JPS61161771A - Schottky gate field effect transistor - Google Patents

Schottky gate field effect transistor

Info

Publication number
JPS61161771A
JPS61161771A JP273685A JP273685A JPS61161771A JP S61161771 A JPS61161771 A JP S61161771A JP 273685 A JP273685 A JP 273685A JP 273685 A JP273685 A JP 273685A JP S61161771 A JPS61161771 A JP S61161771A
Authority
JP
Japan
Prior art keywords
gate
layer
low concentration
active layer
concentration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP273685A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ueda
植田 和良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP273685A priority Critical patent/JPS61161771A/en
Publication of JPS61161771A publication Critical patent/JPS61161771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To decrease the capacity between the gate and the source of an MOSFET and the capacity between the gate and the drain without effects on gm, by providing a low concentration layer having the same conducting type as that of an active layer between the active layer and a gate electrode. CONSTITUTION:On a semi-insulating GaAs substrate 1, an active layer 2 is formed by a selective ion implantation method. A low concentration layer 3 having the same conducting type as that of the active layer is grown on the layer 2 by a VPE method and the like. Then high concentration layers 4 and 5, which penetrate the low concentration layer, are formed by a selective ion implantation method at parts, where source and drain regions are formed. The unnecessary part of the low concentration layer is etched. Then a gate electrode 6, a source electrode 8 and a drain electrode 9 are formed. In order to form a depletion region in the low concentration layer 3, a slight voltage (less than 0.1V) is enough. Therefore almost no effect is applied to various characteristics of the FET such as mutual conductance gm and a pinch OFF voltage VP. The gate-source capacity Cgs and the gate-drain capacity Cgol can be decreased by the thickness of the low concentration layer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ショットキーゲート電界効果トランジスタ、
特に高周波領域で使用可能な0−Asシゴ、トキーゲー
ト電界効果トランジスタ(以下G a A aMESF
ETと称す)の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a Schottky gate field effect transistor,
In particular, 0-As gate field effect transistors (hereinafter referred to as G a A a MESF) that can be used in the high frequency region
ET).

〔従来の技術〕[Conventional technology]

従来、G &A s ME S F E Tは能動層と
なるN型領域をVPE、MOCVD、MBE 等Oz 
ピIX−? シ、 ル技術及びイオン注入技術等で形成
しゲートとなるショットキー電極を能動層上に直接形成
した構造となっていた。
Conventionally, G&A's MESFET uses VPE, MOCVD, MBE, etc. for the N-type region that becomes the active layer.
Pi IX-? It had a structure in which a Schottky electrode, which served as a gate, was formed directly on the active layer using silicone or ion implantation technology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来構造のG a A s M E S F 
E Tはゲートのピンチオフ電圧(Vp )及び相互コ
ンダクタンス(tm)等の要求によりFET能動層とな
るN型領域の濃度は5X10 ”儒−e〜5X10”備
−程度必要であシ、ゲート・ソース間容量(Crs)、
ゲート・ドレイン間容量(Cfd)等はゲート長(Lr
)及びゲート巾(Wr)の大きさがきまると大巾な改善
の余地がなかった。
The above-mentioned conventional structure G a A S M E S F
ET, the concentration of the N-type region that becomes the FET active layer needs to be about 5X10" due to requirements such as the pinch-off voltage (Vp) and mutual conductance (tm) of the gate, and the concentration of the gate and source Interval capacity (Crs),
The gate-drain capacitance (Cfd) etc. is determined by the gate length (Lr
) and gate width (Wr), there was no room for significant improvement.

G a A s M 18 F E Tの高周波特性を
改善する方法としては相互コンダクタンス(fm )の
向上及ヒゲート・ドレイン問答Jl (Cys )の低
減が必要である。
In order to improve the high frequency characteristics of GaAsM18FET, it is necessary to improve the mutual conductance (fm) and reduce the gate-drain Jl (Cys).

9mの向上の為にはN型能動層濃度を増加させることが
必要となシこのことtj:cfsの増加の原因となって
いる。従って従来技術ではゲート長(Lr)を短かくす
る方向で改善を計っているが、リソグラフィー技術の限
界に近づいている。
9m, it is necessary to increase the N-type active layer concentration, which causes an increase in tj:cfs. Therefore, in the prior art, improvements have been made in the direction of shortening the gate length (Lr), but this is approaching the limit of lithography technology.

本発明の目的は上述した従来構造のFETの欠点を回避
し、FET能動層となるN型領域の濃度が直接ゲート・
問答ス間容量(Cps)及びゲート・ドレイン間容量(
Crd)に影響を及はさないFET−の構造を提供する
ことKある。
The purpose of the present invention is to avoid the above-mentioned drawbacks of the conventional FET structure, and to ensure that the concentration of the N-type region serving as the FET active layer is directly connected to the gate.
Q&A space capacitance (Cps) and gate-drain capacitance (
It is possible to provide a FET structure that does not affect Crd).

〔問題点を解決するための手段〕[Means for solving problems]

本発明忙よるMESFETは、半絶縁性半導体基板上に
形成した5X10 ” 〜5X17 ”Off −” 
(7)濃度の一導電型能動層と、このN型能動層上KI
XIO”・備−1以下の一導電型低濃度層と、ソース及
びドレインとなる領域に形成された前述の低濃度層を貫
通する一導電型高濃度層と、前述の低濃度層上く形成さ
れたゲート電極となるショッ電極−電極ト、前述の高濃
度層上に形成されたソース電極及びドレイン電極とを有
している。
The MESFET according to the present invention is a 5X10" to 5X17"Off-" MESFET formed on a semi-insulating semiconductor substrate.
(7) Concentration of one conductivity type active layer and KI on this N type active layer
A low-concentration layer of one conductivity type of XIO". It has a shot electrode to serve as a gate electrode, and a source electrode and a drain electrode formed on the above-mentioned high concentration layer.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例の工程順に示
した断面図で、まず同図(a)K示す様に半絶縁性G 
a A m基板1に選択イオン注入法によりFET能動
層2を形成する。次に同図(b) K示す様に、能動 
FIGS. 1(a) to 1(f) are cross-sectional views showing the steps of an embodiment of the present invention. First, as shown in FIG. 1(a)K, a semi-insulating G
a FET active layer 2 is formed on substrate 1 by selective ion implantation. Next, as shown in Figure (b) K, the active
.

層2よシも濃度の低いGaAs単結晶3をvpg。Layer 2 and GaAs single crystal 3 with low concentration are vpg.

MOCVD法等圧よシ成長する。次に同図(C)に示す
様に各々ソース及びドレイン領域となる部分を選択イオ
ン注入法により低濃度層3を貫通する高濃度層4,5を
形成する。次に同図(d)に示す様にFET部分以外の
不要な低濃度層3を工、チングする。次に同図(e)I
IC示す様にゲートとなるシヨ。
Growth is carried out using the MOCVD method. Next, as shown in FIG. 3C, high concentration layers 4 and 5 are formed to penetrate through the low concentration layer 3 by selective ion implantation in portions that will become the source and drain regions, respectively. Next, as shown in FIG. 3(d), unnecessary low concentration layer 3 other than the FET portion is etched. Next, in the same figure (e) I
As shown in the IC, it becomes a gate.

トキー電極6を蒸着法、スパッタ法及び選択工。Tokey electrode 6 is formed by vapor deposition method, sputtering method, and selective processing.

チング法で形成する。次に同図(f)に示すようにソー
ス電極8及びドレイン電極9を形成する。
Formed using the ching method. Next, as shown in FIG. 3(f), a source electrode 8 and a drain electrode 9 are formed.

以上説明した本発明の構造によると、例えば低濃度層3
の濃度をl×lQ”crPM””、厚さを100OA及
び能動層をlXl0”lt”Kした場合ゲートバイアス
(VG )がOvの時にゲート電極直下の空乏層の広が
シは低濃度層3がない場合の広がりに低濃度層厚さを加
えた値に近似することができる。この理由は低濃度層3
を空乏化させる為にわずかの電圧(0,1V以下)で充
分であることである。
According to the structure of the present invention explained above, for example, the low concentration layer 3
When the concentration of is l×lQ"crPM"", the thickness is 100OA, and the active layer is lXl0"lt"K, when the gate bias (VG) is Ov, the depletion layer directly under the gate electrode expands as the low concentration layer 3. It can be approximated to the value obtained by adding the thickness of the low concentration layer to the spread when there is no
A small voltage (less than 0.1 V) is sufficient to deplete the ions.

以上のことから本発明の構造によるとピンチオフ電圧(
vp)への影響をtlとんど与えずソース・ゲート間容
量は低濃度層3の厚さの空乏層広が部分だけ低下させる
ことが可能となる。又相互コンダクタンス(fm ) 
Kはほとんど影響をおよぼさないことも明らかである。
From the above, according to the structure of the present invention, the pinch-off voltage (
It is possible to reduce the source-gate capacitance by only the portion where the depletion layer spreads in the thickness of the low concentration layer 3 without affecting tl (vp). Also, mutual conductance (fm)
It is also clear that K has little effect.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によるFET構造を用い
ることにより他のFET特性Kfiとんど影響を及埋す
ことなくゲート・ソース間容量及びゲート・ドレイン間
容量を低下させることが可能となりF’ETの高周波特
性例えばf 7 (f 7 oc−’−)Pg の向上が容易に可能となりその効果は大きい。
As explained above, by using the FET structure according to the present invention, it is possible to reduce the gate-source capacitance and the gate-drain capacitance without affecting other FET characteristics Kfi. It is possible to easily improve the high frequency characteristics of 'ET, for example f 7 (f 7 oc-'-)Pg, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例をその製造工
程順に示した断面図である。 1・・・・・・半絶縁性G a A m基板、2・・・
・−・FET能動層、3・・・・・・低濃度層、4−・
・・・・ソース高濃度層、5・・・・・・ドレイン高濃
度層、6・・・・・・ゲート・シッットキー電極、7・
・・・・・絶縁膜、8・・・・・・リース電極、9・・
・・・・ドレイン電極。 ゛\、、4
FIGS. 1(a) to 1(f) are cross-sectional views showing an embodiment of the present invention in the order of manufacturing steps. 1...Semi-insulating GaAm substrate, 2...
・-・FET active layer, 3...Low concentration layer, 4-・
. . . Source high concentration layer, 5 . . . Drain high concentration layer, 6 . . . Gate Schittky electrode, 7.
...Insulating film, 8...Leath electrode, 9...
...Drain electrode.゛\、、4

Claims (1)

【特許請求の範囲】[Claims] その上にショットキーゲートが形成される一導電型の能
動層領域と、該能動層領域上に形成された前記一導電型
の低濃度層と、該低濃度層を貫通する前記一導電型高濃
度のソースおよびドレイン領域とを有することを特徴と
するショットキーゲート電界効果トランジスタ。
an active layer region of one conductivity type on which a Schottky gate is formed; a low concentration layer of one conductivity type formed on the active layer region; and a high concentration layer of one conductivity type penetrating the low concentration layer. CLAIMS 1. A Schottky gate field effect transistor having a doped source and drain region.
JP273685A 1985-01-11 1985-01-11 Schottky gate field effect transistor Pending JPS61161771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP273685A JPS61161771A (en) 1985-01-11 1985-01-11 Schottky gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP273685A JPS61161771A (en) 1985-01-11 1985-01-11 Schottky gate field effect transistor

Publications (1)

Publication Number Publication Date
JPS61161771A true JPS61161771A (en) 1986-07-22

Family

ID=11537614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP273685A Pending JPS61161771A (en) 1985-01-11 1985-01-11 Schottky gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS61161771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399579A (en) * 1986-10-16 1988-04-30 Hitachi Ltd Manufacture of field effect transistor
JPS63187667A (en) * 1987-01-30 1988-08-03 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399579A (en) * 1986-10-16 1988-04-30 Hitachi Ltd Manufacture of field effect transistor
JPS63187667A (en) * 1987-01-30 1988-08-03 Hitachi Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPS6155971A (en) Schottky gate field-effect transistor
US5900641A (en) Field effect semiconductor device having a reduced leakage current
JPS61161771A (en) Schottky gate field effect transistor
JPS63248136A (en) Semiconductor device
US5389807A (en) Field effect transistor
JPS6242569A (en) Field effect transistor
JP3090451B2 (en) Semiconductor device
JPS61248570A (en) Mesfet device and manufacture thereof
JPH0329326A (en) Junction field-effect transistor
JPS58148464A (en) Mes type field effect transistor
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPS61276268A (en) Schottky gate field-effect transistor
JPS6068661A (en) Semiconductor device
JPS59207669A (en) Manufacture of field effect transistor
JPS5998559A (en) Field effect transistor
JPS63302574A (en) Manufacture of schottky barrier gate field effect transistor
JPH05182988A (en) Semiconductor device
JPH043102B2 (en)
JPS62211961A (en) Compound semiconductor device and manufacture thereof
JPH04206736A (en) Field effect type semiconductor device
JPH01162378A (en) Semiconductor device
JPS61189670A (en) Semiconductor device
JPH06151464A (en) Field effect transistor
JPS63124471A (en) Field-effect transistor
JPH01227455A (en) Semiconductor device