JPS61200850A - Production of ultra-fine particulate compound - Google Patents

Production of ultra-fine particulate compound

Info

Publication number
JPS61200850A
JPS61200850A JP60040019A JP4001985A JPS61200850A JP S61200850 A JPS61200850 A JP S61200850A JP 60040019 A JP60040019 A JP 60040019A JP 4001985 A JP4001985 A JP 4001985A JP S61200850 A JPS61200850 A JP S61200850A
Authority
JP
Japan
Prior art keywords
ultra
gas
plasma
compound
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60040019A
Other languages
Japanese (ja)
Inventor
Saburo Iwama
岩間 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60040019A priority Critical patent/JPS61200850A/en
Publication of JPS61200850A publication Critical patent/JPS61200850A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0617Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0728After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To make it possible to prepare an ultra-fine particulate compound from various stock materials, by passing ultra-fine particles of a stock material through a plasma forming region along with compound forming gas to react the gas plasma with the ultra-fine particles. CONSTITUTION:Compound forming gas is continuously sent into a vacuum container 1, which reaches a predetermined vacuum degree, from a gas supply port 4 while sucked form a suction port 23. Next, a microwave oscillator 17 is operated to form a plasma region 27 in a communication pipe 12. A stock material 10 is successively evaporated under heating to form the ultra-fine particles of the stock material. The ultra-fine particles are flowed into the plasma region along with gas to effectively react the ultra-fine particles raised to high temp. upon the absorption of microwave energy with activated gas plasma to form an ultra-fine particulate compound which is, in turn, recovered by a recovery apparatus 20. As the stock material, various ones other than Al, Ti, Zr, Hf or V are used and, as the compound forming gas, nitrogen, oxygen, methane and hydrogen sulfide etc., are used.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする。[Detailed description of the invention] The present invention aims to solve the following problems.

(産業上の利用分野) この発明は種々の原t4の化合
物の1に粒子を製造する方法に関する。
(Industrial Application Field) This invention relates to a method for producing particles of one of various raw T4 compounds.

(従来の技術) 種々の原料の化合物の超微粒子例えば
窒化物の超微粒子を製造する場合、例えば低圧のアンモ
モアガス中において原#llを渾発させて上記原料′の
窒化物の超は粒子を得ることが行なわれている。しかし
、上記方法では一部の原料についてはその母材が窒化さ
れて蕩発しにくくなり、それらの原料の窒化物の超微粒
子を(lることが田μとなる問題点があった。
(Prior art) When producing ultrafine particles of compounds of various raw materials, such as ultrafine particles of nitrides, for example, the raw material #ll is agitated in low-pressure ammonia gas to obtain ultrafine particles of nitrides as the raw material. things are being done. However, in the above method, the base material of some raw materials is nitrided, making them difficult to erupt, and there is a problem in that it becomes difficult to remove ultrafine particles of nitride from these raw materials.

(発明が解決しようとする問題点) この発明は上記従
来の問題点を除き、多種の原t4についてそれらの化合
物の超微粒子を得ることができるようにした化合物li
6粒子の製造方法を提供しようとするものである。
(Problems to be Solved by the Invention) This invention solves the above-mentioned conventional problems and provides a compound li which makes it possible to obtain ultrafine particles of various raw materials t4.
The present invention aims to provide a method for producing 6 particles.

本願発明のIS成は次の通りである。The IS configuration of the present invention is as follows.

(問題点を解決する為の手段) 本願発明は前記請求の
範囲記載の通りの手段を講じたものであってその作用は
次の通りである。
(Means for Solving the Problems) The present invention takes the measures as described in the claims above, and its effects are as follows.

(作用) 微粒子生成領域で原料が加熱されてそれが蒸
発すると蒸発源の近傍で原14の超微粒子ができる。そ
の超微粒子は化合物生成用のガスと共にプラズマ化jJ
I Hに至る。そこで上記超微粒子が加熱されると共に
、上記ガスがプラズマ化され、それら相互が反応して上
記超微粒子が化合物の超微粒子となる。
(Function) When the raw material is heated in the fine particle generation region and evaporated, ultrafine particles of original 14 are formed near the evaporation source. The ultrafine particles are turned into plasma together with the compound-generating gas.
Leading to IH. There, the ultrafine particles are heated, the gas is turned into plasma, and they react with each other, so that the ultrafine particles become ultrafine particles of a compound.

(実施例) 以下本願の実施例を示す図面について説明
する、lは真空容器、2は吸引口で真空ポンプにll続
される。3は弁を示す、4はガス供給口、5ば弁を示す
0次に6は原t4支持具を示し、g器1に取付けられた
導電材製の支柱7.7とその上端に取付けた原t4支持
台8とから成る。原料支持台8はタングステンの版体(
タングステンボートと称される)を用いて形成されてい
る。10は支持台8に乗せられた原料を示す、11は原
料の加熱手段として例示する通電Ail熱用の電源で、
前記支柱7に接続しである0次に12は容1i 1に接
続した流1ffl管で、管内のガスをプラズマ化する為
のエネルギーを管外から管内へ通すことのできる材料例
えばガラス管、石英管等でもって形成される。
(Embodiment) The drawings showing the embodiment of the present application will be explained below. 1 is a vacuum container, and 2 is a suction port connected to a vacuum pump. 3 indicates the valve, 4 indicates the gas supply port, 5 indicates the valve, 0 and 6 indicates the original T4 support, which is attached to the support column 7.7 made of conductive material attached to the G unit 1 and its upper end. It consists of an original t4 support stand 8. The raw material support stand 8 is a tungsten plate (
tungsten boat). Reference numeral 10 indicates the raw material placed on the support stand 8; 11 indicates a power source for heating Ail, which is exemplified as a heating means for the raw material;
12 is a flow 1ffl tube connected to the column 7, and is made of a material such as a glass tube or quartz that can pass energy from outside the tube into the tube to turn the gas inside the tube into plasma. It is formed from a pipe or the like.

14はプラズマ化領域形成手段として例示するマイクロ
波印加装置である。これにおいて、15は空洞共ri器
で、その大きさは内部においてマイクロ波の共振が生じ
そこに定在波が生ずることのできる大きさ、例えばマイ
クロ波の波長と同程度乃至は2倍程度の大きさに形成し
である。肖図示の空洞共1tilsは矢印方向へ進退自
在のプランジャ16を備えて内部空間の大きさを1節で
きるようになっている。17はマイクロ波発1m 23
で、−例としてマグネトロンが用いである。 1Bは上
記発H1a17のアンテナを示す0次に20は回収装置
で、流1tIl管夏2に連通させたケース21内にフィ
ルタ22を備えさせて1ル成しである。尚この回収vL
置20としては従来より周知の任官の構成のものを用い
ることができる。
14 is a microwave application device exemplified as a means for forming a plasma region. In this case, 15 is a cavity resonator, and its size is such that microwave resonance occurs inside and a standing wave is generated there, for example, the same size as the wavelength of the microwave, or about twice the wavelength of the microwave. It is shaped to size. Each of the cavities shown in the figure is equipped with a plunger 16 that can move forward and backward in the direction of the arrow, so that the size of the internal space can be adjusted by one section. 17 is microwave emission 1m 23
-A magnetron is used as an example. Reference numeral 1B indicates the antenna of the above-mentioned transmitter H1a17, and reference numeral 20 indicates a recovery device, which has a filter 22 in a case 21 connected to the flow pipe 2, and is composed of one channel. Furthermore, this recovery vL
As the structure 20, a structure of a conventionally well-known official structure can be used.

23は吸引口で、真空ポンプに接続される。24は弁を
示す。
23 is a suction port connected to a vacuum pump. 24 indicates a valve.

上記構成のものにあつては、弁5.24を閉じる一方弁
3を開いて、真空容!!lの内部を真空ポンプにより真
空排気する1次に所定の真空度になったならば弁3を閉
じる一方弁24を開いて、吸引口23から真空ポンプに
よる吸引を行うと共に、弁5を開いてガス供給口4にI
!続したガス供給装置から化合物形成用のガスを真空容
器1の内部に連続的に送り込む、尚その送り込む量は真
空容1i 1の内部が所定の圧力となるようにする0次
にマイクロ波発罹器17を作動させてアンテナ18から
空洞共振器15の内部にマイクロ波を発射させ、そのマ
イクロ波を流ij!1iF12の内部に及ぼす、その結
果、流通管12の内部にプラズマ化領域27が形成され
る。
In the case of the above configuration, valve 5.24 is closed, while valve 3 is opened and vacuum capacity is maintained! ! The inside of the l is evacuated by a vacuum pump.Once the predetermined degree of vacuum is reached, the valve 3 is closed.On the other hand, the valve 24 is opened and suction is performed by the vacuum pump from the suction port 23, and the valve 5 is opened. I to gas supply port 4
! Gas for compound formation is continuously fed into the interior of the vacuum container 1 from a gas supply device connected to the vacuum chamber 1. The device 17 is activated to emit microwaves from the antenna 18 into the cavity resonator 15, and the microwaves flow ij! As a result, a plasma region 27 is formed inside the flow pipe 12.

又i′d1111から支柱7.7を介して原料支持台8
にii!1ltL、支持台8をそれの有する電気fIE
 IXによって発熱させて原料lOを加熱する。このよ
うな操作を行うことにより原110はそれが置かれた場
所(微粒子生成領域)において順次蒸発し、その近傍で
その原料lOの超微粒子が生成される。その生成された
原料の超微粒子は上記ガス供給口4から送り込まれる化
合物形成用のガスと共にi通vf12内に流れ込み、プ
ラズマ化領域27に至る。このプラズマ化領域27にお
いて、上記原料の超微粒子は粒径が小さい(<10r+
@)が故にマイクロ波エネルギーを十分に吸収して自ら
の温度が上昇すると共に、上記化合物形成用のガスは上
記マイクロ波によってプラズマ化され活性化する。そし
てそれらの原料のMim粒子と活性化したガスとが反応
し、上記超微粒子は比容物化されて化合物超微粒子が生
成される。この場合、上記原料の&i1粒子及びガスは
夫々上記のような状態となっている為、両者の反応は極
めて促進されろ、このようにして生成された化合物の8
!微粒子は回収装置20へ至り、そこに備えられたフィ
ルタ22によりて捕捉される。
In addition, the raw material support stand 8 is connected from i'd1111 via the support 7.7.
niii! 1ltL, electric fIE with support stand 8 on it
Heat is generated by IX to heat the raw material lO. By performing such an operation, the raw material 110 is sequentially evaporated at the place where it is placed (fine particle generation region), and ultrafine particles of the raw material 10 are generated in the vicinity thereof. The generated ultrafine particles of the raw material flow into the i-channel vf 12 together with the compound-forming gas sent from the gas supply port 4, and reach the plasma generation region 27. In this plasma region 27, the ultrafine particles of the raw material have a small particle size (<10r+
@) therefore sufficiently absorbs microwave energy and its own temperature rises, and the compound-forming gas is turned into plasma and activated by the microwave. Then, the Mim particles of these raw materials react with the activated gas, and the ultrafine particles are converted to a specific volume to generate ultrafine compound particles. In this case, since the &i1 particles of the raw material and the gas are in the states described above, the reaction between them will be extremely accelerated.
! The fine particles reach the collection device 20 and are captured by a filter 22 provided there.

尚残りのガスはフィルタ22を通り吸引口23から真空
ポンプに向けて引き抜かれる。
The remaining gas passes through the filter 22 and is drawn out from the suction port 23 toward the vacuum pump.

次に実験例を示す。Next, an experimental example will be shown.

実験条件は以下の通りである。The experimental conditions are as follows.

原料:^1 化合物形成用ガス:Nt ガス圧: 3〜S Torr マグネトロン出力j500W 発尿周波数:2.45CI+! 空洞共振器°の共振モード:HΦl 上記のような条件で実験を行ない、捕集位=Aにおいて
捕捉した8I微粒子を電子顕微鏡を用いて調べたところ
、それらはAINの超微粒子であった。
Raw material: ^1 Compound forming gas: Nt Gas pressure: 3~S Torr Magnetron output j500W Urination frequency: 2.45CI+! Resonance mode of cavity resonator °: HΦl When the experiment was conducted under the above conditions and the 8I fine particles captured at the collection position = A were examined using an electron microscope, they were found to be ultrafine particles of AIN.

他方上記と同じ圧力のNlガス中で^1の蒸発を行うが
、マイクロ波を印加しない場合に補修位置式においてi
ll lj¥した超微粒子は全て^!の超微粒子であっ
た0次に上記原料lOとして用いられる物質を元素記号
で示せば、八l 、Ti % Zr 、He % Vs
Nb % Ta %Cr s Mo 、 W%In %
 St % Feなどがある。
On the other hand, if ^1 is evaporated in Nl gas at the same pressure as above, but no microwave is applied, then i in the repair position equation
All the ultrafine particles that cost ll lj¥! If the substance used as the above-mentioned raw material 1O, which was an ultrafine particle of
Nb%Ta%CrsMo, W%In%
Examples include St%Fe.

上記化合物形成用ガスは製造すべき化合物の超微粒子に
応じて種々のものが用いられる1例えば窒化物を製造す
る場合には窒素、酸化物の場合には酸素、炭化物の場合
にはメタン(CH4)、硫化物の場合には硫化水素(H
I3) 、ホウ化物の場合にはBCI* 、B*H*な
どが用いられる。
Various types of compound forming gases are used depending on the ultrafine particles of the compound to be produced. For example, nitrogen is used to produce nitrides, oxygen is used to produce oxides, and methane (CH4) is used to produce carbides. ), in the case of sulfides, hydrogen sulfide (H
I3), BCI*, B*H*, etc. are used in the case of borides.

上記のようにして製造される化合物のjlffm粒子と
しては次のようなものがある。
The jlffm particles of the compound produced as described above include the following.

(イ)窒化物:  AIN、TIN、ZrN、HrN、
V N。
(a) Nitride: AIN, TIN, ZrN, HrN,
VN.

NbNz Tal N% CrN%MO1N、 l+l
tN、 InN55lsNa % Fat−sN、Fe
aN (ロ)硫化物; 115章 (ハ)ホウ化物: τiBg 、ZrBt次に、上記層
t4の加熱手段としては、夫々周知の間周波加熱、プラ
ズマアークによる加熱、アーク放電による加熱、電子ビ
ームによる加熱なと冒Fざの手段を利用できる。
NbNz Tal N% CrN%MO1N, l+l
tN, InN55lsNa % Fat-sN, Fe
aN (b) Sulfide; Chapter 115 (c) Boride: τiBg, ZrBt Next, the heating means for the layer t4 include well-known interfrequency heating, heating by plasma arc, heating by arc discharge, and heating by electron beam. Other methods such as heating can be used.

(発明の効果) 以上のように本発明にあっては、化合
物の超微粒子を製造する場合、微粒子生成領域において
原料を力l熱しそれを蒸発させることにより、その原f
+1の超微粒子を生成し、次に上記超微粒子を化合物形
成用のガスと共に移動させる過17でそれらをプラズマ
化611134にiilぎしめて、上記のガスをプラズ
マ化しそのプラズマ化し・たガスと上記&R敵if子と
を反応させることにより、上記超微粒子を化合物化させ
て化合物[tm子を生成させられる特長がある。このこ
とは従来化合物超微粒子の生成の寵しかった原料につい
ても化合物超微粒子の生成ができる効果がある。
(Effects of the Invention) As described above, in the present invention, when producing ultrafine particles of a compound, the raw material is heated to evaporate it in the fine particle generation region.
+1 ultrafine particles are generated, and then the ultrafine particles are moved together with a compound-forming gas, and then they are turned into plasma 611134, and the above gas is turned into plasma, and the plasma-formed gas and the above &R It has the advantage that by reacting with enemy if particles, the ultrafine particles can be converted into a compound to generate a compound [tm particle]. This has the effect that ultrafine compound particles can be produced even from raw materials that have conventionally been difficult to produce ultrafine compound particles.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図は化合物超微
粒子の製造装置の縦断面略示図。 lO・・・原料、27・・・プラズマ化領域、17・・
・マイクロ波発振21゜
The drawings show examples of the present application, and FIG. 1 is a schematic longitudinal cross-sectional view of an apparatus for producing ultrafine compound particles. lO... Raw material, 27... Plasma region, 17...
・Microwave oscillation 21°

Claims (1)

【特許請求の範囲】[Claims] 微粒子生成領域において原料を加熱しそれを蒸発させる
ことにより、その原料の超微粒子を生成し、上記生成さ
れた超微粒子を化合物形成用のガスと共に移動させると
共に、それら超微粒子とガスとは、上記のガスをプラズ
マ化する為のプラズマ化領域を通して、そのプラズマ化
領域では上記のガスをプラズマ化しそのプラズマ化した
ガスと上記超微粒子とを反応させることにより、上記超
微粒子を化合物化させて化合物超微粒子を生成させるこ
とを特徴とする化合物超微粒子の製造方法。
By heating the raw material in the fine particle generation region and evaporating it, ultrafine particles of the raw material are generated, and the generated ultrafine particles are moved together with the compound forming gas, and the ultrafine particles and the gas are The above gas is converted into plasma through a plasma conversion region, and the plasma conversion region converts the above gas into plasma and reacts the plasma gas with the above ultrafine particles, thereby converting the above ultrafine particles into a compound and forming a compound super. A method for producing ultrafine compound particles, the method comprising producing ultrafine particles.
JP60040019A 1985-02-28 1985-02-28 Production of ultra-fine particulate compound Pending JPS61200850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040019A JPS61200850A (en) 1985-02-28 1985-02-28 Production of ultra-fine particulate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040019A JPS61200850A (en) 1985-02-28 1985-02-28 Production of ultra-fine particulate compound

Publications (1)

Publication Number Publication Date
JPS61200850A true JPS61200850A (en) 1986-09-05

Family

ID=12569191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040019A Pending JPS61200850A (en) 1985-02-28 1985-02-28 Production of ultra-fine particulate compound

Country Status (1)

Country Link
JP (1) JPS61200850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960914A1 (en) * 1998-05-28 1999-12-01 Stanley Electric Co., Ltd. Manufacturing of ultra fine particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206042A (en) * 1983-05-07 1984-11-21 Sumitomo Electric Ind Ltd Process and apparatus for producing fine powder
JPS6110012A (en) * 1984-06-22 1986-01-17 Japan Metals & Chem Co Ltd Production of ultrafine metal nitride and production unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206042A (en) * 1983-05-07 1984-11-21 Sumitomo Electric Ind Ltd Process and apparatus for producing fine powder
JPS6110012A (en) * 1984-06-22 1986-01-17 Japan Metals & Chem Co Ltd Production of ultrafine metal nitride and production unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960914A1 (en) * 1998-05-28 1999-12-01 Stanley Electric Co., Ltd. Manufacturing of ultra fine particles

Similar Documents

Publication Publication Date Title
US4769064A (en) Method for synthesizing ultrafine powder materials
Delzeit et al. Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor
US3432296A (en) Plasma sintering
JPS63107898A (en) Method for synthesizing diamond with plasma
JP2541434B2 (en) Carbon nano tube manufacturing method
JPH10511430A (en) Plasma processing apparatus and processing method
WO2002070405A1 (en) Device and method for manufacture of carbonaceous material
JPS61200850A (en) Production of ultra-fine particulate compound
JP3870598B2 (en) Plastic container deposition equipment
JPS62102828A (en) Production of fine grain of compound
KR20050096624A (en) Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
CN108190862A (en) The method and device of nitrogen doped carbon nanotube is prepared using microwave vapor deposition
JPH0477687B2 (en)
JPS62168542A (en) Production of ultrafine particulate compound
RU80449U1 (en) DEVICE FOR GAS CONVERSION IN MICROWAVE DISCHARGE PLASMA
JPH05327038A (en) Method and apparatus for manufacturing metallofullerene
JPS60224706A (en) Production of ultrafine metallic particles
JP3444387B2 (en) Manufacturing method of aluminum nitride
TWI321810B (en) Plasma enhanced sputtering method and apparatus
JPH062940B2 (en) Method of depositing thin film on substrate
JPH0640954B2 (en) Fine particle heat treatment method and heat treatment apparatus
JPS62116775A (en) Plasma cvd device
RU2068029C1 (en) Method of plasma-chemical application of coating
JPH0693397B2 (en) Thermal plasma generator
US4433408A (en) Cantilever for pickup cartridge