JP2541434B2 - Carbon nano tube manufacturing method - Google Patents

Carbon nano tube manufacturing method

Info

Publication number
JP2541434B2
JP2541434B2 JP4311846A JP31184692A JP2541434B2 JP 2541434 B2 JP2541434 B2 JP 2541434B2 JP 4311846 A JP4311846 A JP 4311846A JP 31184692 A JP31184692 A JP 31184692A JP 2541434 B2 JP2541434 B2 JP 2541434B2
Authority
JP
Japan
Prior art keywords
temperature
nanotubes
carbon
plasma
arc discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4311846A
Other languages
Japanese (ja)
Other versions
JPH06157016A (en
Inventor
トーマス エブソン
パリケル アジャヤン
英文 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4311846A priority Critical patent/JP2541434B2/en
Publication of JPH06157016A publication Critical patent/JPH06157016A/en
Application granted granted Critical
Publication of JP2541434B2 publication Critical patent/JP2541434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カーボンナノチューブ
(ナノチューブ)を産業、とりわけエレクトロニクス産
業への応用を実現するために、アスペクト比や直径の分
布域の狭いものを多量に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large amount of carbon nanotubes having a narrow aspect ratio and a narrow diameter distribution range in order to realize application to the industrial field, particularly to the electronics industry.

【0002】[0002]

【従来の技術】ナノチューブは厚さ数原子層のグラファ
イト状炭素原子面を丸めた円筒が、複数個入れ子になっ
たものであり、nmオーダーの外径の極めて微小な物質
である。このナノチューブは1991年に発見され(ネ
イチャー(Nature)354,56−58,199
1)1次元ワイヤや触媒等の多様な応用が期待される材
料として世界中の注目を集めている。
2. Description of the Related Art A nanotube is a substance in which a plurality of cylinders, each having a few atomic layers in thickness and rounded atomic planes of graphite-like carbon, are nested, and which is an extremely minute substance having an outer diameter of nm order. The nanotube was discovered in 1991 (Nature 354, 56-58, 199).
1) It is attracting worldwide attention as a material that is expected to have various applications such as one-dimensional wires and catalysts.

【0003】最近我々は、ナノチューブの大量合成法を
発見した。一般にナノチューブを製造するために用いる
カーボンのアーク放電に於いては、不活性ガスで満たさ
れた反応容器中でC、C2、C3等のカーボン分子種を
含んだ状態でプラズマが生成される。これら小さなカー
ボン分子種は次の段階においてより大きな構造体、例え
ばスス、フラーレン、ナノチューブ、あるいは高密度の
固体へと凝固する。本発明者らの検討によりナノチュー
ブの収率はそれが形成されるチャンバー中のガス分圧に
大きく存在している事が認められ、収率はガス分圧が5
00〜2500トールで最適化されることがわかった。
ただし、反応チャンバーの温度は温度制御を施していな
かったため、系内における反応温度は大きくふらつくと
ともに、大きな温度勾配があった。
Recently, we have discovered a method for the mass synthesis of nanotubes. Generally, in the arc discharge of carbon used for producing nanotubes, plasma is generated in a reaction vessel filled with an inert gas while containing carbon molecular species such as C, C2, and C3. These small carbon species then solidify into larger structures such as soot, fullerenes, nanotubes, or dense solids in the next step. According to the study by the present inventors, it was confirmed that the yield of nanotubes greatly depends on the gas partial pressure in the chamber in which it is formed.
It was found to be optimized between 00 and 2500 torr.
However, since the temperature of the reaction chamber was not controlled, the reaction temperature in the system fluctuated greatly and there was a large temperature gradient.

【0004】[0004]

【発明が解決しようとする課題】前記方法によると、ナ
ノチューブの収率は高いものの生成物の大きさの分布は
かなり広くその制御は困難であった。アスペクト比(長
さ/直径比)分布もまた非常に広く、20〜1000で
あった。一次元ワイヤ、触媒等に応用する際には、この
アスペクト比の分布、及び長さや直径の分布を狭める事
が重要な課題となる。
According to the above method, although the yield of nanotubes is high, the size distribution of the product is quite wide and it is difficult to control it. The aspect ratio (length / diameter ratio) distribution was also very wide, 20-1000. When applied to one-dimensional wires, catalysts, etc., narrowing the distribution of the aspect ratio and the distribution of length and diameter are important issues.

【0005】本発明は、反応チャンバーの温度を正確に
制御する事により、プラズマの温度すなわち、ナノチュ
ーブ生成の反応系の温度を一定温度に保持する事によっ
て、ナノチューブの直径と長さを制御し、長さや直径の
分布を狭める事を目的とする。
The present invention controls the diameter and length of the nanotubes by maintaining the temperature of the plasma, that is, the temperature of the reaction system for producing the nanotubes at a constant temperature, by precisely controlling the temperature of the reaction chamber, The purpose is to narrow the distribution of length and diameter.

【0006】[0006]

【課題を解決するための手段】生成したナノチューブの
大きさは、プラズマの冷却効率とカーボンの凝縮の化学
反応速度に依存していることが仮定される。これはナノ
チューブが気相成長様式で成長し、この成長様式におい
ては温度制御を行うことが欠陥のない良質の結晶を得る
ために非常に重要である事から理解できる。プラズマの
冷却速度は明らかに反応チャンバーの温度に依存する。
温度制御されたオーブンの中でカーボンプラズマを発生
させる事によりナノチューブのサンプルの品質がはっき
りと改良される事が見いだされた。合成装置を図1に示
す。本装置は、アーク放電プラズマ2を生成させるため
の可動正電極5と負電極3からなる回路とそれらの電源
装置10、電極部分を覆う加熱・冷却装置の付いたオー
ブン1、そのオーブン1の加熱・冷却装置を制御する温
度制御装置9、オーブン全体を覆うチャンバー8、チャ
ンバー内の排気を行う排気装置11、チャンバーに希ガ
スを送るガス導入装置(圧力計を含む)12から構成さ
れている。この装置の特徴はプラズマ部分を加熱・冷却
することが可能なオーブン1ならびにその温度制御装置
9が装備されている点である。このオーブン1を用い、
ナノチューブが生成するプラズマ部分の温度を制御する
ことにより、ナノチューブのサイズ分布を小さくし、ア
スペクトル比を飛躍的に向上させることが可能である。
It is hypothesized that the size of the produced nanotubes depends on the cooling efficiency of the plasma and the chemical reaction rate of carbon condensation. This can be understood from the fact that the nanotubes grow in a vapor phase growth mode, and in this growth mode, temperature control is very important for obtaining a defect-free good quality crystal. The cooling rate of the plasma obviously depends on the temperature of the reaction chamber.
It was found that generating a carbon plasma in a temperature controlled oven significantly improved the quality of the nanotube sample. The synthesizer is shown in FIG. This apparatus comprises a circuit composed of a movable positive electrode 5 and a negative electrode 3 for generating arc discharge plasma 2, a power supply device 10 for these circuits, an oven 1 equipped with a heating / cooling device for covering the electrode portion, and heating of the oven 1. A temperature control device 9 for controlling the cooling device, a chamber 8 for covering the entire oven, an exhaust device 11 for exhausting the inside of the chamber, and a gas introduction device (including a pressure gauge) 12 for sending a rare gas to the chamber. The feature of this apparatus is that it is equipped with an oven 1 capable of heating and cooling a plasma portion and a temperature control device 9 for the oven 1. Using this oven 1,
By controlling the temperature of the plasma portion generated by the nanotubes, it is possible to reduce the size distribution of the nanotubes and dramatically improve the spectrum ratio.

【0007】さらに、ナノチューブは反応系の温度を一
定とすることで、より均一に成長することが認められ
た。反応系の温度が揺らぐと5員環や7員環といった欠
陥がナノチューブの6員環のネットワーク中に形成さ
れ、その結果終端が閉じたり曲がったりする事が生じる
(ネイチャー(Nature)356,776−77
8,1992)。これを防ぐこととが従来よりも長く高
品質のカーボンナノチューブを得る要因となる。
Further, it was found that the nanotubes grow more uniformly when the temperature of the reaction system is kept constant. When the temperature of the reaction system fluctuates, defects such as 5-membered ring and 7-membered ring are formed in the network of the 6-membered ring of the nanotube, and as a result, the ends may be closed or bent (Nature (356, 776-). 77
8, 1992). Preventing this is a factor for obtaining a high-quality carbon nanotube longer than before.

【0008】実験条件を変化させ試行することにより、
プラズマ温度は2500℃〜4000℃の間で変化する
ことが分かった。これは黒体輻射を仮定して計算より求
めた温度である。オーブン温度は反応容器中で一定の温
度勾配を形成するようにする事が可能で、それによりプ
ラズマの冷却速度が制御できる。従ってプラズマの温度
が決定される。つまり、最適条件下でナノチューブの成
長率を制御することができる。
By changing the experimental conditions and performing trials,
It has been found that the plasma temperature varies between 2500 ° C and 4000 ° C. This is the temperature calculated by assuming black-body radiation. The oven temperature can be set to form a constant temperature gradient in the reaction vessel, which can control the cooling rate of the plasma. Therefore, the temperature of the plasma is determined. That is, the growth rate of nanotubes can be controlled under the optimum conditions.

【0009】[0009]

【実施例】反応容器内のガス圧力はHeガス500トー
ルで一定とし、直流電圧18Vを反応容器中の向かい合
った2つの炭素棒3.5間に加える。生じる電流はおよ
そ100Aで、ナノチューブを含んだ固体4が陰極炭素
棒に堆積される。次にその堆積物を砕き、エタノール中
で超音波をかけた。サンプルの大きさはTEMとSEM
で評価した。
EXAMPLE The gas pressure in the reaction vessel was kept constant at 500 Torr of He gas, and a DC voltage of 18 V was applied between two carbon rods 3.5 facing each other in the reaction vessel. The resulting current is approximately 100 A and the solids 4 containing the nanotubes are deposited on the cathode carbon rod. The deposit was then crushed and sonicated in ethanol. Sample size is TEM and SEM
Was evaluated.

【0010】以下の条件下、温度条件を500℃〜40
00℃(装置性能上の限界温度)の間で変化させて実験
を行い表1の結果を得た。オーブンの温度制御をしなか
ったもの(表中、No oven)も比較例として表1
に示した。平均的アスペクト比は温度制御をした反応容
器で得られたサンプルの方が優れていた。反応系の温度
が500℃でもナノチューブの生成は観察されたが、非
常に収率が悪く、アスペクト比の改善も見られなかっ
た。さらにナノチューブの平均長は反応系の温度が高く
なるにつれて長くなり、長さや直径の分布も反応系の温
度が高くなるに従って狭くなることが明らかになった。
従ってこの条件でナノチューブを製造することで、サン
プルの品質は明らかに改良されることが見いだされた。
Under the following conditions, the temperature condition is 500 ° C. to 40 ° C.
Experiments were carried out by changing the temperature between 00 ° C. (the limit temperature for the device performance), and the results shown in Table 1 were obtained. Table 1 which does not control the temperature of the oven (No oven in the table) is also shown as a comparative example.
It was shown to. The average aspect ratio was better for the samples obtained in the temperature controlled reaction vessel. Reaction system temperature
Although the formation of nanotubes was observed even at 500 ° C,
Yield is always poor and no improvement in aspect ratio
It was Is found in the average length of the nanotubes is high temperature of the reaction system
It became clear that as the temperature increased, the distribution of length and diameter also became narrower as the temperature of the reaction system increased.
Therefore, it has been found that the production of nanotubes under these conditions clearly improves the quality of the sample.

【0011】また、反応容器内のガス圧力については、
500〜2500トールであれば同様な結果がえられ
た。
Regarding the gas pressure in the reaction vessel,
Similar results were obtained at 500-2500 Torr.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明の作製方法によると、ナノチュー
ブを高収率で、均質なものを多量に作製することがで
き、ナノチューブを用いた新素材作製という点で工業的
有用性は極めて高い。
Industrial Applicability According to the production method of the present invention, nanotubes can be produced in high yield and in a large amount in a large amount, and the industrial utility is extremely high in the production of a new material using nanotubes.

【図面の簡単な説明】[Brief description of drawings]

【図1】ナノチューブの大量合成装置の概略図である。FIG. 1 is a schematic view of a mass production apparatus for nanotubes.

【符号の説明】[Explanation of symbols]

1 オーブン 2 アークプラズマ 3 負電極 4 生成するナノチューブ 5 正電極 6 電子 7 炭素分子種 8 反応チャンバー 9 温度制御装置 10 DC電源 11 ポンプ 12 希ガスボンベ 1 Oven 2 Arc Plasma 3 Negative Electrode 4 Nanotubes 5 Positive Electrode 6 Electron 7 Carbon Molecular Species 8 Reaction Chamber 9 Temperature Control Device 10 DC Power Supply 11 Pump 12 Noble Gas Cylinder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 NATURE、354〜7!(1991)P. 56−58 NATURE、358〜16!(1992)P P.220−222 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References NATURE, 354-7! (1991) P. 56-58 NATURE, 358-16! (1992) PP. 220-222

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希ガス中でアーク放電し、カーボンを蒸
発させた後凝縮させてカーボンナノチューブを形成させ
るに際し、希ガスで満たされた反応系の温度範囲を10
00℃〜4000℃の範囲内で一定となるように制御し
ながらアーク放電することによってプラズマの温度を安
定化し、陰極炭素棒にカーボンナノチューブを含有する
固体を堆積させることを特徴とするカーボンナノチュー
ブの製造方法。
1. When a carbon nanotube is formed by arc discharge in a rare gas to evaporate and then condense carbon to form carbon nanotubes, the temperature range of the reaction system filled with the rare gas is set to 10 degrees.
It is controlled to be constant within the range of 00 ℃ to 4000 ℃.
The temperature of the plasma is reduced by arc discharge while
Normalized and contains carbon nanotubes on the cathode carbon rod
A method for producing a carbon nanotube, which comprises depositing a solid .
【請求項2】 反応系の温度範囲を2000℃〜4002. The temperature range of the reaction system is 2000 ° C. to 400 ° C.
0℃としてアーク放電を行うことを特徴とする請求項1The arc discharge is performed at 0 ° C, and the arc discharge is performed.
記載のカーボンナノチューブの製造方法。A method for producing a carbon nanotube as described.
JP4311846A 1992-11-20 1992-11-20 Carbon nano tube manufacturing method Expired - Lifetime JP2541434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4311846A JP2541434B2 (en) 1992-11-20 1992-11-20 Carbon nano tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4311846A JP2541434B2 (en) 1992-11-20 1992-11-20 Carbon nano tube manufacturing method

Publications (2)

Publication Number Publication Date
JPH06157016A JPH06157016A (en) 1994-06-03
JP2541434B2 true JP2541434B2 (en) 1996-10-09

Family

ID=18022116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4311846A Expired - Lifetime JP2541434B2 (en) 1992-11-20 1992-11-20 Carbon nano tube manufacturing method

Country Status (1)

Country Link
JP (1) JP2541434B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US9403683B2 (en) 2010-11-25 2016-08-02 Incubation Alliance, Inc. Carbon nanotube and production method therefor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526408B2 (en) * 1994-01-28 1996-08-21 工業技術院長 Carbon nano tube continuous manufacturing method and apparatus
JP2595903B2 (en) * 1994-07-05 1997-04-02 日本電気株式会社 Method for purifying and opening carbon nanotubes in liquid phase and method for introducing functional groups
US6455021B1 (en) * 1998-07-21 2002-09-24 Showa Denko K.K. Method for producing carbon nanotubes
EP1164108A1 (en) * 2000-06-13 2001-12-19 Toda Kogyo Corporation Hollow carbon particles and process for producing the same
JP4724930B2 (en) 2001-03-01 2011-07-13 ソニー株式会社 Method and apparatus for producing carbonaceous material
JP3825336B2 (en) * 2001-03-12 2006-09-27 双葉電子工業株式会社 Nanocarbon production method and nanocarbon production apparatus
JP2003176114A (en) 2001-10-04 2003-06-24 Canon Inc Method for manufacturing fullerene
JP4109952B2 (en) * 2001-10-04 2008-07-02 キヤノン株式会社 Method for producing nanocarbon material
JP4532913B2 (en) * 2003-01-23 2010-08-25 キヤノン株式会社 Method for producing nanocarbon material
CN100473601C (en) 2003-01-23 2009-04-01 佳能株式会社 Method for producing nano-carbon materials
JP2008069015A (en) 2003-04-04 2008-03-27 Canon Inc Flaky carbonaceous particle and production method thereof
US7214408B2 (en) 2003-08-28 2007-05-08 Canon Kabushiki Kaisha Method of producing carbon fiber aggregate
JP4964447B2 (en) * 2005-09-21 2012-06-27 日本ピーアールエム株式会社 Carbon nanotube production equipment
KR102032186B1 (en) 2012-07-24 2019-10-15 주식회사 다이셀 Conductive fiber-coated particle, curable composition and cured article derived from curable composition
CN105246940B (en) 2013-05-28 2018-09-04 株式会社大赛璐 Optical semiconductor sealing solidification compound
KR102270116B1 (en) * 2018-02-07 2021-06-28 주식회사 엘지에너지솔루션 Positive electrode, and secondary battery comprising the positive electrode
KR102299705B1 (en) * 2019-12-13 2021-09-07 재단법인 한국탄소산업진흥원 Carbon nanotube heat treatment equipment
KR102220563B1 (en) * 2020-11-09 2021-02-25 (주)케이에이치 케미컬 Preparation method of branched carbon nanotubes with improved hydrophilicity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATURE、354〜7!(1991)P.56−58
NATURE、358〜16!(1992)PP.220−222

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
US9783423B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783422B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
JP2015044737A (en) * 2010-02-19 2015-03-12 株式会社インキュベーション・アライアンス Carbon material and production method of the same
US9403683B2 (en) 2010-11-25 2016-08-02 Incubation Alliance, Inc. Carbon nanotube and production method therefor

Also Published As

Publication number Publication date
JPH06157016A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
JP2541434B2 (en) Carbon nano tube manufacturing method
Choi et al. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition
US4816286A (en) Process for synthesis of diamond by CVD
US5424054A (en) Carbon fibers and method for their production
JP3049019B2 (en) Method of forming single-walled carbon nanotube coating and single-walled carbon nanotube coated by the method
Han et al. Growth and microstructure of Ga2O3 nanorods
JP2526782B2 (en) Carbon fiber and its manufacturing method
EP3802418B1 (en) Methods for forming carbon nanostructured materials
EP2573047B1 (en) Method for producing onion-like carbon
JP2002356316A (en) Apparatus and method for producing carbon structures
KR20030028296A (en) Plasma enhanced chemical vapor deposition apparatus and method of producing a cabon nanotube using the same
JP2845675B2 (en) Method for producing carbon nanotube
JPH01156474A (en) Glow discharge activating reactive accumulation of metal from gaseous phase
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
US20060093545A1 (en) Process for producing monolayer carbon nanotube with uniform diameter
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
KR100858291B1 (en) Device and method for manufacture of carbonaceous material
JP2006281168A (en) Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same
JP4881504B2 (en) Selective formation method of graphite nanofiber thin film by thermal CVD method
JP3837556B2 (en) Metal wire or capillary provided with carbon nanotube and method for forming carbon nanotube
JPH11263610A (en) Production of carbon nanotube
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JP2005060116A (en) Method for manufacturing fine particle and manufacturing apparatus for fine particle
JPH07189040A (en) Production of cylindrical graphite fiber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17