JPS63209179A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS63209179A
JPS63209179A JP4334787A JP4334787A JPS63209179A JP S63209179 A JPS63209179 A JP S63209179A JP 4334787 A JP4334787 A JP 4334787A JP 4334787 A JP4334787 A JP 4334787A JP S63209179 A JPS63209179 A JP S63209179A
Authority
JP
Japan
Prior art keywords
active layer
gate electrode
gate
effect transistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4334787A
Other languages
Japanese (ja)
Inventor
Hiroshi Morikawa
博司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4334787A priority Critical patent/JPS63209179A/en
Publication of JPS63209179A publication Critical patent/JPS63209179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To augment a source-drain current while the breakdown strength in a conventional structure is maintained and to contrive to improve an output by forming gate electrodes in opposition to each other on the upper and lower surfaces of an active layer. CONSTITUTION:An N-type active layer 2 consisting of GaAs is formed on a semi-insulative GaAs substrate 6 and a first gate electrode 1A, which has a gate length of 0.3 mum and consists of WSi, is formed on the surface of this layer 2. A second gate electrode 1B, which is connected electrically to the electrode 1A outside of the active layer region, is formed in opposition to this electrode 1A on the bottom surface part of the layer 2. When the thickness of the active layer in a conventional field-effect transistor is assumed to be (t), the thickness of the active layer in this case comes to 2t. Thereby, the conventional gate-drain breakdown strength is maintained and also, the source- drain current can be augmented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタに関し、特に化合物半導
体を用いた電界効果トランジスタの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor, and more particularly to the structure of a field effect transistor using a compound semiconductor.

〔従来の技術〕[Conventional technology]

従来、化合物半導体を用いた電界効果トランジスタは第
4図に示すように、半絶縁性GaAs基板6上に形成さ
れたN型GaAsからなる活性層2の上にゲート電極1
及びソースドレイン電極3,4が形成された構造となっ
ている。
Conventionally, a field effect transistor using a compound semiconductor has a gate electrode 1 on an active layer 2 made of N-type GaAs formed on a semi-insulating GaAs substrate 6, as shown in FIG.
It has a structure in which source and drain electrodes 3 and 4 are formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の電界効果トランジスタにおいては、ドレ
イン−ソース間電流■DS+電圧■Dsはゲート−ソー
ス間電圧VGSをパラメーターとすると第5図に示す曲
線になり、取り出し得る出力は図中に記したI 05 
maXとVBの積にほぼ比例する。ここでI D!i 
maX及びVBは各々ドレイン−ソース間に流し得る最
大電流及びゲート−ドレイン間耐圧であり、活性層2の
不純物濃度及び厚さを各々N、tとすると、I DS 
maX及びVBは各々Nt及び1/Ntにほぼ比例する
。従って、例えば活性層の厚を2倍にしIos□Xを2
倍にしても耐圧が低下するため出力向上は望めないとい
う問題点があった。
In the above-mentioned conventional field effect transistor, the drain-source current DS + voltage DS becomes the curve shown in Fig. 5 when the gate-source voltage VGS is used as a parameter, and the output that can be extracted is the I shown in the figure. 05
It is approximately proportional to the product of maX and VB. ID here! i
maX and VB are the maximum current that can flow between the drain and source and the breakdown voltage between the gate and drain, respectively, and if the impurity concentration and thickness of the active layer 2 are N and t, respectively, I DS
maX and VB are approximately proportional to Nt and 1/Nt, respectively. Therefore, for example, if the thickness of the active layer is doubled and Ios□X is
There was a problem in that even if the voltage was doubled, the withstand voltage would drop and no improvement in output could be expected.

本発明の目的は、従来のゲート−ドレイン間耐圧を維持
し、かつソース−トレイン間の電流を増大させることが
できる電界効果トランジスタを提供することにある。
An object of the present invention is to provide a field effect transistor that can maintain the conventional gate-drain breakdown voltage and increase the source-train current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタは、半絶縁性基板上に形
成された活性層と、この活性層表面上に形成された第1
のゲート電極と、この第1のゲート電極に対向し前記活
性層底部に形成され、かつ第1のゲート電極と活性層領
域外部で電気的に接続された第2のゲート電極とを含ん
で構成される。
The field effect transistor of the present invention includes an active layer formed on a semi-insulating substrate, and a first active layer formed on the surface of this active layer.
and a second gate electrode that is opposite to the first gate electrode and formed at the bottom of the active layer, and that is electrically connected to the first gate electrode outside the active layer region. be done.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

第1図において、半絶縁性GaAs基板6上にはN型G
aAsからなる活性層2が形成されており、この活性層
2の表面上には0.3μmのゲート長を有するWSiか
らなる第1のゲート電極IAが形成されている。そして
この第1のゲート電極IAに対向し、活性層2の底面部
には、活性層領域外で第1のゲート電極IAに電気的に
接続する第2のゲート電極IBが形成されている。
In FIG. 1, an N-type G
An active layer 2 made of aAs is formed, and a first gate electrode IA made of WSi having a gate length of 0.3 μm is formed on the surface of this active layer 2. A second gate electrode IB is formed on the bottom surface of the active layer 2, facing the first gate electrode IA, and electrically connected to the first gate electrode IA outside the active layer region.

尚、第1図において、5はN+型GaAs層、3はソー
ス電極、4はドレイン電極である。
In FIG. 1, 5 is an N+ type GaAs layer, 3 is a source electrode, and 4 is a drain electrode.

活性層2は、半絶縁性Gaps基板6上にWSiからな
る第2のゲート電極IBを形成したのち、MOCVD法
等による結晶成長法により容易に形成することができる
The active layer 2 can be easily formed by forming a second gate electrode IB made of WSi on the semi-insulating gap substrate 6, and then using a crystal growth method such as MOCVD.

ソース電極3及びドレイン電極4は、イオン注入により
形成されたN+型GaAs層5上に形成され、例えばA
uGe −Ni −Ti −Pt −Auから構成する
The source electrode 3 and the drain electrode 4 are formed on an N+ type GaAs layer 5 formed by ion implantation, and are, for example, A
It is composed of uGe-Ni-Ti-Pt-Au.

第2図は第1の実施例の動作、特に耐圧についての説明
をする為にブレークダウン状態でのゲート近傍での空乏
層の延び及び電気力線の様子を記した図である。
FIG. 2 is a diagram showing the extension of the depletion layer and the lines of electric force in the vicinity of the gate in a breakdown state in order to explain the operation of the first embodiment, especially the withstand voltage.

従来の電界効果トランジスタの場合は、第2図中の一点
鎖線で記した中心線10の下半分領域は半絶縁性GaA
s基板である。従って活性層の厚さはtであり、この厚
さに応じたソース・ドレイン最大電流を1゜S□、とし
、この場合の耐圧をvBoとする。
In the case of a conventional field effect transistor, the lower half region of the center line 10 indicated by the dashed line in FIG.
It is a s-substrate. Therefore, the thickness of the active layer is t, the maximum source/drain current corresponding to this thickness is 1°S□, and the withstand voltage in this case is vBo.

第2図に記した第1の実施の場合は、活性層厚さは2t
であり、最大電流はIDS□Xの2倍となるが、この時
耐圧がVB□に保たれる事を以下に説明する。
In the first implementation shown in FIG. 2, the active layer thickness is 2t.
The maximum current is twice that of IDS□X, but the reason why the breakdown voltage is maintained at VB□ at this time will be explained below.

第2図に示したように、第1の実施例の構造の場合空乏
層あるいは電気力線が中心線に対してほぼ対称となる事
は明白である。
As shown in FIG. 2, it is clear that in the structure of the first embodiment, the depletion layer or the lines of electric force are approximately symmetrical with respect to the center line.

今、空乏層がドレイン側へ2だけ延びている時、活性層
濃度をNとするとほぼN・2t−fなる本数の電気力線
がゲートに終端する。しかじながら上記の事より上下各
ゲートに終端する電気力線の数は−(N・2t−/)=
N、t、ffとなる。
Now, when the depletion layer extends by 2 toward the drain side, and assuming that the concentration of the active layer is N, approximately N·2t−f lines of electric force terminate at the gate. However, from the above, the number of electric lines of force terminating at each upper and lower gate is -(N・2t-/)=
N, t, ff.

上下各ゲートにおける電界Eヨはゲート長を故、E、が
破壊電界E□Xに達した時の空乏層の延びでは活性層厚
が2tの本構造の場合も、活性層厚がtである従来構造
の場合も同じとなる。
The electric field E in each of the upper and lower gates depends on the gate length, so when E reaches the breakdown electric field E□X, the active layer thickness is t even in the case of this structure where the active layer thickness is 2t. The same applies to the conventional structure.

で与えられる故、本構造における耐圧も従来の場合の耐
圧VB□となり、活性層厚を2倍にし工。5maXを2
倍にしても耐圧は従来通りに維持される。活性層の厚さ
に限らず濃度Nを増加しても同様の事が言えるのは以上
の説明より明白である。
Therefore, the withstand voltage in this structure is also the withstand voltage VB□ of the conventional case, and the active layer thickness is doubled. 5maX 2
Even if the voltage is doubled, the withstand voltage will remain the same as before. It is clear from the above explanation that the same thing can be said not only when the thickness of the active layer is increased but also when the concentration N is increased.

第3図は本発明の第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of the invention.

リセス構造を持つ電界効果トランジスタで活性層2上部
のゲート電極7は/l’であり、また活性層下部のゲー
ト電極8は、例えばイオン注入によるP+型層である。
In the field effect transistor having a recessed structure, the gate electrode 7 above the active layer 2 is /l', and the gate electrode 8 below the active layer is, for example, a P+ type layer formed by ion implantation.

上下のゲート電極がこのように構成されていても先記第
1の実施例の場合と同様に、従来のVH2を維持しなが
らI DS maXを2倍にできる利点がある。
Even if the upper and lower gate electrodes are configured in this manner, there is an advantage that I DS maX can be doubled while maintaining the conventional VH2, as in the case of the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による電界効果トランジスタ
は活性層上下面に相対向してゲート電極を形成する事に
より、従来構造の耐圧を維持しつつソース・ドレイン間
電流を増大させる事ができ、従って出力の向上を図るこ
とができる効果がある。
As explained above, in the field effect transistor according to the present invention, by forming gate electrodes facing each other on the upper and lower surfaces of the active layer, it is possible to increase the source-drain current while maintaining the breakdown voltage of the conventional structure. This has the effect of improving output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す断面図、第2図は
本発明の詳細な説明する為の第1図における空乏層及び
電気力線を示した図、第3図は本発明による第2の実施
例の断面図、第4図は従来の電界効果トランジスタの断
面図、第5図は電界効果トランジスタにおけるfDs 
 VDS曲線を示した図である。 1・・・ゲート電極、IA・・・第1のゲート電極、I
B・・・第2のゲート電極、3・・・ソース電極、4・
・・ドレイン電極、5・・・N”型GaAs層、6・・
・半絶縁性GaAs基板、7・・・Afゲデー電極、8
・・・ゲート電極、10・・・中心線。 iA:尤ff)デーF’j1袋、/E −IF!’q 
f”L電1’l 2 :死訃vtギ II!r オ 2 回 7: A1 ケ” トに未セ   3: 5”電、j−
’に$3WJ 芽 4 苫
FIG. 1 is a cross-sectional view showing the first embodiment of the present invention, FIG. 2 is a diagram showing the depletion layer and electric lines of force in FIG. 1 for detailed explanation of the present invention, and FIG. 4 is a sectional view of the second embodiment of the invention, FIG. 4 is a sectional view of a conventional field effect transistor, and FIG. 5 is a sectional view of fDs in the field effect transistor.
It is a figure showing a VDS curve. 1... Gate electrode, IA... First gate electrode, I
B... second gate electrode, 3... source electrode, 4...
...Drain electrode, 5...N'' type GaAs layer, 6...
・Semi-insulating GaAs substrate, 7... Af gede electrode, 8
...Gate electrode, 10...Center line. iA: 尤ff) Day F'j1 bag, /E -IF! 'q
f"L electric 1'l 2: death vt gi II!r O 2 times 7: A1 ke" not set 3: 5'' electric, j-
' to $3WJ Me 4 Toma

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板上に形成された活性層と、該活性層表面上
に形成された第1のゲート電極と、該第1のゲート電極
に対向し前記活性層底部に形成され、かつ前記第1のゲ
ート電極と活性層領域外部で電気的に接続された第2の
ゲート電極とを含む事を特徴とする電界効果トランジス
タ。
an active layer formed on a semi-insulating substrate; a first gate electrode formed on the surface of the active layer; and a first gate electrode formed at the bottom of the active layer opposite to the first gate electrode; A field effect transistor comprising a gate electrode and a second gate electrode electrically connected outside the active layer region.
JP4334787A 1987-02-25 1987-02-25 Field-effect transistor Pending JPS63209179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334787A JPS63209179A (en) 1987-02-25 1987-02-25 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334787A JPS63209179A (en) 1987-02-25 1987-02-25 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63209179A true JPS63209179A (en) 1988-08-30

Family

ID=12661312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334787A Pending JPS63209179A (en) 1987-02-25 1987-02-25 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63209179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107312A (en) * 1989-09-11 1992-04-21 Harris Corporation Method of isolating a top gate of a MESFET and the resulting device
US5302842A (en) * 1992-07-20 1994-04-12 Bell Communications Research, Inc. Field-effect transistor formed over gate electrode
US5459343A (en) * 1992-02-21 1995-10-17 Texas Instruments Incorporated Back gate FET microwave switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107312A (en) * 1989-09-11 1992-04-21 Harris Corporation Method of isolating a top gate of a MESFET and the resulting device
US5459343A (en) * 1992-02-21 1995-10-17 Texas Instruments Incorporated Back gate FET microwave switch
US5302842A (en) * 1992-07-20 1994-04-12 Bell Communications Research, Inc. Field-effect transistor formed over gate electrode
US5401665A (en) * 1992-07-20 1995-03-28 Bell Communications Research, Inc. Method of fabricating a field-effect transistor over gate electrode

Similar Documents

Publication Publication Date Title
CN105283958B (en) The cascode structure of GaN HEMT
US8338860B2 (en) Normally off gallium nitride field effect transistors (FET)
EP2157612B1 (en) Semiconductor device
US10439058B2 (en) Normally off gallium nitride field effect transistors (FET)
US4455564A (en) Field effect transistor with a high cut-off frequency
US20230326846A1 (en) Semiconductor device and method for producing same
JPH027532A (en) Laminated channel field effect transistor
US4791471A (en) Semiconductor integrated circuit device
JPS63209179A (en) Field-effect transistor
US20090140293A1 (en) Heterostructure device and associated method
JPS62101077A (en) Vertical insulated gate type field effect semiconductor device
JPS6196770A (en) Semiconductor device
JPH1092847A (en) Field effect transistor
JPS61171170A (en) Semiconductor device
JPS61202470A (en) Semiconductor device
JPH02330A (en) Field effect transistor
JPS5998559A (en) Field effect transistor
JPH05121442A (en) Field-effect transistor
JPH04101436A (en) Field-effect transistor
JPH05182988A (en) Semiconductor device
JPH0524662B2 (en)
JPS61161771A (en) Schottky gate field effect transistor
JPS62209866A (en) Semiconductor device
JPS61168268A (en) Field effect transistor
JPH01173760A (en) Heterojunction field-effect transistor