JPS6119940A - Method of introducing intake-air and discharging exhaust gas - Google Patents

Method of introducing intake-air and discharging exhaust gas

Info

Publication number
JPS6119940A
JPS6119940A JP59139770A JP13977084A JPS6119940A JP S6119940 A JPS6119940 A JP S6119940A JP 59139770 A JP59139770 A JP 59139770A JP 13977084 A JP13977084 A JP 13977084A JP S6119940 A JPS6119940 A JP S6119940A
Authority
JP
Japan
Prior art keywords
gas
intake
exhaust
exhaust gas
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59139770A
Other languages
Japanese (ja)
Other versions
JPH0514093B2 (en
Inventor
Yuji Abe
雄二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59139770A priority Critical patent/JPS6119940A/en
Publication of JPS6119940A publication Critical patent/JPS6119940A/en
Publication of JPH0514093B2 publication Critical patent/JPH0514093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To purifying exhaust gas, by supplying ammonium into intake-air and exhaust pipes in a Diesel-engine in synchronism with the timing of intake and discharge of the engine so that neutralization of acid components in the cylinder and denitration of exhaust gas are carried out. CONSTITUTION:An ammonium diluted gas C is introduced through a neutralizing ammonium injection nozzle 6 and a denitrating ammonium injection nozzle 7 provided respectively in intake and exhaust pipes 2, 3 in a Diesel-engine, to be mixed with combustion air A and exhaust gas B. Ammonium gas injected from the nozzle 6 netralizes acid components in SOX gas adhered to the cylinder wall surface, and ammonium gas injected from the nozzle 7 denitrates NOX in exhaust gas so that NOX is changed into N2.

Description

【発明の詳細な説明】 本発明はディーゼルエンノンの吸気及び排気方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for intake and exhaust of a diesel engine.

現在、ディーゼルエンジンの燃料に関しても省エネ、省
資源化の傾向により高硫黄含有燃料使用が進んで来てい
ると共に、従来よシも効率改善のされた機関が要求され
るようになった。このため8工ンジン本体においては、
燃焼時に生成された硫黄酸化物SOxに起因するシリン
ダライナの異状摩耗やピストンリングの切損事故等が発
生し易くなると共に、燃焼効率を上げるために燃焼排ガ
ス中の窒素酸化物No 濃度が高くなり、大気汚染を起
す要因となる。
Currently, with regard to fuel for diesel engines, the use of high sulfur-containing fuel is increasing due to the trend toward energy saving and resource saving, and at the same time, there is a demand for engines with improved efficiency. For this reason, in the 8-engine body,
Abnormal cylinder liner wear and piston ring breakage accidents are more likely to occur due to sulfur oxides SOx generated during combustion, and the concentration of nitrogen oxides in the combustion exhaust gas increases to increase combustion efficiency. , which causes air pollution.

本発明は、粗悪燃料を使用しても従来より改善された使
用条件を作り上記問題点を軽減または抑制できる吸気及
び排気方法を提供することであり。
SUMMARY OF THE INVENTION The present invention provides an intake and exhaust method that can reduce or suppress the above-mentioned problems by creating usage conditions that are better than conventional ones even when inferior fuel is used.

その特徴とするところは、硫黄を含有する燃料を使用す
るディーゼルエンノンにおいて、吸気管及び排気管に吸
気及び排気のタイミングに合せて一定量のNH,ガスま
たはNH3を混合した混合ガスを供給してシリンダ内に
おける酸性成分の中和ならびに排ガスの脱硝反応を行う
ことである。
The feature of this system is that in diesel engines that use fuel containing sulfur, a fixed amount of NH, gas, or a mixed gas of NH3 is supplied to the intake and exhaust pipes at the timing of intake and exhaust. The process involves neutralizing acidic components within the cylinder and denitrifying the exhaust gas.

この場合は、同一ガス性物質(アンモニアガス)を使用
して次のような作用により目的を達成する。
In this case, the same gaseous substance (ammonia gas) is used to achieve the purpose through the following actions.

(1)燃焼排ガス中のSo はガス状として拡散するの
で、アルカリ反応剤(アンモニアガス)全吸気側に入れ
、同様にガス状として反応させる。今まではシリンダ油
にアルカリ剤(固形物質)を入、れて反応させていた。
(1) Since So in the combustion exhaust gas diffuses in a gaseous state, an alkaline reactant (ammonia gas) is introduced into the entire intake side and similarly reacted in a gaseous state. Until now, an alkaline agent (solid substance) was added to cylinder oil to cause a reaction.

(2)吸気側と排気側へ交互に供給することにより、吸
気側を中和に、排気側を脱硝に利用する。
(2) By alternately supplying to the intake side and exhaust side, the intake side is used for neutralization and the exhaust side is used for denitrification.

以下図面を参照して本発明による実施例につき説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による1実施例のディーゼルエンノン燃
焼部を示す説明図、第2図はNH3供給7ステムを示す
説明図である。
FIG. 1 is an explanatory diagram showing a diesel ennon combustion section according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing seven NH3 supply stems.

本発明の内容は簡単な噴射ノズルを吸気管と排気管に取
付は次の要領で作動するようにする。
The content of the present invention is to attach a simple injection nozzle to an intake pipe and an exhaust pipe and operate it in the following manner.

第1図におい°て51は熱料噴射ノズル、2は吸気管、
3は排気管、4はシリンダ、5はピスト乙6は中和用ア
ンモニア噴射ノズル、7は脱硝用アンモニア噴射ノズル
、Aは燃焼用空気、Bは燃焼排ガス、Cはアンモニア(
希釈)ガスである。
In Fig. 1, 51 is a heat injection nozzle, 2 is an intake pipe,
3 is an exhaust pipe, 4 is a cylinder, 5 is a piston, 6 is an ammonia injection nozzle for neutralization, 7 is an ammonia injection nozzle for denitrification, A is combustion air, B is combustion exhaust gas, C is ammonia (
dilution) gas.

4サイクルエンジンの場合、吸入、圧縮、燃焼。In the case of a 4-stroke engine, there is intake, compression, and combustion.

排気がそれぞれ一行程として行われるが、吸入の際適量
(使用燃料中の8分によって決まる)のアンモニアガス
(NH3) Cを吸気管2を通って燃焼室へ行く燃焼用
空気A中へアンモニア噴射ノズル6よ石混合し、シリン
ダ壁面等に付着したSOxガスによる酸性成分を中和す
る。
Each exhaust is performed as one stroke, but at the time of intake, an appropriate amount (determined by the amount of fuel used) of ammonia gas (NH3) C is injected into the combustion air A that passes through the intake pipe 2 and goes to the combustion chamber. The stone is mixed through the nozzle 6 to neutralize acidic components caused by SOx gas adhering to the cylinder wall surface, etc.

残ったアンモニアは燃焼の際酸化されて窒素に大部分が
変化すると共に、一部は窒素酸化物NOxに変化する。
The remaining ammonia is oxidized during combustion, and most of it changes into nitrogen, and some of it changes into nitrogen oxides, NOx.

まだ、燃焼時には空気中の窒素からもNo が生成され
排気管3を通って外部に排ガスBとして排出されるが、
その際、排気操作の作動と同時に適量(排ガス中NOx
濃度によって決まる)のアンモニアガスCを脱硝用アン
モニア噴射ノズル7より排ガス中に噴射して選択的な脱
硝反応を起させて、排ガス中のNOxをN2にする。同
一のアンモニアガスを吸気行程と排気行程のタイミング
に合せて吸気側と排気側のノズルよシ交互に供給するこ
とにより、シリンダ内圧おける硫酸腐食の軽減と排ガス
中のNOx発生量の抑制を行う。
However, during combustion, No is also generated from nitrogen in the air and is discharged outside as exhaust gas B through the exhaust pipe 3.
At that time, at the same time as the exhaust operation is activated, an appropriate amount (NOx in the exhaust gas) is removed.
Ammonia gas C (determined by the concentration) is injected into the exhaust gas from the denitrification ammonia injection nozzle 7 to cause a selective denitrification reaction and convert NOx in the exhaust gas to N2. By alternately supplying the same ammonia gas from the intake side and exhaust side nozzles in accordance with the timing of the intake stroke and exhaust stroke, sulfuric acid corrosion in the cylinder internal pressure is reduced and the amount of NOx generated in the exhaust gas is suppressed.

作用、効果について述べる。Describe the action and effect.

(1)中和反応について言えば、現在実施されている方
法は、シリンダ油の中にアルカリ土類金属(主にCa)
の化合物を溶解またはサスペン7III/させた状態で
安定保持させ、注油のタイミングに合せて供給され、ピ
ストンリング等によりかき上けられて排ガス側からシリ
ンダ表面に付着した硫黄酸化物と反応して中和を行う機
構になっているが1反応が気液反応、それもSOの溶解
し難い油中で起ることより反応効率が低く、また油のま
わる範囲が限定されることによp、必ずしもSOx濃度
の分布と一致せず反応確率も悪い。さらに生成されたも
のは硫酸カルシウムCa SO4であり固形物であるの
で腐食性はないが、スケール付着によるトラブルを生じ
やすい。
(1) Regarding the neutralization reaction, the currently implemented method is to contain alkaline earth metals (mainly Ca) in cylinder oil.
The compound is stably maintained in a dissolved or suspended state, and is supplied at the timing of lubrication, and is scraped up by piston rings etc. and reacts with sulfur oxides attached to the cylinder surface from the exhaust gas side. However, one reaction is a gas-liquid reaction, which has a lower reaction efficiency than that occurring in oil where SO is difficult to dissolve, and the range in which the oil can circulate is limited. It does not match the distribution of SOx concentration and the reaction probability is also poor. Furthermore, what is produced is calcium sulfate (CaSO4), which is a solid substance and is not corrosive, but it is likely to cause problems due to scale adhesion.

反応の1例を次に示す。An example of the reaction is shown below.

Ca−RまたはCaCO3+SO2+02+H20→C
aSO4+ HRまたはCO2+H20ここで−Rは有
機物である。
Ca-R or CaCO3+SO2+02+H20→C
aSO4+ HR or CO2+H20 where -R is an organic substance.

しかし1本発明は気体反応なので、 SOxの分布とN
Hの分布が一致すると共に生成された硫酸ア゛ンモニウ
ム(NH6)2S04等が温度の高い領域では分解し、
低い領域ではCa SO4はどかたく付着しないので5
反応性及びスケールトラブル等が改善される。次に主な
反応を示す。
However, since the present invention is a gas reaction, the SOx distribution and N
When the distribution of H matches, ammonium sulfate (NH6)2S04 etc. generated decomposes in a high temperature area,
5 because Ca SO4 does not adhere strongly in the low region.
Reactivity and scale troubles are improved. The main reactions are shown below.

2NH6+SO2+11202+H20→CNH,)2
So4吸気側に供給するNH3ガス濃度は燃料として今
2%の8分を含有するとすれば、C075%で排がス中
SO濃度は約450 ppmとなり、必要なNH3量社
約800p戸となる。今かりに約10%のNH,ガス濃
度のガス(残り90チは窒素または空気)を吸気側で過
剰ぎみになる様に約1000 ppm供給しようiする
場合は、吸気ガス量の約、1./100の量を吸気時に
供給することになる。
2NH6+SO2+11202+H20→CNH,)2
Assuming that the NH3 gas concentration supplied to the So4 intake side contains 8% of the current 2% as fuel, the SO concentration in the exhaust gas will be about 450 ppm at CO75%, and the required NH3 amount will be about 800p. If you want to supply about 1000 ppm of gas with a gas concentration of about 10% (the remaining 90% is nitrogen or air) on the intake side so that it is almost excessive, then about 1.0% of the intake gas amount is supplied. /100 will be supplied during inspiration.

(2)脱硝反応について言えば、いま仮に11000p
pのNOxを発生するエンシンがあり、これに吸気で添
加したNH,が全部NOxに変化したとすれば(このよ
うなことはあシ得ない)、排ガス中のNo は2000
 pp Kなる。しかし、このNOx量に見合う責だけ
のNH,約20009pを排気時に添加すれげ、効率8
0%としても排ガス中のNOxは400ppm程度まで
抑制することができる。
(2) Regarding the denitrification reaction, let us assume that 11,000p
If there is an engine that generates NOx of 2,000 p, and if all the NH added to it during intake changes to NOx (this is impossible), then the NO in the exhaust gas is 2,000 p.
pp K becomes. However, if enough NH, about 20,009p, is added at the time of exhaust to compensate for the amount of NOx, the efficiency is 8.
Even if it is 0%, NOx in exhaust gas can be suppressed to about 400 ppm.

6 No +4 NH5→5N2+6H20、6NO□
+8NH,→7N+12H20 (3)本システムはエンジンの特性燃焼によるNOxの
生成量等を調査して供給NH,ガス濃度を決め、その量
をコントロールすることによって容易に中和と脱硝を行
うものであり、自動的にセットすれば非常に有効な7ス
テムとなり得る。
6 No +4 NH5→5N2+6H20, 6NO□
+8NH, →7N+12H20 (3) This system investigates the amount of NOx generated due to the characteristic combustion of the engine, determines the supply NH and gas concentration, and easily performs neutralization and denitration by controlling the amount. If set automatically, it can become a very effective 7 stem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による1実施例のディーゼルエンノン燃
焼部を示す説明図、第2図はNH,供給システムを示す
説明図である。 2・・・吸気管、3・・・排気管、6・・・中和用アン
モニア噴射ノズル、7・・・脱硝用アンモニア噴射ノズ
ル。 ↓ 牙4記
FIG. 1 is an explanatory diagram showing a diesel eno-combustion section according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an NH and supply system. 2... Intake pipe, 3... Exhaust pipe, 6... Ammonia injection nozzle for neutralization, 7... Ammonia injection nozzle for denitrification. ↓ Fang 4

Claims (1)

【特許請求の範囲】[Claims] 1、硫黄を含有する燃料を使用するディーゼルエンジン
において、吸気管及び排気管に吸気及び排気のタイミン
グに合せて一定量のNH_3ガスまたはNH_3を混合
した混合ガスを供給してシリンダ内における酸性成分の
中和ならびに排ガスの脱硝反応を行うことを特徴とする
吸気及び排気方法。
1. In a diesel engine that uses fuel containing sulfur, a certain amount of NH_3 gas or a mixed gas containing NH_3 is supplied to the intake pipe and exhaust pipe at the timing of intake and exhaust to eliminate acidic components in the cylinder. An intake and exhaust method characterized by neutralizing and denitrifying exhaust gas.
JP59139770A 1984-07-07 1984-07-07 Method of introducing intake-air and discharging exhaust gas Granted JPS6119940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139770A JPS6119940A (en) 1984-07-07 1984-07-07 Method of introducing intake-air and discharging exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139770A JPS6119940A (en) 1984-07-07 1984-07-07 Method of introducing intake-air and discharging exhaust gas

Publications (2)

Publication Number Publication Date
JPS6119940A true JPS6119940A (en) 1986-01-28
JPH0514093B2 JPH0514093B2 (en) 1993-02-24

Family

ID=15252994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139770A Granted JPS6119940A (en) 1984-07-07 1984-07-07 Method of introducing intake-air and discharging exhaust gas

Country Status (1)

Country Link
JP (1) JPS6119940A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318716A (en) * 1988-06-17 1989-12-25 Mitsubishi Heavy Ind Ltd Denitration method for exhaust of internal combustion engine
JPH02157415A (en) * 1988-12-07 1990-06-18 Mitsubishi Heavy Ind Ltd Exhaust gas denitrizing device for internal combustion engine
JPH03213614A (en) * 1990-01-18 1991-09-19 Fuel Tec Japan Kk Exhaust gas disposing device for diesel engine
WO2006006441A1 (en) * 2004-07-13 2006-01-19 Isuzu Motors Limited System and method for purification of exhaust gas
WO2010125659A1 (en) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 Exhaust emission control device for engine
US8206470B1 (en) * 2005-08-03 2012-06-26 Jacobson William O Combustion emission-reducing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026401U (en) * 1973-07-02 1975-03-26
JPS5241726A (en) * 1975-09-18 1977-03-31 Toshiyuki Sugino Combustion efficiency improving method of gasoline, light oil, heavy o il burning engine
JPS5450270A (en) * 1977-09-09 1979-04-20 Shii Hoiraa Koubarii Constant intensity light source
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription
JPS5526500U (en) * 1978-08-10 1980-02-20
JPS5858730A (en) * 1981-10-05 1983-04-07 Hitachi Ltd Projection alligner
JPS5871593A (en) * 1981-10-23 1983-04-28 日本電池株式会社 Discharge lamp air cooling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026401U (en) * 1973-07-02 1975-03-26
JPS5241726A (en) * 1975-09-18 1977-03-31 Toshiyuki Sugino Combustion efficiency improving method of gasoline, light oil, heavy o il burning engine
JPS5450270A (en) * 1977-09-09 1979-04-20 Shii Hoiraa Koubarii Constant intensity light source
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription
JPS5526500U (en) * 1978-08-10 1980-02-20
JPS5858730A (en) * 1981-10-05 1983-04-07 Hitachi Ltd Projection alligner
JPS5871593A (en) * 1981-10-23 1983-04-28 日本電池株式会社 Discharge lamp air cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318716A (en) * 1988-06-17 1989-12-25 Mitsubishi Heavy Ind Ltd Denitration method for exhaust of internal combustion engine
JPH02157415A (en) * 1988-12-07 1990-06-18 Mitsubishi Heavy Ind Ltd Exhaust gas denitrizing device for internal combustion engine
JPH03213614A (en) * 1990-01-18 1991-09-19 Fuel Tec Japan Kk Exhaust gas disposing device for diesel engine
WO2006006441A1 (en) * 2004-07-13 2006-01-19 Isuzu Motors Limited System and method for purification of exhaust gas
US8206470B1 (en) * 2005-08-03 2012-06-26 Jacobson William O Combustion emission-reducing method
WO2010125659A1 (en) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 Exhaust emission control device for engine
CN102414405A (en) * 2009-04-28 2012-04-11 丰田自动车株式会社 Exhaust emission control device for engine
JP5293811B2 (en) * 2009-04-28 2013-09-18 トヨタ自動車株式会社 Engine exhaust purification system
US8656703B2 (en) 2009-04-28 2014-02-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for engine

Also Published As

Publication number Publication date
JPH0514093B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
JP5753485B2 (en) Urea water spray structure
KR101910880B1 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
ATE293491T1 (en) METHOD FOR TREATING EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE USING UREA
JP7446104B2 (en) internal combustion engine
CN107349780A (en) A kind of aluminium cathode baking furnace fume Dry denitration method
JPS6119940A (en) Method of introducing intake-air and discharging exhaust gas
CN103349900A (en) Method for desulfurating and denitrating simultaneously
CN108295652A (en) Carbon rotary kiln flue gas desulfurization and denitrification UTILIZATION OF VESIDUAL HEAT IN integral process and system
RU2660215C2 (en) Method and device for desulphurising of exhaust gas return flow
RU2724607C2 (en) Low-temperature scr method based on urea in the presence of exhaust gases with high sulfur content
JPH02157415A (en) Exhaust gas denitrizing device for internal combustion engine
CN111701432B (en) Denitration desulfurizer and preparation method thereof
KR100538120B1 (en) activated chemicals of buring for coal
SU1177520A1 (en) Method of neutralizing combustion engine exhaust gasses
JP7319653B2 (en) Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
JPS6447427A (en) Method for reducing nitrogen oxides in exhaust gas of internal combustion engine
KR102469668B1 (en) Flue gas condensation and SNCR applied flue gas treatment system
CN108671752A (en) A kind of equipment for denitrifying flue gas and method of charged spray ammonia and ammonolysis craft combination
CN207980865U (en) Carbon rotary kiln flue gas desulfurization and denitrification afterheat utilizing system
BG4263U1 (en) Product for the secondary treatment of exhaust gases
JPS54126666A (en) Removing method for ammonia in exhaust-gas denitrating process
JPS5673526A (en) Exhaust smoke desulfurization and denitrification method
CN104258700A (en) Circulating fluidized bed boiler desulfurization and denitrification system
JPH06280546A (en) Denitration device for internal combustion engine
JPS5670822A (en) Method of reducing nitrogen oxides generated in combustion