JPH01318716A - Denitration method for exhaust of internal combustion engine - Google Patents

Denitration method for exhaust of internal combustion engine

Info

Publication number
JPH01318716A
JPH01318716A JP63148010A JP14801088A JPH01318716A JP H01318716 A JPH01318716 A JP H01318716A JP 63148010 A JP63148010 A JP 63148010A JP 14801088 A JP14801088 A JP 14801088A JP H01318716 A JPH01318716 A JP H01318716A
Authority
JP
Japan
Prior art keywords
exhaust
ammonia
valve
injection valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63148010A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakagawa
洋 中川
Nobuaki Murakami
信明 村上
Keijiro Tayama
田山 経二郎
Sadao Yoshihara
吉原 定男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63148010A priority Critical patent/JPH01318716A/en
Publication of JPH01318716A publication Critical patent/JPH01318716A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent the exhaust of NOx by mixing ammonia and/or its precursor respectively in the gas inside a cylinder just before opening an exhaust valve or into an exhaust gas just after opening the exhaust valve and resolving a nitrogen oxide inside the exhaust. CONSTITUTION:The ammonia injection valve 8 injecting ammonia into a cylinder 2 is provided on a cylinder head 3 in case of applying for a large sized low speed two cycle diesel engine. A crank angle is then detected by a crank angle sensor 12 so as to open an ammonia injection valve 8 prior to opening (5-10 deg.CA) an exhaust valve 5, the ammonia injection valve 8 is opened by an opening controller 11 based on the detected crank angle and the ammonia of after being subjected to pressure rising by the pump 9 connected to a bomb 10 is made to inject into a combustion chamber. The nitrogen oxide of a high temp. gas inside is resolved with the existence of oxygen to realize pollution free.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の排気中の酸化窒素の分解すること
により無公害化する内燃機関の排気脱硝方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for denitrifying exhaust gas from an internal combustion engine, which makes the exhaust gas of an internal combustion engine non-polluting by decomposing nitrogen oxides in the exhaust gas.

〔従来の技術〕[Conventional technology]

従来の内燃機関では、第4図に示すように、工/ジン1
01から排出された排気は、排気管102゜排気過給機
103を経て、排気管後部104に流入し、排ガス温度
が比較的低い250〜450℃程度のこの部分で排ガス
中にアンモニア噴射弁105より噴射されるアンモニア
(NH3)が注入され、反応器108の触媒上で排気中
の窒素酸化物が分解されて無公害化されている。なお、
第4図中106はアンモニアポンプ、107はアンモニ
アポン<、  109は給気管である。
In a conventional internal combustion engine, as shown in Fig. 4,
The exhaust gas discharged from 01 passes through the exhaust pipe 102 and the exhaust supercharger 103, and then flows into the rear part of the exhaust pipe 104, where the exhaust gas temperature is relatively low at about 250 to 450°C. Ammonia (NH3) is injected into the exhaust gas, and nitrogen oxides in the exhaust gas are decomposed on the catalyst in the reactor 108, making the exhaust gas non-polluting. In addition,
In FIG. 4, 106 is an ammonia pump, 107 is an ammonia pump, and 109 is an air supply pipe.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記公知の方法では、触媒を使用しているために、装置
が大きくなると同時にコストが上昇する。
In the above-mentioned known method, the use of a catalyst increases the size of the equipment and the cost.

本発明は、アンモニア又はその前駆物質を直接高温の排
ガスへ混入することによって、上記の欠点を解消した内
燃機関の排気脱硝方法を提供しようとするものである。
The present invention aims to provide a method for denitrating exhaust gas from an internal combustion engine, which eliminates the above-mentioned drawbacks by directly mixing ammonia or its precursor into high-temperature exhaust gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、アンモニア及び/又は尿素等のアンモニア
前駆物質を排気弁の開弁直前において内燃機関のシリン
ダ内のガスへ混入し、又は排気弁開弁直後において排気
弁から排出される排ガスへ混入する。
In the present invention, an ammonia precursor such as ammonia and/or urea is mixed into the gas in the cylinder of an internal combustion engine immediately before the exhaust valve is opened, or into the exhaust gas discharged from the exhaust valve immediately after the exhaust valve is opened. .

〔作 用〕[For production]

排気弁の開弁直前の内燃機関のシリンダ内のガス及び、
排気弁開弁直後の時期で排気弁に近い排気管内等にある
燃焼排ガスは高温(1000〜800℃程度)であるた
めに、酸素の存在下(空気過剰率1.3〜2.0)で、
アンモニア及び/又はアンモニア前駆物質と排ガス中の
窒素酸化物は反応し、分解される。これによって、触媒
は不要となるか、又はその使用量を減することができる
The gas in the cylinder of the internal combustion engine immediately before the exhaust valve opens, and
Immediately after the exhaust valve is opened, the combustion exhaust gas in the exhaust pipe near the exhaust valve is at a high temperature (approximately 1000 to 800°C), so it is heated in the presence of oxygen (excess air ratio 1.3 to 2.0). ,
Ammonia and/or an ammonia precursor react with nitrogen oxides in the exhaust gas and are decomposed. This eliminates the need for a catalyst or reduces its usage.

〔実施例〕〔Example〕

第1図は、大形低速2サイクルデイーゼルエンジンに適
用された本発明の第一の実施例を示す。
FIG. 1 shows a first embodiment of the present invention applied to a large, low-speed, two-stroke diesel engine.

lはピストン、2はシリンダ、3はシリンダヘット9.
4は排気ポート、5は排気弁、6は排気集合管、7は燃
料噴射弁、8はシリンダヘラr3に設けられシリンダ2
内にアンモニアを噴射するアンモニア噴射弁、9はアン
モニア噴射用のポンプ。
l is the piston, 2 is the cylinder, 3 is the cylinder head9.
4 is an exhaust port, 5 is an exhaust valve, 6 is an exhaust manifold, 7 is a fuel injection valve, 8 is provided in the cylinder spatula r3, and the cylinder 2
An ammonia injection valve injects ammonia into the tank, and 9 is a pump for ammonia injection.

10はアンモニアボンベ、 11はアンモニア噴射弁の
開弁コントローラ、12は開弁時期を検知するクランク
角度センサ、13はシリンダ2に設けられた掃気孔であ
る。上記クランク角度センナLの出力は上記開弁コント
ローラ11に入力されるようになっている。
10 is an ammonia cylinder, 11 is a valve opening controller for an ammonia injection valve, 12 is a crank angle sensor that detects the valve opening timing, and 13 is a scavenging hole provided in the cylinder 2. The output of the crank angle sensor L is input to the valve opening controller 11.

本実施例では、排気弁の開弁する(5°〜10’CA)
前にアンモニア噴射弁8を開弁するようにクランク角度
センサ12によりクランク角度を検出し、これによって
アンモニア噴射弁8の開弁コントロー211を作動させ
てアンモニア噴射弁8を開弁する。
In this example, the exhaust valve is opened (5° to 10' CA).
Before opening the ammonia injection valve 8, the crank angle is detected by the crank angle sensor 12, and thereby the valve opening control 211 of the ammonia injection valve 8 is operated to open the ammonia injection valve 8.

アンモニア噴射弁8は、掃気孔13が開く前の排気弁5
の開弁後35℃A〜40’CAまでの期間開弁状態に保
持され、シリンダ2内へアンモニアを噴射する。
The ammonia injection valve 8 is the exhaust valve 5 before the scavenging hole 13 is opened.
After the valve is opened, the valve is kept open for a period of 35°C to 40'CA, and ammonia is injected into the cylinder 2.

本実施例では、以上のように、掃気空気が混入しないた
めに高温なシリンダ2内のガス中に、排気弁5の開弁直
前から掃気孔13の開口前迄の期間噴射弁8からアンモ
ニアを噴射して混入することによって、高温のガス中の
酸化窒素は酸素の存在下で分解され無害化される。
In this embodiment, as described above, ammonia is injected from the injection valve 8 into the gas in the cylinder 2, which is hot because scavenging air is not mixed in, from just before the exhaust valve 5 opens until before the scavenging hole 13 opens. By injecting and mixing, the nitrogen oxide in the hot gas is decomposed and rendered harmless in the presence of oxygen.

第2図は、本実施例における排気弁の開弁時期。FIG. 2 shows the opening timing of the exhaust valve in this embodiment.

掃気孔の開孔時期とアンモニア噴射弁の開弁時期の相対
的関係を示している。
It shows the relative relationship between the opening timing of the scavenging hole and the opening timing of the ammonia injection valve.

第3図は、大形低速2サイクルデイーゼルエンジンに適
用された本発明の第二の実施例を示す。
FIG. 3 shows a second embodiment of the invention applied to a large, low-speed, two-stroke diesel engine.

Olはピストン、02はシリンダ、03はシリンダヘッ
ド、04は排気ポート、05は排気弁、06は排気集合
管、07は燃料噴射弁、08は排気ポート−と排気集合
管07との連結部に設けられ排気弁05に向って排気ポ
ート04内にアンモニアを噴射するアンモニア噴射弁、
09はアンモニア噴射用のポンプ。
Ol is the piston, 02 is the cylinder, 03 is the cylinder head, 04 is the exhaust port, 05 is the exhaust valve, 06 is the exhaust manifold, 07 is the fuel injection valve, 08 is the connection between the exhaust port and the exhaust manifold pipe 07. an ammonia injection valve that is provided and injects ammonia into the exhaust port 04 toward the exhaust valve 05;
09 is a pump for ammonia injection.

010はアンモニアボンベ、011はアンモニア噴射弁
の開弁コントロー、)、  012は開弁時期を検知す
るクランク角度センサ、13は掃気孔を示している。
010 is an ammonia cylinder, 011 is an ammonia injection valve opening controller, ), 012 is a crank angle sensor that detects the valve opening timing, and 13 is a scavenging hole.

上記角度センサ012の出力は上記開弁コントローニア
 011 K入力されるようになっている。
The output of the angle sensor 012 is inputted to the valve opening controller 011K.

本実施例では、排気弁05の開弁する5°〜1o″CA
前にアンモニア噴射弁08を開弁するように、クランク
角度センサ12よりクランク角度を検知して、アンモニ
ア噴射弁の開弁コントローラ011を作用させてアンモ
ニア噴射弁08を開弁する。同アンモニア噴射弁08は
、掃気孔013の開口する前の排気弁の開弁後35″’
CA〜40℃Aまでの期間開弁状態に保持され、排気弁
05に近い排気ポート04内へ排気弁側へ向ってアンモ
ニアを噴射する。
In this embodiment, the exhaust valve 05 is opened from 5° to 1o'' CA
In order to open the ammonia injection valve 08 before, the crank angle is detected by the crank angle sensor 12, and the ammonia injection valve opening controller 011 is operated to open the ammonia injection valve 08. The ammonia injection valve 08 is 35''' after the exhaust valve is opened before the scavenging hole 013 is opened.
The valve is kept open for a period from CA to 40°C, and ammonia is injected into the exhaust port 04 near the exhaust valve 05 toward the exhaust valve side.

本実施例におけるアンモニア噴射弁の開弁、排気弁の開
弁、掃気ポートの開孔時期との相対的な関係は第一の実
施例の場合と同様である。
In this embodiment, the relative relationship between the ammonia injection valve opening, the exhaust valve opening, and the scavenging port opening timing is the same as in the first embodiment.

本実施例は、以上のように排気ポート04に噴出され掃
気空気が混入されないために高温に保たれている排ガス
中にアンモニアをアンモニア噴射弁08から噴射して混
入させることによって、高温排ガス中の酸化窒素は酸素
の存在下で分解され無害化される。
In this embodiment, ammonia is injected from the ammonia injection valve 08 and mixed into the exhaust gas which is injected into the exhaust port 04 and kept at a high temperature so that scavenging air is not mixed in as described above. Nitric oxide is decomposed and rendered harmless in the presence of oxygen.

本実施例では、排気弁05の開弁する直前から排気弁0
5の開弁時をへて掃気孔013の開口する前の期間中ア
ンモニア噴射弁08が開弁状態に保たれているが、本発
明で排気弁から排出される排ガスにアンモニアを噴射混
入させる場合は、少くとも高温の排ガスが排出される排
気弁の開弁直後においてアンモニアを排ガスへ混入させ
ることが必要である。
In this embodiment, the exhaust valve 0 starts immediately before the exhaust valve 05 opens.
Although the ammonia injection valve 08 is kept open during the period before the scavenging hole 013 opens after the opening time of step 5, when ammonia is injected and mixed into the exhaust gas discharged from the exhaust valve in the present invention. It is necessary to mix ammonia into the exhaust gas at least immediately after opening the exhaust valve from which high-temperature exhaust gas is discharged.

以上本発明の実施例について説明したが、本発明は単に
大形低速2サイクルディーゼルエンジンに適用されるに
止まらず、中速4サイクルエンジン、高速2サイクル、
4サイクルエンジン、圧縮着火エンジン、火花点火エン
ジン等内燃機関に広く適用可能である。
Although the embodiments of the present invention have been described above, the present invention is not only applied to large, low-speed 2-stroke diesel engines, but also medium-speed 4-stroke engines, high-speed 2-stroke engines,
It is widely applicable to internal combustion engines such as 4-stroke engines, compression ignition engines, and spark ignition engines.

ただ、アンモニアと窒素酸化物の反応にある程度時間が
必要であるために、本発明は、排気過程に時間が充分あ
る、中低速エンジンに用いて特に有効である。
However, since a certain amount of time is required for the reaction between ammonia and nitrogen oxides, the present invention is particularly effective for use in medium and low speed engines where there is sufficient time for the exhaust process.

また1本発明には、アンモニアだけでなく分解して、ア
ンモニアを生成する尿素などのアンモニア前駆物質を使
用することができると共に1両者を併用することもでき
る。
Furthermore, in the present invention, not only ammonia but also an ammonia precursor such as urea that decomposes to produce ammonia can be used, and both can be used in combination.

〔発明の効果〕〔Effect of the invention〕

排気弁の開弁前のシリンダ内のガス又は排気弁開弁直後
排ガスは温度が高い(1,000℃〜800℃程度)が
、本発明では、この時に上記ガス又は排ガスにアンモニ
ア又はその前駆物質を混入することによって、酸素の存
在下でアンモニアとガス又は排ガス中の窒素酸化物を反
応させることができ、触媒なしで窒素酸化物を分解する
ことができ、また排気管後部等に設置する触媒の使用量
を低減することができる。
The gas in the cylinder before the exhaust valve is opened or the exhaust gas immediately after the exhaust valve is opened has a high temperature (approximately 1,000°C to 800°C), but in the present invention, ammonia or its precursor is added to the gas or exhaust gas at this time. By mixing ammonia with nitrogen oxides in gas or exhaust gas in the presence of oxygen, it is possible to decompose nitrogen oxides without a catalyst. can reduce the usage amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大形低速2サイクルデイーゼルエンジンに適用
した本発明の第一の実施例の説明図、第2図は同実施例
におけるアンモニア噴射弁、排気弁及び掃気孔の開弁、
閉弁時期の相対的関係を示す説明図、第3図は大形低速
2サイクルデイーゼルエンジンに適用した本発明の第二
の実施例の説明図、第4図は従来の内燃機関の排気脱硝
方法の説明図である。 1.01・・・ピストン、     2.02・・・シ
リンダ。 3.03・・・シリンダヘラ)”、  4.04・・・
排気ポート。 5.05・・・排気弁、      6.06・・・排
気集合管。 7.07・・・燃料噴射弁、    8.08・・・ア
ンモニア噴射弁。 9.09・・・アンモニア噴射用ポンプ。 10.010・・・アンモニアボンば。 11.011・・・アンモニア噴射弁の開弁コントロー
九12.012・・・開弁時期を検知するクランク角度
センナ。 13.013・・・掃気孔。
FIG. 1 is an explanatory diagram of the first embodiment of the present invention applied to a large, low-speed two-stroke diesel engine, and FIG. 2 shows the opening of the ammonia injection valve, exhaust valve, and scavenging hole in the same embodiment.
An explanatory diagram showing the relative relationship between valve closing timings, Fig. 3 is an explanatory diagram of the second embodiment of the present invention applied to a large, low-speed two-stroke diesel engine, and Fig. 4 is a conventional exhaust gas denitrification method for an internal combustion engine. FIG. 1.01...Piston, 2.02...Cylinder. 3.03...Cylinder spatula)", 4.04...
exhaust port. 5.05...Exhaust valve, 6.06...Exhaust collecting pipe. 7.07...Fuel injection valve, 8.08...Ammonia injection valve. 9.09...Ammonia injection pump. 10.010...Ammonia bomb. 11.011... Ammonia injection valve opening control 912.012... Crank angle sensor that detects the valve opening timing. 13.013...Scavenging hole.

Claims (1)

【特許請求の範囲】[Claims] 排気弁開弁直前にシリンダ内のガスへアンモニア及び/
又はその前駆物質を混入し、又は排気弁開弁直後に排ガ
スへアンモニア及び/又はその前駆物質を混入して排気
中の酸化窒素を分解させることを特徴とする内燃機関の
排気脱硝方法。
Immediately before the exhaust valve opens, ammonia and/or
An exhaust gas denitrification method for an internal combustion engine, characterized in that nitrogen oxides in the exhaust are decomposed by mixing ammonia or its precursor, or by mixing ammonia and/or its precursor into exhaust gas immediately after opening an exhaust valve.
JP63148010A 1988-06-17 1988-06-17 Denitration method for exhaust of internal combustion engine Pending JPH01318716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63148010A JPH01318716A (en) 1988-06-17 1988-06-17 Denitration method for exhaust of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63148010A JPH01318716A (en) 1988-06-17 1988-06-17 Denitration method for exhaust of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01318716A true JPH01318716A (en) 1989-12-25

Family

ID=15443085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63148010A Pending JPH01318716A (en) 1988-06-17 1988-06-17 Denitration method for exhaust of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01318716A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246273A (en) * 1991-01-31 1992-09-02 Mitsubishi Motors Corp Diesel engine for low environmental pollution
EP0527362A1 (en) * 1991-08-13 1993-02-17 MAN B & W Diesel Aktiengesellschaft Method and device for reducing nitrogen oxide emissions from internal combustion engines
WO1995006805A1 (en) * 1993-08-30 1995-03-09 Platinum Plus, Inc. The reduction of nitrogen oxides emissions from diesel engines
WO2006048120A1 (en) * 2004-11-03 2006-05-11 Daimlerchrysler Ag Method for operating an internal combustion engine with an scr catalyst
JP2008128047A (en) * 2006-11-17 2008-06-05 Mitsubishi Motors Corp Exhaust gas purification device
WO2009081227A1 (en) * 2007-12-20 2009-07-02 Renault Trucks Six-stroke internal combustion engine, method of operation of such an engine and vehicle equipped with such an engine
JP2009264369A (en) * 2008-04-04 2009-11-12 Masao Masuyama Heat engine
EP2426327A1 (en) * 2009-04-28 2012-03-07 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for engine
WO2012077627A1 (en) * 2010-12-09 2012-06-14 日立造船株式会社 Two-stroke engine and four-stroke engine
JP2013113178A (en) * 2011-11-28 2013-06-10 Masao Masuyama Heat engine
JP2013155639A (en) * 2012-01-27 2013-08-15 Ihi Corp NOx REMOVAL DEVICE
KR101648671B1 (en) * 2015-06-10 2016-08-23 서울대학교산학협력단 Pre-combustion Ammonia Engine and the Method for Reducing Exhaust thereof
CN106014601A (en) * 2012-04-11 2016-10-12 三菱重工业株式会社 2-cycle gas engine and fule gas injection system used by engine
CN109488452A (en) * 2018-09-28 2019-03-19 唐心昱 There is no the spark ignition type two-stroke internal combustion engine of compression stroke
EP3670878A1 (en) * 2018-12-19 2020-06-24 Winterthur Gas & Diesel Ltd. Internal combustion engine
EP3936713A4 (en) * 2019-03-08 2022-10-26 JFE Engineering Corporation Diesel engine
WO2022254735A1 (en) * 2021-06-03 2022-12-08 株式会社三井E&Sマシナリー Apparatus and method for processing excess ammonia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104513A (en) * 1979-02-06 1980-08-11 Nissan Motor Co Ltd Exhaust-gas purifying system for internal combustion engine
JPS586045A (en) * 1981-07-02 1983-01-13 近藤 孝 Vehicle charger
JPS6119940A (en) * 1984-07-07 1986-01-28 Mitsubishi Heavy Ind Ltd Method of introducing intake-air and discharging exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104513A (en) * 1979-02-06 1980-08-11 Nissan Motor Co Ltd Exhaust-gas purifying system for internal combustion engine
JPS586045A (en) * 1981-07-02 1983-01-13 近藤 孝 Vehicle charger
JPS6119940A (en) * 1984-07-07 1986-01-28 Mitsubishi Heavy Ind Ltd Method of introducing intake-air and discharging exhaust gas

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246273A (en) * 1991-01-31 1992-09-02 Mitsubishi Motors Corp Diesel engine for low environmental pollution
EP0527362A1 (en) * 1991-08-13 1993-02-17 MAN B & W Diesel Aktiengesellschaft Method and device for reducing nitrogen oxide emissions from internal combustion engines
DE4126705A1 (en) * 1991-08-13 1993-02-18 Man B & W Diesel Ag METHOD AND DEVICE FOR REDUCING THE NITROGEN EMISSIONS OF COMBUSTION ENGINES
WO1995006805A1 (en) * 1993-08-30 1995-03-09 Platinum Plus, Inc. The reduction of nitrogen oxides emissions from diesel engines
US5404841A (en) * 1993-08-30 1995-04-11 Valentine; James M. Reduction of nitrogen oxides emissions from diesel engines
US5535708A (en) * 1993-08-30 1996-07-16 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from diesel engines
WO2006048120A1 (en) * 2004-11-03 2006-05-11 Daimlerchrysler Ag Method for operating an internal combustion engine with an scr catalyst
JP2008128047A (en) * 2006-11-17 2008-06-05 Mitsubishi Motors Corp Exhaust gas purification device
JP4696288B2 (en) * 2006-11-17 2011-06-08 三菱自動車工業株式会社 Exhaust purification device
WO2009081227A1 (en) * 2007-12-20 2009-07-02 Renault Trucks Six-stroke internal combustion engine, method of operation of such an engine and vehicle equipped with such an engine
JP2009264369A (en) * 2008-04-04 2009-11-12 Masao Masuyama Heat engine
EP2426327A1 (en) * 2009-04-28 2012-03-07 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for engine
EP2426327A4 (en) * 2009-04-28 2013-07-24 Toyota Motor Co Ltd Exhaust emission control device for engine
WO2012077627A1 (en) * 2010-12-09 2012-06-14 日立造船株式会社 Two-stroke engine and four-stroke engine
JP2012122423A (en) * 2010-12-09 2012-06-28 Hitachi Zosen Corp Two-stroke engine and four-stroke engine
CN103249939A (en) * 2010-12-09 2013-08-14 日立造船株式会社 Two-stroke engine and four-stroke engine
US9404412B2 (en) 2010-12-09 2016-08-02 Hitachi Zosen Corporation Two-stroke engine and four-stroke engine
JP2013113178A (en) * 2011-11-28 2013-06-10 Masao Masuyama Heat engine
JP2013155639A (en) * 2012-01-27 2013-08-15 Ihi Corp NOx REMOVAL DEVICE
CN106014601A (en) * 2012-04-11 2016-10-12 三菱重工业株式会社 2-cycle gas engine and fule gas injection system used by engine
CN106014601B (en) * 2012-04-11 2019-06-04 三菱重工业株式会社 The fuel gas spraying system of two-stroke gas engine and the engine
KR101648671B1 (en) * 2015-06-10 2016-08-23 서울대학교산학협력단 Pre-combustion Ammonia Engine and the Method for Reducing Exhaust thereof
CN109488452A (en) * 2018-09-28 2019-03-19 唐心昱 There is no the spark ignition type two-stroke internal combustion engine of compression stroke
EP3670878A1 (en) * 2018-12-19 2020-06-24 Winterthur Gas & Diesel Ltd. Internal combustion engine
CN111335988A (en) * 2018-12-19 2020-06-26 温特图尔汽柴油公司 Internal combustion engine
EP3936713A4 (en) * 2019-03-08 2022-10-26 JFE Engineering Corporation Diesel engine
WO2022254735A1 (en) * 2021-06-03 2022-12-08 株式会社三井E&Sマシナリー Apparatus and method for processing excess ammonia

Similar Documents

Publication Publication Date Title
JPH01318716A (en) Denitration method for exhaust of internal combustion engine
US4946659A (en) Process for the reduction of the nitrogen oxides in exhaust gases using a zeolite-containing catalyst
CN102312712B (en) System and method for determining an age of and controlling a selective catalytic reduction catalyst
US8176729B2 (en) Perturbation control strategy for low-temperature urea SCR NOx reduction
ATE249576T1 (en) SELECTIVE CATALYTIC REDUCTION SYSTEM AND METHOD
JPS61200321A (en) Combustion method of internal combustion engine
US5419286A (en) System for lowering emissions of nitrogen oxides
JP2001507103A (en) Exhaust aftertreatment method for direct fuel injection type piston internal combustion engine
JP2011508131A (en) 6-stroke internal combustion engine, method of operating such an engine and vehicle equipped with such an engine
EP1025351A4 (en) Low emission power plant and method of making same
ATE406507T1 (en) SYSTEM AND METHOD FOR REDUCING NITROGEN OXIDES FROM EXHAUST GASES PRODUCED BY LEAN-BURNING INTERNAL ENGINES
EP3369898B1 (en) After treatment system (ats) for a sparking ignition engine
JP3431644B2 (en) Method and apparatus for reducing nitrogen oxide emissions from an internal combustion engine
JP2592119B2 (en) Exhaust denitration equipment for internal combustion engines
CN114645789A (en) EGR control method, EGR control device, vehicle, storage medium and electronic device
US5787708A (en) Combustion exhaust purification system and method via high sac volume fuel injectors
JPH05156993A (en) Diesel engine
CN107642393B (en) Internal combustion engine and method for operating the same
GB878278A (en) Improvements in or relating to the operation of compression ignition engines
JP3140570B2 (en) Denitration equipment for internal combustion engines
US20090308056A1 (en) Procedure and device for the purification of exhaust gas
CN114575969A (en) Vehicle exhaust gas treatment system and vehicle
JP2013113153A (en) Marine internal combustion engine
JPH03253713A (en) Denitration device for internal combustion engine
JPS6447427A (en) Method for reducing nitrogen oxides in exhaust gas of internal combustion engine