−・・・オーミック領域、4,4
′−・・・・・オーミック電極、5.6′・・・・・・
ゲート電極、6.6′・・・・・・空乏層、7・・・・
・ツーマリオフ型FET 、s・・・・・ツーマリオン
型FET 。 1・−のA5tvl&社4返 7°°−メーフリ不7譬FEr 第2図 4ンシタg’rfs1(骨2
Figure 3 (,) is a diagram showing the change in threshold voltage with respect to the sink time of the gate metal P of an FET in which the channel length direction is the same as the <011> and <or1''> directions.
3(b) is a sectional view of a conventional E/D type inverter that realizes the circuit shown in FIG. 3(,). 1... Semiconductor substrate, 2, 2'... Channel region, 3.3'... Ohmic region, 4, 4
′-・・・Ohmic electrode, 5.6′・・・・・・
Gate electrode, 6.6'...depletion layer, 7...
・Two-mullion-type FET, s...Two-mullion-type FET. 1.-A5tvl & company 4 return 7°°-Meefurifu7manFEr Fig. 2 4nshita g'rfs1 (bone 2

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体基板の100面に少なくとも2つの
電界効果トランジスタを有するインバータを含み、前記
インバータが第1のノーマリオン型電界効果トランジス
タと第2のノーマリオフ型電界効果トランジスタより成
り、前記第1の電界効果トランジスタのチャネル長方向
は<0@1@@1@>方向にあり、前記第2の電界効果
トランジスタのチャネル長方向は結晶軸<01@1@>
方向にあり、前記第1の電界効果トランジスタのソース
・オーミック領域と第2の電界効果トランジスタのドレ
イン・オーミック領域とが共通であることを特徴とする
半導体装置。
(1) An inverter having at least two field effect transistors on 100 planes of a compound semiconductor substrate, the inverter comprising a first normally-on field effect transistor and a second normally-off field effect transistor, and the first The channel length direction of the field effect transistor is in the <0@1@@1@> direction, and the channel length direction of the second field effect transistor is along the crystal axis <01@1@>.
1. A semiconductor device, wherein the source ohmic region of the first field effect transistor and the drain ohmic region of the second field effect transistor are common.
(2)第1、第2の電界効果トランジスタのゲート金属
は、化合物半導体基板に埋め込み可能な金属であること
を特徴とする特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the gate metal of the first and second field effect transistors is a metal that can be embedded in a compound semiconductor substrate.
JP60043122A 1985-03-05 1985-03-05 Semiconductor device Pending JPS61202470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043122A JPS61202470A (en) 1985-03-05 1985-03-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043122A JPS61202470A (en) 1985-03-05 1985-03-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61202470A true JPS61202470A (en) 1986-09-08

Family

ID=12655029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043122A Pending JPS61202470A (en) 1985-03-05 1985-03-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61202470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273359A (en) * 1988-04-26 1989-11-01 Nec Corp Semiconductor integrated circuit
JP2012010582A (en) * 2010-05-26 2012-01-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979577A (en) * 1982-10-29 1984-05-08 Fujitsu Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979577A (en) * 1982-10-29 1984-05-08 Fujitsu Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273359A (en) * 1988-04-26 1989-11-01 Nec Corp Semiconductor integrated circuit
JP2012010582A (en) * 2010-05-26 2012-01-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JPH022179A (en) Metal semiconductor fet
US4698654A (en) Field effect transistor with a submicron vertical structure and its production process
JPS61202470A (en) Semiconductor device
JPS6118180A (en) Semiconductor device
US4951099A (en) Opposed gate-source transistor
JPS6167269A (en) Semiconductor element
JPS62274775A (en) Semiconductor device
JPH0493038A (en) Field-effect transistor
JPS61189670A (en) Semiconductor device
JPS6211512B2 (en)
JPS6378574A (en) Manufacture of semiconductor device
JPS60176277A (en) Gallium arsenide integrated circuit
JPS6146990B2 (en)
JPS62268165A (en) Field effect transistor
JPS6332273B2 (en)
JPS62283672A (en) Field-effect transistor and manufacture thereof
JP2507030B2 (en) Field effect transistor
JPH0478196B2 (en)
JPH0298945A (en) Manufacture of field-effect transistor
EP0744774A2 (en) Field effect transistor and method for producing same
JPS62259473A (en) Field-effect transistor
JPH0219623B2 (en)
JPH043102B2 (en)
JPS63177572A (en) Compound semiconductor device
JPH03263376A (en) Field-effect semiconductor device