WO2022254735A1 - Apparatus and method for processing excess ammonia - Google Patents

Apparatus and method for processing excess ammonia Download PDF

Info

Publication number
WO2022254735A1
WO2022254735A1 PCT/JP2021/024702 JP2021024702W WO2022254735A1 WO 2022254735 A1 WO2022254735 A1 WO 2022254735A1 JP 2021024702 W JP2021024702 W JP 2021024702W WO 2022254735 A1 WO2022254735 A1 WO 2022254735A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
unit
component
reduction catalyst
surplus
Prior art date
Application number
PCT/JP2021/024702
Other languages
French (fr)
Japanese (ja)
Inventor
望 服部
聡一郎 櫻井
一孝 島田
Original Assignee
株式会社三井E&Sマシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井E&Sマシナリー filed Critical 株式会社三井E&Sマシナリー
Priority to JP2021538972A priority Critical patent/JP6940727B1/en
Priority to KR1020237035482A priority patent/KR20230158084A/en
Priority to CN202180096900.9A priority patent/CN117425768A/en
Publication of WO2022254735A1 publication Critical patent/WO2022254735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the treatment of surplus ammonia.
  • Liquefied ammonia (LNH3) is used in marine diesel engines that use ammonia as part of their fuel. For safety reasons, the liquefied ammonia must be depressurized and released into the atmosphere when the engine is stopped or in an emergency. Since ammonia affects the human body, it cannot be released into the atmosphere as it is. Therefore, it is necessary to remove the ammonia with an abatement device.
  • a selective reduction catalyst unit is used to remove nitrogen oxides generated by combustion of raw materials such as heavy oil. Large amounts of urea, ammonia, and ammonia compounds are required as reducing agent materials and stored in tanks.
  • Patent Document 1 discloses an emission control system and related method for treating an exhaust gas stream.
  • US Pat. No. 5,300,004 includes the use of an ammonia production system to provide ammonia for injection into the exhaust gas stream as a reductant for a selective reduction catalyst.
  • Patent Document 1 requires stockpiling of ammonium hydroxide, which is a raw material for generating ammonia as a reducing agent for the selective reduction catalyst.
  • the technology disclosed in Patent Literature 1 does not effectively utilize surplus ammonia generated from an engine or the like.
  • An object of the present invention is to provide a surplus ammonia processing apparatus and processing method that can effectively utilize surplus ammonia.
  • a first aspect of the present invention is A surplus ammonia treatment device in a marine diesel engine that uses ammonia as part of the fuel and is connected to a selective reduction catalyst unit, a separation vessel for containing the waste liquid from the marine diesel engine and separating the oil and ammonia components; a transport unit that supplies the ammonia component separated in the separation vessel to the selective reduction catalyst unit;
  • a surplus ammonia treatment device having
  • a second aspect of the present invention is A method for treating surplus ammonia in a marine diesel engine that uses ammonia as part of its fuel and is connected to a selective reduction catalyst unit, comprising: containing waste liquid from the marine diesel engine; separating the waste liquid into an oil component and an ammonia component; supplying the separated ammonia component to the selective reduction catalyst unit; This is a method for treating excess ammonia.
  • surplus ammonia treatment apparatus and treatment method of the present invention surplus ammonia can be effectively used.
  • FIG. 1 is a schematic diagram of the surplus ammonia processing unit 1 of this embodiment.
  • the surplus ammonia treatment unit 1 has a separation vessel 2 and a transport section 6 .
  • the separation container 2 may have a separation section 3 .
  • the extraction unit 4 may be attached to the separation container 2 .
  • the oil extracted in the separation container 2 is stored in the lower part of the separation container 2 and sent to the bilge tank 30, which will be described later. Therefore, it is desirable to install the extraction part 4 on the upper part of the separation container 2 .
  • Separation vessel 2 contains effluent from each unit of a marine diesel engine that uses ammonia as part of its fuel. Specifically, as shown in FIGS. 4 and 5 , waste liquid from the fuel supply unit 21 , the reducing agent supply unit 22 of the selective reduction catalyst, and the marine diesel engine unit 23 is stored in the separation container 2 . Ammonia is supplied to a fuel supply unit 21, a reducing agent supply unit 22, and a marine diesel engine unit 23 from an ammonia fuel tank 20 installed on board. Therefore, the effluent contains excess ammonia. In addition, when the separation container 2 uses the principle of specific gravity separation, it is desirable that the waste liquid flows in from the upper part of the separation container 2 . 4 and 5, solid line arrows indicate the flow of the ammonia component, and broken line arrows indicate the flow of the drain.
  • the separation container 2 separates the waste liquid into oil and ammonia components. For example, when using the principle of specific gravity separation, the waste liquid that has flowed into the separation container 2 is separated into an oil component and an ammonia component due to the difference in specific gravity.
  • the separation container 2 may have a separation section 3 .
  • the separation unit 3 separates the waste liquid that has flowed into the separation container 2 into oil and ammonia components using, for example, the principles of filter separation, cyclone separation, and centrifugal separation.
  • the separated oil is supplied to the bilge tank 30.
  • the separated ammonia component is supplied to the transportation section 6 via the extraction section 4 and the storage section 5, as shown in FIGS.
  • the extractor 4 removes impurities that may be contained in the liquefied ammonia separated by the separation vessel 2 . Therefore, when the separated ammonia component is ammonia gas, depending on the state of the waste liquid discharged from the marine diesel engine unit 23 or the like, the ammonia component may be transported to the transport section 6 without going through the extraction section 4 and the storage section 5 . may be supplied. Moreover, as shown in FIG. 3, when the separated ammonia component is ammonia water, the ammonia component may be supplied to the storage unit 5 without passing through the extraction unit 4 in the same manner.
  • the extraction unit 4 mainly removes inorganic substances such as calcium compounds and metal pieces with a filter, but the removal method is not limited to a filter or the like. Especially when using a filter, a filter with a pitch of about 10 micrometers is preferable from the viewpoint of removal rate.
  • the storage unit 5 stores liquefied ammonia supplied directly from the separation vessel 2 or via the extraction unit 4.
  • a vaporizer 8 is attached between the storage section 5 and the transport section 6 .
  • the ammonia gas when ammonia gas exists as a gas phase in the upper part of the storage unit 5 , the ammonia gas may be directly supplied to the selective reduction catalyst unit 61 by a blower without passing through the vaporizer 8 .
  • aqueous ammonia when aqueous ammonia is supplied to the selective reduction catalyst unit 61 and the like, water or a neutralizing agent is injected into the storage unit 5 from above as shown in FIG.
  • a concentration adjustment unit 9 may be installed near the outlet of the storage unit 5 and connected to the transport unit 6 so that ammonia water having a predetermined concentration can be supplied.
  • the transport section 6 when supplying ammonia gas as a reducing agent, the transport section 6 supplies the ammonia gas sent from the vaporizer 8 to the selective reduction catalyst unit 61 .
  • the transport section 6 when ammonia water is supplied as the reducing agent, the transport section 6 supplies the ammonia water to the selective reduction catalyst unit 61 .
  • the fuel may be supplied from the transport section 6 to a pump unit 62 provided in the fuel supply unit 21 instead of the selective reduction catalyst unit 61 .
  • the selective reduction catalyst unit 61 or the pump unit 62 can be selected as the supply destination from the transport section 6, or a combination thereof may be selected.
  • the selective reduction catalyst unit 61 is directly or indirectly connected to the marine diesel engine unit 23 .
  • the oil separated in the separation container 2 is supplied to the bilge tank 30. Since a small amount of liquefied ammonia is mixed and dissolved in the oil and impurities extracted in the extraction unit 4 , they are similarly supplied to the bilge tank 30 . Since the ammonia gas obtained from the bilge tank 30 cannot be released into the atmosphere as it is, the abatement device 7 is used. In order to release ammonia into the atmosphere, the abatement device 7 adjusts the ammonia gas to a concentration that does not affect the human body. For example, the abatement device 7 adjusts the ammonia concentration to about 25 PPM or less.
  • the storage unit 5 temporarily stores the scrubber water.
  • Ammonia is a highly toxic substance, but is highly soluble in water. Therefore, the ammonia water supplied to the transport unit 6 via the storage unit 5 is unlikely to be mixed with the ammonia gas volatilized from the liquefied ammonia.
  • a method of absorbing ammonia gas into water is called a scrubber. Scrubbers are low cost and easy to operate.
  • the vaporizer 8 is attached between the storage section 5 and the transport section 6. However, in order to prevent stress corrosion cracking, it is preferable to install a vaporizer 8 just before the transport section 6 .
  • heat source for the evaporator 8 heat from cooling water of the marine diesel engine unit 23 and exhaust gas can be used in addition to heat from electricity. As a result, together with the surplus ammonia processing unit 1, environmental friendliness is enhanced.
  • the concentration adjustment section 9 is attached to the storage section 5.
  • the concentration adjustment unit 9 supplies ammonia water at a predetermined concentration to the transportation unit 6 .
  • the density adjustment unit 9 is a density meter or a densitometer.
  • the density adjuster 9 is a density meter that can measure more easily than a densitometer. It is more preferable to acquire in advance the relationship between the measured value of the density meter and the concentration. For example, when the density meter in optical measurement shows a numerical value of 0.912, the ammonia water concentration is about 15%. The ammonia water concentration is about 40% at maximum in a saturated state.
  • the selective reduction catalyst unit 61 it is preferable that the aqueous ammonia concentration is high.
  • FIG. 2 is one aspect of the present embodiment, and is an overall view of a surplus ammonia processing unit when ammonia gas is supplied. Waste liquid discharged from a fuel supply unit 21, a selective reduction catalyst reducing agent supply unit 22, and a marine diesel engine unit 23 shown in FIGS.
  • the separation container 2 recovers liquefied ammonia, which is surplus ammonia contained in the waste liquid.
  • the separation container 2 uses the principle of gravity separation, the separated oil is stored in the lower part of the separation container 2.
  • liquefied ammonia is stored in the upper part of the separation vessel 2 .
  • Oil stored in the lower part is supplied to the bilge tank 30 .
  • liquefied ammonia mixed with oil and impurities extracted in the extraction unit 4 is also supplied to the bilge tank 30 .
  • Ammonia gas obtained from the bilge tank 30 is treated by the abatement device 7 and then released to the atmosphere.
  • the oil contained in the waste liquid is, for example, seal oil used for fuel injection valves of the fuel supply unit 21 and marine diesel engine unit 23 .
  • seal oil used for fuel injection valves of the fuel supply unit 21 and marine diesel engine unit 23 .
  • propane gas molecules themselves which are the main component, do not have polarity. Therefore, the propane gas molecules are mixed with the seal oil and can be treated as fuel.
  • ammonia molecules themselves have polarity. Therefore, the ammonia molecules do not mix with the seal oil, making it difficult to treat it as fuel. Therefore, in the separation vessel 2, the oil and liquefied ammonia are separated.
  • the liquefied ammonia separated in the separation container 2 is supplied to the storage section 5 via the extraction section 4 or directly.
  • the extractor 4 removes impurities that may be contained in the liquefied ammonia. Impurities are mainly volatile oils. When impurities are supplied to the selective reduction catalyst unit 61, oil adheres to the catalyst, degrading its performance. Therefore, it is desirable to install the extractor 4 in front of the reservoir 5 so as to remove the oil that could not be separated by gravity separation or the like in the separation vessel 2 . By removing impurities such as unnecessary oil, the efficiency of the selective reduction catalyst unit 61 is increased.
  • liquefied ammonia may be supplied directly from the separation container 2 to the storage unit 5 without passing through the extraction unit 4 .
  • the liquefied ammonia supplied to the storage unit 5 is supplied to the transportation unit 6 as ammonia gas by the vaporizer 8 . Further, ammonia gas is supplied to the selective reduction catalyst unit 61 and used as a reducing agent.
  • the reason why ammonia gas is supplied to the selective reduction catalyst unit 61 instead of liquefied ammonia is that the temperature of liquefied ammonia is considerably lower than the temperature at which the selective reduction catalyst unit 61 acts. It is efficient to gasify ammonia so that the catalytic action of the selective reduction catalyst unit 61 is enhanced.
  • the supply of steam pressure eliminates the need for pumps and cooling, increasing the energy efficiency of the entire system.
  • the carburetor 8 is preferably installed immediately before the transport section 6 in order to prevent stress corrosion cracking of each engine, pipes, and the like. Furthermore, as the heat source of the evaporator 8, cooling water of the marine diesel engine unit 23 and heat of the exhaust gas of the marine diesel engine unit 23 can be used in addition to heat from electricity. This improves environmental friendliness.
  • the ammonia gas obtained from the vaporizer 8 is preferably pressurized to, for example, about 6 bar, more preferably about 7 bar, and even more preferably about 8 bar. Specifically, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 bar, even within the range between any two of the numerical values exemplified here good. As a result, there is no need to install a booster in the transportation section 6, and the configuration of the surplus ammonia processing unit 1 can be simplified.
  • FIG. 3 is one aspect of the present embodiment, and is an overall view of a surplus ammonia processing unit when ammonia water is supplied.
  • the functions and configurations of the separation container 2, the separation section 3, and the extraction section 4 are the same as those of the first embodiment.
  • the storage unit 5 stocks the separated ammonia component directly from the separation container 2 or via the extraction unit 4 .
  • the ammonia component is changed to ammonia water.
  • aqueous ammonia is supplied to the selective reduction catalyst unit 61 through the transport section 6 .
  • Liquefied ammonia can also cause stress corrosion cracking.
  • a neutralizing agent such as dilute sulfuric acid
  • it must be passed through the abatement device 7 in order to discharge excess ammonia to the atmosphere.
  • the neutralizing agent in advance, the load on the abatement device 7 becomes lighter than when water is used.
  • the concentration adjustment unit 9 is installed in the storage unit 5.
  • the ammonia supplied from the transport section 6 is a very small part of the ammonia used in the selective reduction catalyst unit 61, and is used in a supplementary manner. Therefore, if the concentration of aqueous ammonia is constant, nitrogen oxides can be efficiently removed regardless of whether the engine is in steady or unsteady operation. It should be noted that although the concentration of ammonia in the concentration adjustment unit 9 is preferably as high as possible, there is no lower limit to the concentration.
  • Table 1 shows the results of a simulated reactor test conducted to investigate the relationship between the ammonia concentration in the concentration adjustment unit 9, the denitrification rate in the selective reduction catalyst unit 61, and the concentration of leaked ammonia before being released to the atmosphere.
  • the ammonia water flow rate ratio shown in Table 1 is a value when the flow rate at an ammonia water concentration of 14 w% is set to 1, and is a value adjusted so that the ammonia concentration with respect to the entire exhaust gas is about 500 PPM at the time of vaporization. be. This numerical value is the flow rate adjusted so that the concentration of nitrogen oxides is approximately 1:1, or the amount of ammonia is slightly reduced.
  • the reservoir 5 is part of the abatement device 7 .
  • ammonia cannot be released into the atmosphere as it is because it affects the human body. Ammonia must be removed by the abatement device 7 .
  • Methods for removing the harm include a method of diluting ammonia with gas such as nitrogen, and a method of absorbing ammonia in water such as a scrubber as described above.
  • the surplus ammonia obtained in the surplus ammonia processing unit 1 of the first embodiment and the second embodiment is supplied to the selective reduction catalyst unit 61, via the pump unit 62 as shown in FIG. It may be supplied to the fuel supply unit 21 . Alternatively, surplus ammonia may be supplied directly to the marine diesel engine unit 23 via the pump unit 62 . By sending ammonia water to the fuel supply unit, fuel efficiency is improved and the concentration of nitrogen oxides in the exhaust gas is reduced.
  • either the selective reduction catalyst unit 61 or the pump unit 62 may be selected, or both may be used together.
  • the volume ratio of surplus ammonia when used together may be determined by the user as appropriate. Depending on the operating conditions of the engine, supplying either one will improve the fuel efficiency of the ammonia as a whole. Further, by using both together, the efficiency is further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The present invention provides an apparatus and method for processing excess ammonia, the apparatus and method being capable of effectively utilizing excess ammonia. An apparatus for processing excess ammonia according to the present invention to be used for a marine diesel engine 23, which uses ammonia as a part of the fuel and is connected to a selective reduction catalyst unit 61, is provided with: a separation container 2 which contains a waste liquid from the marine diesel engine and separates an oil component and an ammonia component from each other; and a transportation unit 6 which supplies the ammonia component separated by the separation container 2 to the selective reduction catalyst unit 61.

Description

余剰アンモニアの処理装置および処理方法Apparatus and method for treating surplus ammonia
 本発明は、余剰アンモニアの処理に関する。 The present invention relates to the treatment of surplus ammonia.
 アンモニアを燃料の一部とする舶用ディーゼルエンジンでは、液化アンモニア(LNH3)が用いられる。エンジン停止時及び緊急停止時においては、安全のため、液化アンモニアを減圧させて大気へ放出する必要がある。アンモニアは、人体に影響があるため、そのまま大気放出することはできない。そのため、除害装置によりアンモニアを除去する必要がある。
 一方、ディーゼルエンジンでは、重油に代表される原料の燃焼により発生する窒素酸化物を除去するために、選択式還元触媒ユニットが用いられる。還元剤材料として、尿素、アンモニア、アンモニア化合物が大量に必要となり、タンクに備蓄される。
Liquefied ammonia (LNH3) is used in marine diesel engines that use ammonia as part of their fuel. For safety reasons, the liquefied ammonia must be depressurized and released into the atmosphere when the engine is stopped or in an emergency. Since ammonia affects the human body, it cannot be released into the atmosphere as it is. Therefore, it is necessary to remove the ammonia with an abatement device.
On the other hand, in diesel engines, a selective reduction catalyst unit is used to remove nitrogen oxides generated by combustion of raw materials such as heavy oil. Large amounts of urea, ammonia, and ammonia compounds are required as reducing agent materials and stored in tanks.
 特表2020-515764号公報(以下、「特許文献1」)には、排気ガス流の処理のための排出制御システム及び関連する方法が開示されている。特許文献1は、選択式還元触媒の還元剤として排気ガス流中に注入するアンモニアを提供するためのアンモニア生成システムの使用を含む。 Japanese National Publication of International Patent Application No. 2020-515764 (hereinafter referred to as "Patent Document 1") discloses an emission control system and related method for treating an exhaust gas stream. US Pat. No. 5,300,004 includes the use of an ammonia production system to provide ammonia for injection into the exhaust gas stream as a reductant for a selective reduction catalyst.
 特許文献1に開示される技術は、選択式還元触媒の還元剤としてアンモニアを生成するための原料であるアンモニウムヒドロキシドを備蓄する必要がある。特許文献1に開示される技術は、エンジン等から発生する余剰アンモニアを有効利用するものではなない。 The technology disclosed in Patent Document 1 requires stockpiling of ammonium hydroxide, which is a raw material for generating ammonia as a reducing agent for the selective reduction catalyst. The technology disclosed in Patent Literature 1 does not effectively utilize surplus ammonia generated from an engine or the like.
 本発明は、余剰アンモニアを有効利用できる余剰アンモニアの処理装置および処理方法を提供することを目的とする。 An object of the present invention is to provide a surplus ammonia processing apparatus and processing method that can effectively utilize surplus ammonia.
 本発明の第1の観点は、
 アンモニアを燃料の一部とし、選択式還元触媒ユニットと接続される舶用ディーゼルエンジンにおける余剰アンモニアの処理装置であって、
 前記舶用ディーゼルエンジンからの廃液を収容し、油分とアンモニア成分とを分離する分離容器と、
 前記分離容器で分離された前記アンモニア成分を前記選択式還元触媒ユニットに供給する輸送部と、
 を有する余剰アンモニアの処理装置である。
A first aspect of the present invention is
A surplus ammonia treatment device in a marine diesel engine that uses ammonia as part of the fuel and is connected to a selective reduction catalyst unit,
a separation vessel for containing the waste liquid from the marine diesel engine and separating the oil and ammonia components;
a transport unit that supplies the ammonia component separated in the separation vessel to the selective reduction catalyst unit;
A surplus ammonia treatment device having
 本発明の第2の観点は、
 アンモニアを燃料の一部とし、選択式還元触媒ユニットと接続される舶用ディーゼルエンジンにおける余剰アンモニアの処理方法であって、
 前記舶用ディーゼルエンジンからの廃液を収容し、
 前記廃液を油分とアンモニア成分とに分離し、
 分離された前記アンモニア成分を前記選択式還元触媒ユニットに供給する、
 余剰アンモニアの処理方法である。
A second aspect of the present invention is
A method for treating surplus ammonia in a marine diesel engine that uses ammonia as part of its fuel and is connected to a selective reduction catalyst unit, comprising:
containing waste liquid from the marine diesel engine;
separating the waste liquid into an oil component and an ammonia component;
supplying the separated ammonia component to the selective reduction catalyst unit;
This is a method for treating excess ammonia.
 本発明の余剰アンモニアの処理装置および処理方法によれば、余剰アンモニアを有効利用できる。 According to the surplus ammonia treatment apparatus and treatment method of the present invention, surplus ammonia can be effectively used.
本実施形態の余剰アンモニア処理ユニットの概要図Schematic diagram of the surplus ammonia processing unit of the present embodiment アンモニアガスが供給される場合の余剰アンモニア処理ユニット全体図General view of surplus ammonia processing unit when ammonia gas is supplied アンモニア水が供給される場合の余剰アンモニア処理ユニット全体図Overall view of surplus ammonia processing unit when ammonia water is supplied 余剰アンモニアが選択式還元触媒ユニットに供給される場合のシステム全体図Overall system diagram when surplus ammonia is supplied to the selective reduction catalyst unit 余剰アンモニアが選択式還元触媒ユニットに供給、または、燃料供給ユニットに供給される場合のシステム全体図Overall system diagram when surplus ammonia is supplied to the selective reduction catalyst unit or supplied to the fuel supply unit
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
 まず、本実施形態の余剰アンモニア処理ユニットの構成について説明する。
Embodiments of the present invention will be described below with reference to the drawings. Various features shown in the embodiments shown below can be combined with each other.
First, the configuration of the surplus ammonia processing unit of this embodiment will be described.
 図1は、本実施形態の余剰アンモニア処理ユニット1の概略図である。余剰アンモニア処理ユニット1は、分離容器2と、輸送部6とを有する。分離容器2は、分離部3を有してもよい。また、分離容器2に抽出部4が取り付けられてもよい。なお、分離容器2で抽出される油分は、分離容器2の下部に貯められ、後述するビルジタンク30に送られる。そのため、抽出部4は、分離容器2の上部に設置されることが望ましい。 FIG. 1 is a schematic diagram of the surplus ammonia processing unit 1 of this embodiment. The surplus ammonia treatment unit 1 has a separation vessel 2 and a transport section 6 . The separation container 2 may have a separation section 3 . Moreover, the extraction unit 4 may be attached to the separation container 2 . The oil extracted in the separation container 2 is stored in the lower part of the separation container 2 and sent to the bilge tank 30, which will be described later. Therefore, it is desirable to install the extraction part 4 on the upper part of the separation container 2 .
 分離容器2は、アンモニアを燃料の一部とする舶用ディーゼルエンジンの各ユニットからの廃液を収容する。具体的には、図4および図5に示されるように、燃料供給ユニット21、選択式還元触媒の還元剤供給ユニット22、舶用ディーゼルエンジンユニット23からの廃液が分離容器2に収容される。船上に設置されたアンモニア燃料タンク20から、燃料供給ユニット21、還元剤供給ユニット22、舶用ディーゼルエンジンユニット23に、アンモニアが供給される。そのため、廃液は余剰アンモニアを含む。なお、分離容器2が比重分離の原理を用いている場合、分離容器2の上部から廃液が流入することが望ましい。
 なお、図4、図5において、実線の矢印は、アンモニア成分の流れを示し、破線の矢印は、ドレインの流れを示す。
Separation vessel 2 contains effluent from each unit of a marine diesel engine that uses ammonia as part of its fuel. Specifically, as shown in FIGS. 4 and 5 , waste liquid from the fuel supply unit 21 , the reducing agent supply unit 22 of the selective reduction catalyst, and the marine diesel engine unit 23 is stored in the separation container 2 . Ammonia is supplied to a fuel supply unit 21, a reducing agent supply unit 22, and a marine diesel engine unit 23 from an ammonia fuel tank 20 installed on board. Therefore, the effluent contains excess ammonia. In addition, when the separation container 2 uses the principle of specific gravity separation, it is desirable that the waste liquid flows in from the upper part of the separation container 2 .
4 and 5, solid line arrows indicate the flow of the ammonia component, and broken line arrows indicate the flow of the drain.
 分離容器2は、廃液を油分とアンモニア成分に分離する。例えば、比重分離の原理を用いる場合、分離容器2に流入した廃液は、比重の違いにより油分とアンモニア成分に分離する。分離容器2は、分離部3を有してもよい。分離部3は、例えば、フィルター分離、サイクロン分離、遠心分離の原理を用いて、分離容器2に流入した廃液を油分とアンモニア成分に分離する。分離された油分は、ビルジタンク30に供給される。一方、分離されたアンモニア成分は、図2や図3に記載されるように、抽出部4や貯蔵部5を経由して、輸送部6へ供給される。 The separation container 2 separates the waste liquid into oil and ammonia components. For example, when using the principle of specific gravity separation, the waste liquid that has flowed into the separation container 2 is separated into an oil component and an ammonia component due to the difference in specific gravity. The separation container 2 may have a separation section 3 . The separation unit 3 separates the waste liquid that has flowed into the separation container 2 into oil and ammonia components using, for example, the principles of filter separation, cyclone separation, and centrifugal separation. The separated oil is supplied to the bilge tank 30. On the other hand, the separated ammonia component is supplied to the transportation section 6 via the extraction section 4 and the storage section 5, as shown in FIGS.
 図2および図3に示すように、抽出部4は、分離容器2で分離された液化アンモニアに含まれうる不純物を除去する。よって、分離されたアンモニア成分が、アンモニアガスである場合、舶用ディーゼルエンジンユニット23などから排出される廃液の状態によっては、抽出部4および貯蔵部5を経由することなく、輸送部6にアンモニア成分が供給されてもよい。
 また、図3に示すように、分離されたアンモニア成分が、アンモニア水の場合も同様に、抽出部4を経由することなく、貯蔵部5にアンモニア成分が供給されてもよい。
As shown in FIGS. 2 and 3 , the extractor 4 removes impurities that may be contained in the liquefied ammonia separated by the separation vessel 2 . Therefore, when the separated ammonia component is ammonia gas, depending on the state of the waste liquid discharged from the marine diesel engine unit 23 or the like, the ammonia component may be transported to the transport section 6 without going through the extraction section 4 and the storage section 5 . may be supplied.
Moreover, as shown in FIG. 3, when the separated ammonia component is ammonia water, the ammonia component may be supplied to the storage unit 5 without passing through the extraction unit 4 in the same manner.
 なお、抽出部4は、おもにカルシウム化合物、金属片等の無機物をフィルターによって除去するが、除去方法はフィルター等に限られるものではない。特にフィルターを用いる場合は、ピッチが10マイクロメートル程度のものが、除去率の観点から好ましい。 In addition, the extraction unit 4 mainly removes inorganic substances such as calcium compounds and metal pieces with a filter, but the removal method is not limited to a filter or the like. Especially when using a filter, a filter with a pitch of about 10 micrometers is preferable from the viewpoint of removal rate.
 図2に示すように、貯蔵部5は、分離容器2から直接、または抽出部4を経て供給される液化アンモニアを貯蔵する。選択式還元触媒ユニット61等にアンモニアガスが供給される場合、貯蔵部5と輸送部6の間に気化器8が取り付けられる。 As shown in FIG. 2, the storage unit 5 stores liquefied ammonia supplied directly from the separation vessel 2 or via the extraction unit 4. When ammonia gas is supplied to the selective reduction catalyst unit 61 or the like, a vaporizer 8 is attached between the storage section 5 and the transport section 6 .
 なお、貯蔵部5の上部にアンモニアガスが気相として存在する場合には、気化器8を経由せず、ブロワーによってアンモニアガスを選択式還元触媒ユニット61に直接供給してもよい。
 一方、選択式還元触媒ユニット61等にアンモニア水が供給される場合、図3に示すように、貯蔵部5に水または中和剤が上部から注入される。また、所定の濃度のアンモニア水を供給できるように、貯蔵部5の出口付近に濃度調整部9が設置され、輸送部6に連結されてもよい。
In addition, when ammonia gas exists as a gas phase in the upper part of the storage unit 5 , the ammonia gas may be directly supplied to the selective reduction catalyst unit 61 by a blower without passing through the vaporizer 8 .
On the other hand, when aqueous ammonia is supplied to the selective reduction catalyst unit 61 and the like, water or a neutralizing agent is injected into the storage unit 5 from above as shown in FIG. Further, a concentration adjustment unit 9 may be installed near the outlet of the storage unit 5 and connected to the transport unit 6 so that ammonia water having a predetermined concentration can be supplied.
 図2に示すように、還元剤としてアンモニアガスを供給する場合、輸送部6は、気化器8から送られてきたアンモニアガスを選択式還元触媒ユニット61に供給する。
 一方、図3に示すように、還元剤としてアンモニア水を供給する場合、輸送部6は、アンモニア水を選択式還元触媒ユニット61に供給する。なお、図5に示すように、輸送部6から選択式還元触媒ユニット61ではなく、燃料供給ユニット21に備え付けられたポンプユニット62に供給されても良い。さらには、輸送部6からの供給先として、選択式還元触媒ユニット61またはポンプユニット62が選択でき、またはその組み合わせを選択しても良い。
 選択式還元触媒ユニット61は、舶用ディーゼルエンジンユニット23に直接的または間接的に接続される。
As shown in FIG. 2 , when supplying ammonia gas as a reducing agent, the transport section 6 supplies the ammonia gas sent from the vaporizer 8 to the selective reduction catalyst unit 61 .
On the other hand, as shown in FIG. 3 , when ammonia water is supplied as the reducing agent, the transport section 6 supplies the ammonia water to the selective reduction catalyst unit 61 . Note that, as shown in FIG. 5 , the fuel may be supplied from the transport section 6 to a pump unit 62 provided in the fuel supply unit 21 instead of the selective reduction catalyst unit 61 . Furthermore, the selective reduction catalyst unit 61 or the pump unit 62 can be selected as the supply destination from the transport section 6, or a combination thereof may be selected.
The selective reduction catalyst unit 61 is directly or indirectly connected to the marine diesel engine unit 23 .
 図2に示すように、分離容器2で分離された油分は、ビルジタンク30に供給される。抽出部4において抽出された油分や不純物にも少量の液化アンモニアが混入及び溶存しているため、同様にビルジタンク30に供給される。ビルジタンク30により得られたアンモニアガスは、このままでは大気放出できないため、除害装置7が用いられる。アンモニアを大気放出するため、除害装置7は、人体に影響がない濃度にアンモニアガスを調整する。例えば、除害装置7は、アンモニア濃度を約25PPM以下に調整する。 As shown in FIG. 2, the oil separated in the separation container 2 is supplied to the bilge tank 30. Since a small amount of liquefied ammonia is mixed and dissolved in the oil and impurities extracted in the extraction unit 4 , they are similarly supplied to the bilge tank 30 . Since the ammonia gas obtained from the bilge tank 30 cannot be released into the atmosphere as it is, the abatement device 7 is used. In order to release ammonia into the atmosphere, the abatement device 7 adjusts the ammonia gas to a concentration that does not affect the human body. For example, the abatement device 7 adjusts the ammonia concentration to about 25 PPM or less.
 一方、図3に示すように、アンモニア水を選択式還元触媒ユニット61に供給する場合には、除害装置7は不要である。このとき、貯蔵部5がスクラバ水を一次的に貯留する。アンモニアは、毒性の高い物質であるが、水に非常に溶けやすい。そのため、貯蔵部5を経由して輸送部6に供給されたアンモニア水に、液化アンモニアから揮発したアンモニアガスが混入する可能性は極めて低い。なお、水にアンモニアガスを吸収させる方法はスクラバと呼ばれる。スクラバは、低コストで操作が安易である。 On the other hand, as shown in FIG. 3, when ammonia water is supplied to the selective reduction catalyst unit 61, the abatement device 7 is unnecessary. At this time, the storage unit 5 temporarily stores the scrubber water. Ammonia is a highly toxic substance, but is highly soluble in water. Therefore, the ammonia water supplied to the transport unit 6 via the storage unit 5 is unlikely to be mixed with the ammonia gas volatilized from the liquefied ammonia. A method of absorbing ammonia gas into water is called a scrubber. Scrubbers are low cost and easy to operate.
 図2に示すように、気化器8は、貯蔵部5と輸送部6の間に取り付けられる。ただし、応力腐食割れを防ぐため、輸送部6の直前に気化器8が取り付けられることが好ましい。なお、気化器8の熱源として、電気による熱以外にも、舶用ディーゼルエンジンユニット23の冷却水や排ガスの熱を使用できる。これにより、余剰アンモニア処理ユニット1と相まって、環境調和性が高くなる。 As shown in FIG. 2, the vaporizer 8 is attached between the storage section 5 and the transport section 6. However, in order to prevent stress corrosion cracking, it is preferable to install a vaporizer 8 just before the transport section 6 . As the heat source for the evaporator 8, heat from cooling water of the marine diesel engine unit 23 and exhaust gas can be used in addition to heat from electricity. As a result, together with the surplus ammonia processing unit 1, environmental friendliness is enhanced.
 図3に示すように、濃度調整部9は、貯蔵部5に取り付けられる。濃度調整部9は、アンモニア水を所定の濃度にて輸送部6に供給する。具体的には、濃度調整部9は、密度計や濃度計である。好ましくは、濃度調整部9は、濃度計よりも容易に計測できる密度計である。密度計の計測値と濃度との関係を予め取得しておくことがより好ましい。例えば、光計測での密度計で0.912という数値になっている場合、アンモニア水濃度は約15%程度となる。なお、アンモニア水濃度は、飽和状態で最大で40%程度である。選択式還元触媒ユニット61に供給される場合、アンモニア水濃度が高いことが好ましい。 As shown in FIG. 3, the concentration adjustment section 9 is attached to the storage section 5. The concentration adjustment unit 9 supplies ammonia water at a predetermined concentration to the transportation unit 6 . Specifically, the density adjustment unit 9 is a density meter or a densitometer. Preferably, the density adjuster 9 is a density meter that can measure more easily than a densitometer. It is more preferable to acquire in advance the relationship between the measured value of the density meter and the concentration. For example, when the density meter in optical measurement shows a numerical value of 0.912, the ammonia water concentration is about 15%. The ammonia water concentration is about 40% at maximum in a saturated state. When supplied to the selective reduction catalyst unit 61, it is preferable that the aqueous ammonia concentration is high.
<第1の実施形態>
 図2は、本実施形態の一態様であって、アンモニアガスが供給される場合の余剰アンモニア処理ユニットの全体図である。図4および図5に記載される燃料供給ユニット21、選択式還元触媒の還元剤供給ユニット22、舶用ディーゼルエンジンユニット23から出た廃液が、分離容器2に収容される。分離容器2は、廃液に含まれる余剰アンモニアである液化アンモニアを回収する。
<First embodiment>
FIG. 2 is one aspect of the present embodiment, and is an overall view of a surplus ammonia processing unit when ammonia gas is supplied. Waste liquid discharged from a fuel supply unit 21, a selective reduction catalyst reducing agent supply unit 22, and a marine diesel engine unit 23 shown in FIGS. The separation container 2 recovers liquefied ammonia, which is surplus ammonia contained in the waste liquid.
 分離容器2が比重分離の原理を用いる場合、分離された油分は、分離容器2の下部に貯められる。一方、液化アンモニアは、分離容器2の上部に貯められる。下部に蓄えられた油分は、ビルジタンク30へと供給される。また、抽出部4において抽出された油分や不純物に混入している液化アンモニアも、ビルジタンク30に供給される。ビルジタンク30により得られたアンモニアガスは、除害装置7で処理された後、大気放出される。 When the separation container 2 uses the principle of gravity separation, the separated oil is stored in the lower part of the separation container 2. On the other hand, liquefied ammonia is stored in the upper part of the separation vessel 2 . Oil stored in the lower part is supplied to the bilge tank 30 . In addition, liquefied ammonia mixed with oil and impurities extracted in the extraction unit 4 is also supplied to the bilge tank 30 . Ammonia gas obtained from the bilge tank 30 is treated by the abatement device 7 and then released to the atmosphere.
 なお、廃液に含まれる油分は、例えば、燃料供給ユニット21や舶用ディーゼルエンジンユニット23の燃料噴射弁に使用されるシール油である。液化石油ガスを燃料とする場合、主成分であるプロパンガス分子自体が極性を持たない。そのため、プロパンガス分子がシール油とも混ざり合い、燃料として処理することも可能である。しかし、液化アンモニアを燃料とする場合、アンモニア分子自体が極性を有する。そのため、アンモニア分子がシール油と混ざらず、燃料として処理することは難しい。そのため、分離容器2において、油分と液化アンモニアが分離される。 The oil contained in the waste liquid is, for example, seal oil used for fuel injection valves of the fuel supply unit 21 and marine diesel engine unit 23 . When liquefied petroleum gas is used as fuel, propane gas molecules themselves, which are the main component, do not have polarity. Therefore, the propane gas molecules are mixed with the seal oil and can be treated as fuel. However, when liquefied ammonia is used as fuel, the ammonia molecules themselves have polarity. Therefore, the ammonia molecules do not mix with the seal oil, making it difficult to treat it as fuel. Therefore, in the separation vessel 2, the oil and liquefied ammonia are separated.
 分離容器2で分離された液化アンモニアは、抽出部4を経由して、又は直接、貯蔵部5に供給される。抽出部4は、液化アンモニアに含まれうる不純物を除去する。不純物は、主に気化しやすい油分である。選択式還元触媒ユニット61に不純物が供給されると、触媒に油が付着し、性能が劣化する。そのため、分離容器2における比重分離等によって分離できなかった油分を除去できるように、貯蔵部5の前段に、抽出部4が設置されることが望ましい。不要な油分等の不純物を取り除くことで、選択式還元触媒ユニット61の効率が高くなる。 The liquefied ammonia separated in the separation container 2 is supplied to the storage section 5 via the extraction section 4 or directly. The extractor 4 removes impurities that may be contained in the liquefied ammonia. Impurities are mainly volatile oils. When impurities are supplied to the selective reduction catalyst unit 61, oil adheres to the catalyst, degrading its performance. Therefore, it is desirable to install the extractor 4 in front of the reservoir 5 so as to remove the oil that could not be separated by gravity separation or the like in the separation vessel 2 . By removing impurities such as unnecessary oil, the efficiency of the selective reduction catalyst unit 61 is increased.
 なお、分離容器2で比重分離させるための時間が十分に確保される、または分離部3が遠心分離の原理を用いる場合には、得られた液化アンモニアに不純物が含まれる可能性は低くなる。そのため、抽出部4を経由させずに、分離容器2から貯蔵部5に直接、液化アンモニアを供給してもよい。 If sufficient time is secured for specific gravity separation in the separation container 2, or if the separation unit 3 uses the principle of centrifugal separation, the liquefied ammonia obtained is less likely to contain impurities. Therefore, liquefied ammonia may be supplied directly from the separation container 2 to the storage unit 5 without passing through the extraction unit 4 .
 貯蔵部5に供給された液化アンモニアは、気化器8によりアンモニアガスとして輸送部6に供給される。さらに、アンモニアガスが選択式還元触媒ユニット61に供給され、還元剤として使用される。なお、液化アンモニアではなく、アンモニアガスとして選択式還元触媒ユニット61に供給するのは、液化アンモニアでは選択式還元触媒ユニット61の作用する温度よりもかなり低いからである。選択式還元触媒ユニット61の触媒作用が高まるよう、アンモニアをガス化しておくと効率的である。また、蒸気圧で供給することにより、ポンプや冷却も不要になり、システム全体のエネルギー効率も高まる。 The liquefied ammonia supplied to the storage unit 5 is supplied to the transportation unit 6 as ammonia gas by the vaporizer 8 . Further, ammonia gas is supplied to the selective reduction catalyst unit 61 and used as a reducing agent. The reason why ammonia gas is supplied to the selective reduction catalyst unit 61 instead of liquefied ammonia is that the temperature of liquefied ammonia is considerably lower than the temperature at which the selective reduction catalyst unit 61 acts. It is efficient to gasify ammonia so that the catalytic action of the selective reduction catalyst unit 61 is enhanced. In addition, the supply of steam pressure eliminates the need for pumps and cooling, increasing the energy efficiency of the entire system.
 気化器8は各機関、パイプ等の応力腐食割れを防止すべく、輸送部6の直前に設置されることが好ましい。
 さらに、気化器8の熱源として、電気による熱以外に舶用ディーゼルエンジンユニット23の冷却水や、舶用ディーゼルエンジンユニット23の排気ガスの熱を利用できる。これにより、環境調和性が向上する。
The carburetor 8 is preferably installed immediately before the transport section 6 in order to prevent stress corrosion cracking of each engine, pipes, and the like.
Furthermore, as the heat source of the evaporator 8, cooling water of the marine diesel engine unit 23 and heat of the exhaust gas of the marine diesel engine unit 23 can be used in addition to heat from electricity. This improves environmental friendliness.
 なお、気化器8から得られたアンモニアガスは、例えば、6バール程度に昇圧されることが好ましく、より好ましくは7バール程度、さらに好ましくは8バール程度である。具体的には、例えば、2,3,4,5,6,7,8,9,10,11,12バールであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。これにより、輸送部6に昇圧器を設置しなくてもよく、余剰アンモニア処理ユニット1の装置構成を簡易にできる。 The ammonia gas obtained from the vaporizer 8 is preferably pressurized to, for example, about 6 bar, more preferably about 7 bar, and even more preferably about 8 bar. Specifically, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 bar, even within the range between any two of the numerical values exemplified here good. As a result, there is no need to install a booster in the transportation section 6, and the configuration of the surplus ammonia processing unit 1 can be simplified.
<第2の実施形態>
 次に、第2の実施形態について説明する。なお、第1の実施形態と略同様の機能や構成については、その説明を省略する。
 図3は、本実施形態の一態様であって、アンモニア水が供給される場合の余剰アンモニア処理ユニットの全体図である。分離容器2、分離部3、抽出部4の機能や構成は、第1の実施形態と同様である。
<Second embodiment>
Next, a second embodiment will be described. Descriptions of functions and configurations substantially similar to those of the first embodiment will be omitted.
FIG. 3 is one aspect of the present embodiment, and is an overall view of a surplus ammonia processing unit when ammonia water is supplied. The functions and configurations of the separation container 2, the separation section 3, and the extraction section 4 are the same as those of the first embodiment.
 貯蔵部5は、分離容器2から直接、又は抽出部4を経由して、分離されたアンモニア成分をストックする。貯蔵部5に水を注入することにより、アンモニア成分をアンモニア水とする。第1の実施形態と同様、輸送部6を通して、選択式還元触媒ユニット61にアンモニア水が供給される。
 液化アンモニアは、応力腐食割れの原因にもなりうる。導入するアンモニア成分をアンモニア水とすることで、選択式還元触媒ユニット61全体の寿命を延ばすことができ、除害装置7への負荷も軽くなる。
The storage unit 5 stocks the separated ammonia component directly from the separation container 2 or via the extraction unit 4 . By injecting water into the storage unit 5, the ammonia component is changed to ammonia water. As in the first embodiment, aqueous ammonia is supplied to the selective reduction catalyst unit 61 through the transport section 6 .
Liquefied ammonia can also cause stress corrosion cracking. By using ammonia water as the ammonia component to be introduced, the life of the entire selective reduction catalyst unit 61 can be extended, and the load on the abatement device 7 can be reduced.
 なお、貯蔵部5に希硫酸などの中和剤が注入されることがより好ましい。分離容器2から貯蔵部5へ供給されなかった液化アンモニアが存在する場合、余剰アンモニアを大気へ排出するために、除害装置7を通す必要がある。中和剤を予め用いることで、水を用いる場合よりも除害装置7への負荷が軽くなる。 It is more preferable to inject a neutralizing agent such as dilute sulfuric acid into the storage unit 5. If there is liquefied ammonia that has not been supplied from the separation vessel 2 to the storage unit 5, it must be passed through the abatement device 7 in order to discharge excess ammonia to the atmosphere. By using the neutralizing agent in advance, the load on the abatement device 7 becomes lighter than when water is used.
 貯蔵部5に、濃度調整部9が設置されていることが更に好ましい。輸送部6から供給されるアンモニアは、選択式還元触媒ユニット61に使用するアンモニアのごく一部であり、補助的に使用されるものである。そのため、アンモニア水の濃度が一定であれば、エンジンの運転が定常・非定常に関わらず、効率的に窒素酸化物の除去が進む。なお、濃度調整部9でのアンモニア濃度は、高いほど好ましいが、濃度の下限の制約はない。 It is more preferable that the concentration adjustment unit 9 is installed in the storage unit 5. The ammonia supplied from the transport section 6 is a very small part of the ammonia used in the selective reduction catalyst unit 61, and is used in a supplementary manner. Therefore, if the concentration of aqueous ammonia is constant, nitrogen oxides can be efficiently removed regardless of whether the engine is in steady or unsteady operation. It should be noted that although the concentration of ammonia in the concentration adjustment unit 9 is preferably as high as possible, there is no lower limit to the concentration.
 濃度調整部9でのアンモニア濃度、選択式還元触媒ユニット61での脱硝率、大気放出前のリークしたアンモニア濃度の関係を調べるために行ったリアクターでの模擬試験結果を、表1に示す。
 表1に記載のアンモニア水流量比率は、アンモニア水濃度14w%での流量を1とした場合の数値であって、排気ガス全体に対するアンモニア濃度は気化時に500PPM程度となるように調整された数値である。なお、この数値は、窒素酸化物全体の濃度とほぼ1:1になるか、少しアンモニアが少なくなるように調整した流量である。
Table 1 shows the results of a simulated reactor test conducted to investigate the relationship between the ammonia concentration in the concentration adjustment unit 9, the denitrification rate in the selective reduction catalyst unit 61, and the concentration of leaked ammonia before being released to the atmosphere.
The ammonia water flow rate ratio shown in Table 1 is a value when the flow rate at an ammonia water concentration of 14 w% is set to 1, and is a value adjusted so that the ammonia concentration with respect to the entire exhaust gas is about 500 PPM at the time of vaporization. be. This numerical value is the flow rate adjusted so that the concentration of nitrogen oxides is approximately 1:1, or the amount of ammonia is slightly reduced.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1からわかるとおり、アンモニア水濃度に依存することなく、脱硝が効率よく進んでいる。 As can be seen from Table 1, denitrification is progressing efficiently without depending on the ammonia water concentration.
<その他の実施形態>
 貯蔵部5が除害装置7の一部となっていると、より一層好ましい。上述のとおり、アンモニアは、人体に影響があるため、そのまま大気放出することはできない。除害装置7にてアンモニアを除去する必要がある。除害方法には、窒素などのガスによりアンモニアを希釈する方法や、上述のとおりスクラバといった水にアンモニアを吸収させる方法がある。
<Other embodiments>
It is even more preferable if the reservoir 5 is part of the abatement device 7 . As described above, ammonia cannot be released into the atmosphere as it is because it affects the human body. Ammonia must be removed by the abatement device 7 . Methods for removing the harm include a method of diluting ammonia with gas such as nitrogen, and a method of absorbing ammonia in water such as a scrubber as described above.
 舶用ディーゼルエンジンでは、コストが掛からず操作が容易という利点から、スクラバが多く用いられるが、アンモニアを吸収させた水の設置スペースが問題となる。
 しかし、選択式還元触媒ユニット61にアンモニア水を供給する場合、貯蔵部5と除害装置7を一体化させることで、船内スペースを有効利用できるだけでなく、処理水の問題も合わせて解決できる。
 特に、アンモニア水が低濃度であっても効率的に脱硝が進むため、さらに好ましい実施形態である。
In marine diesel engines, scrubbers are often used because they are inexpensive and easy to operate, but the installation space for ammonia-absorbed water is a problem.
However, when ammonia water is supplied to the selective reduction catalyst unit 61, by integrating the storage unit 5 and the abatement device 7, not only can the inboard space be effectively used, but also the problem of treated water can be solved.
In particular, this is a more preferable embodiment because denitrification proceeds efficiently even when the concentration of aqueous ammonia is low.
 なお、第1実施形態および第2実施形態の余剰アンモニア処理ユニット1で得られた余剰アンモニアは、選択式還元触媒ユニット61に供給されるが、図5のようにポンプユニット62を経由して、燃料供給ユニット21に供給されてもよい。また、ポンプユニット62を経由して、舶用ディーゼルエンジンユニット23に直接、余剰アンモニアが供給されてもよい。
 アンモニア水が燃料供給ユニットに送付されることで、燃費が向上し、また、排気ガス中の窒素酸化物の濃度が下がる。
The surplus ammonia obtained in the surplus ammonia processing unit 1 of the first embodiment and the second embodiment is supplied to the selective reduction catalyst unit 61, via the pump unit 62 as shown in FIG. It may be supplied to the fuel supply unit 21 . Alternatively, surplus ammonia may be supplied directly to the marine diesel engine unit 23 via the pump unit 62 .
By sending ammonia water to the fuel supply unit, fuel efficiency is improved and the concentration of nitrogen oxides in the exhaust gas is reduced.
 さらに、選択式還元触媒ユニット61またはポンプユニット62のどちらかを選択してもよいし、両方を併用してもよい。併用する場合の余剰アンモニアの分量比は、ユーザが適時決定してよい。
 エンジンの運転状況によって、いずれかに供給することで、アンモニア全体での燃料効率が向上する。また、両方を併用することにより、より一層、効率が向上する。
Furthermore, either the selective reduction catalyst unit 61 or the pump unit 62 may be selected, or both may be used together. The volume ratio of surplus ammonia when used together may be determined by the user as appropriate.
Depending on the operating conditions of the engine, supplying either one will improve the fuel efficiency of the ammonia as a whole. Further, by using both together, the efficiency is further improved.
 以上、種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although various embodiments have been described above, they are presented as examples and are not intended to limit the scope of the invention. The novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. The embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
1   余剰アンモニア処理ユニット
2   分離容器
20  アンモニア燃料タンク
21  燃料供給ユニット
22  還元剤供給ユニット
23  舶用ディーゼルエンジンユニット
3   分離部
4   抽出部
5   貯蔵部
6   輸送部
61  選択式還元触媒ユニット
62  ポンプユニット
7   除害装置
8   気化器
9   濃度調整部
1 surplus ammonia treatment unit 2 separation container 20 ammonia fuel tank 21 fuel supply unit 22 reducing agent supply unit 23 marine diesel engine unit 3 separation unit 4 extraction unit 5 storage unit 6 transportation unit 61 selective reduction catalyst unit 62 pump unit 7 abatement Device 8 Vaporizer 9 Concentration adjustment unit

Claims (21)

  1.  アンモニアを燃料の一部とし、選択式還元触媒ユニットと接続される舶用ディーゼルエンジンにおける余剰アンモニアの処理装置であって、
     前記舶用ディーゼルエンジンからの廃液を収容し、油分とアンモニア成分とを分離する分離容器と、
     前記分離容器で分離された前記アンモニア成分を前記選択式還元触媒ユニットに供給する輸送部と、
     を有する余剰アンモニアの処理装置。
    A surplus ammonia treatment device in a marine diesel engine that uses ammonia as part of the fuel and is connected to a selective reduction catalyst unit,
    a separation vessel for containing the waste liquid from the marine diesel engine and separating the oil and ammonia components;
    a transport unit that supplies the ammonia component separated in the separation vessel to the selective reduction catalyst unit;
    Surplus ammonia treatment equipment having
  2.  前記分離容器は、前記廃液を前記油分と前記アンモニア成分とに分離する分離部を有する、
     請求項1に記載の余剰アンモニアの処理装置。
    The separation container has a separation unit that separates the waste liquid into the oil component and the ammonia component,
    A treatment apparatus for surplus ammonia according to claim 1.
  3.  前記分離部は、フィルター分離、サイクロン分離、又は遠心分離により、前記廃液を前記油分と前記アンモニア成分とに分離する、
     請求項2に記載の余剰アンモニアの処理装置。
    The separation unit separates the waste liquid into the oil and the ammonia component by filter separation, cyclone separation, or centrifugation.
    A treatment apparatus for surplus ammonia according to claim 2.
  4.  前記分離容器で分離された前記アンモニア成分に含まれる不純物を除去する抽出部を更に有する、
     請求項1~3のいずれかに記載の余剰アンモニアの処理装置。
    further comprising an extraction unit for removing impurities contained in the ammonia component separated by the separation vessel;
    A treatment apparatus for surplus ammonia according to any one of claims 1 to 3.
  5.  前記分離容器で分離された前記アンモニア成分をアンモニアガスに気化する気化器を更に有し、
     前記輸送部は、前記気化器で気化した前記アンモニアガスを、前記選択式還元触媒ユニットに供給する、
     請求項1~4のいずれかに記載の余剰アンモニアの処理装置。
    further comprising a vaporizer for vaporizing the ammonia component separated in the separation vessel into ammonia gas;
    The transport unit supplies the ammonia gas vaporized by the vaporizer to the selective reduction catalyst unit.
    A treatment apparatus for surplus ammonia according to any one of claims 1 to 4.
  6.  前記分離容器で分離された前記アンモニア成分に水を注入してアンモニア水として貯蔵する貯蔵部を更に有し、
     前記輸送部は、前記貯蔵部に貯蔵される前記アンモニア水を、前記選択式還元触媒ユニットに供給する、
     請求項1~4のいずれかに記載の余剰アンモニアの処理装置。
    further comprising a storage unit for injecting water into the ammonia component separated by the separation vessel and storing it as aqueous ammonia;
    The transport unit supplies the aqueous ammonia stored in the storage unit to the selective reduction catalyst unit.
    A treatment apparatus for surplus ammonia according to any one of claims 1 to 4.
  7.  前記貯蔵部は、前記分離容器で分離された前記アンモニア成分に中和剤を注入してアンモニア水として貯蔵する、
     請求項6に記載の余剰アンモニアの処理装置。
    The storage unit injects a neutralizing agent into the ammonia component separated in the separation container and stores the ammonia water as aqueous ammonia.
    A treatment apparatus for surplus ammonia according to claim 6.
  8.  前記貯蔵部は、前記アンモニア水の濃度を調整する濃度調整部を有する、
     請求項6又は7に記載の余剰アンモニアの処理装置。
    The storage unit has a concentration adjustment unit that adjusts the concentration of the aqueous ammonia,
    The excess ammonia treatment apparatus according to claim 6 or 7.
  9.  前記アンモニア成分を人体に影響がない濃度に希釈する除害装置を更に有する、
     請求項1~8のいずれかに記載の余剰アンモニアの処理装置。
    further comprising an abatement device that dilutes the ammonia component to a concentration that does not affect the human body,
    A treatment apparatus for surplus ammonia according to any one of claims 1 to 8.
  10.  前記貯蔵部は、前記除害装置を有する、
     請求項9に記載の余剰アンモニアの処理装置。
    The reservoir has the abatement device,
    The excess ammonia treatment apparatus according to claim 9.
  11.  前記輸送部は、前記分離容器で分離された前記アンモニア成分をアンモニア燃料供給ユニットに供給する、
     請求項6~10のいずれかに記載の余剰アンモニアの処理装置。
    The transport unit supplies the ammonia component separated in the separation container to an ammonia fuel supply unit.
    An apparatus for treating surplus ammonia according to any one of claims 6 to 10.
  12.  前記輸送部は、前記分離容器で分離された前記アンモニア成分の供給先を、前記選択式還元触媒ユニット又は前記アンモニア燃料供給ユニットのいずれかに選択可能である、
     請求項11に記載の余剰アンモニアの処理装置。
    The transport unit is capable of selecting either the selective reduction catalyst unit or the ammonia fuel supply unit as a supply destination of the ammonia component separated in the separation container.
    The excess ammonia treatment apparatus according to claim 11.
  13.  アンモニアを燃料の一部とし、選択式還元触媒ユニットと接続される舶用ディーゼルエンジンにおける余剰アンモニアの処理方法であって、
     前記舶用ディーゼルエンジンからの廃液を収容し、
     前記廃液を油分とアンモニア成分とに分離し、
     分離された前記アンモニア成分を前記選択式還元触媒ユニットに供給する、
     余剰アンモニアの処理方法。
    A method for treating surplus ammonia in a marine diesel engine that uses ammonia as part of its fuel and is connected to a selective reduction catalyst unit, comprising:
    containing waste liquid from the marine diesel engine;
    separating the waste liquid into an oil component and an ammonia component;
    supplying the separated ammonia component to the selective reduction catalyst unit;
    A method for treating surplus ammonia.
  14.  更に、分離された前記アンモニア成分に含まれる不純物を除去する、
     請求項13に記載の余剰アンモニアの処理方法。
    Furthermore, removing impurities contained in the separated ammonia component,
    The method for treating excess ammonia according to claim 13.
  15.  更に、分離された前記アンモニア成分をアンモニアガスに気化し、
     気化した前記アンモニアガスを、前記選択式還元触媒ユニットに供給する、
     請求項13又は14に記載の余剰アンモニアの処理方法。
    Further, vaporizing the separated ammonia component into ammonia gas,
    supplying the vaporized ammonia gas to the selective reduction catalyst unit;
    The method for treating excess ammonia according to claim 13 or 14.
  16.  更に、分離された前記アンモニア成分に水を注入してアンモニア水として貯蔵し、
     貯蔵された前記アンモニア水を、前記選択式還元触媒ユニットに供給する、
     請求項13又は14に記載の余剰アンモニアの処理方法。
    Furthermore, water is injected into the separated ammonia component and stored as ammonia water,
    supplying the stored aqueous ammonia to the selective reduction catalyst unit;
    The method for treating excess ammonia according to claim 13 or 14.
  17.  更に、分離された前記アンモニア成分に中和剤を注入してアンモニア水として貯蔵する、
     請求項16に記載の余剰アンモニアの処理方法。
    Furthermore, a neutralizing agent is injected into the separated ammonia component and stored as aqueous ammonia.
    The method for treating excess ammonia according to claim 16.
  18.  更に、前記アンモニア水の濃度を調整する、
     請求項16又は17に記載の余剰アンモニアの処理方法。
    Furthermore, adjusting the concentration of the ammonia water,
    The method for treating excess ammonia according to claim 16 or 17.
  19.  更に、前記アンモニア成分を人体に影響がない濃度に希釈する、
     請求項16~18のいずれかに記載の余剰アンモニアの処理方法。
    Furthermore, dilute the ammonia component to a concentration that does not affect the human body,
    A method for treating excess ammonia according to any one of claims 16 to 18.
  20.  更に、分離された前記アンモニア成分をアンモニア燃料供給ユニットに供給する、
     請求項16~19のいずれかに記載の余剰アンモニアの処理方法。
    Further, supplying the separated ammonia component to an ammonia fuel supply unit,
    A method for treating excess ammonia according to any one of claims 16 to 19.
  21.  更に、分離された前記アンモニア成分を、前記選択式還元触媒ユニット又は前記アンモニア燃料供給ユニットのいずれかに選択的に供給する、
     請求項20に記載の余剰アンモニアの処理方法。
    Further, selectively supplying the separated ammonia component to either the selective reduction catalyst unit or the ammonia fuel supply unit;
    The method for treating excess ammonia according to claim 20.
PCT/JP2021/024702 2021-06-03 2021-06-30 Apparatus and method for processing excess ammonia WO2022254735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021538972A JP6940727B1 (en) 2021-06-03 2021-06-30 Excess ammonia treatment equipment and treatment method
KR1020237035482A KR20230158084A (en) 2021-06-03 2021-06-30 Surplus ammonia treatment device and processing method
CN202180096900.9A CN117425768A (en) 2021-06-03 2021-06-30 Device and method for treating surplus ammonia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093873 2021-06-03
JP2021-093873 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022254735A1 true WO2022254735A1 (en) 2022-12-08

Family

ID=84322997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024702 WO2022254735A1 (en) 2021-06-03 2021-06-30 Apparatus and method for processing excess ammonia

Country Status (1)

Country Link
WO (1) WO2022254735A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318716A (en) * 1988-06-17 1989-12-25 Mitsubishi Heavy Ind Ltd Denitration method for exhaust of internal combustion engine
US20050126513A1 (en) * 2002-01-29 2005-06-16 Fredrick Hendren On-board diesel oil and water emulsification system
WO2020183522A1 (en) * 2019-03-08 2020-09-17 Jfeエンジニアリング株式会社 Diesel engine
JP2020180567A (en) * 2019-04-24 2020-11-05 株式会社ジャパンエンジンコーポレーション Marine diesel engine
CN112128034A (en) * 2019-06-24 2020-12-25 日本发动机股份有限公司 Internal combustion engine for ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318716A (en) * 1988-06-17 1989-12-25 Mitsubishi Heavy Ind Ltd Denitration method for exhaust of internal combustion engine
US20050126513A1 (en) * 2002-01-29 2005-06-16 Fredrick Hendren On-board diesel oil and water emulsification system
WO2020183522A1 (en) * 2019-03-08 2020-09-17 Jfeエンジニアリング株式会社 Diesel engine
JP2020180567A (en) * 2019-04-24 2020-11-05 株式会社ジャパンエンジンコーポレーション Marine diesel engine
CN112128034A (en) * 2019-06-24 2020-12-25 日本发动机股份有限公司 Internal combustion engine for ship

Similar Documents

Publication Publication Date Title
EP2333262B1 (en) Method for processing pollutants contained in exhaust gases, in particular of an internal combustion engine, and facility using such a method
KR101519173B1 (en) Urea atomization system with catalytic converter for SCR system
EP2223734A1 (en) Exhaust gas treating apparatus and method
KR20120123348A (en) Emulsification of hydrocarbon gas oils to increase efficacy of water based hydrogen sulfide scavengers
WO2001012299A1 (en) Method and apparatus for treating exhaust gas
JP6940727B1 (en) Excess ammonia treatment equipment and treatment method
US9901876B1 (en) Reclaiming useful products from exhaust gas clean-up system
WO2023058407A1 (en) Fuel supply device capable of utilizing various fuels
CN117320957A (en) Ship
WO2022254735A1 (en) Apparatus and method for processing excess ammonia
KR101672430B1 (en) Vessel engine reduction device using fuel cell system
US20240067887A1 (en) Chemical compositions and methods of using same for remediating sulfur-containing compositions and other contaminants in fluids
KR101098223B1 (en) Apparatus for reducing voc in the tanker
US11383995B2 (en) Apparatus and method for treating hydrogen sulfide and ammonia in wastewater streams
KR20230104363A (en) System for reducing greenhouse gas emission combined with system for generating inert gas in vessel and vessel having the same
WO2023021719A1 (en) Volatile ammonia gas treatment device and treatment method
JP7128382B1 (en) Volatile ammonia gas treatment device and treatment method
KR20180086566A (en) Nitrogenous compound emission reduction apparatus and operation method in ship
JP7466747B1 (en) Ammonia gas treatment device and treatment method
KR102634386B1 (en) ammonia treatment system and ship having the same
KR102509277B1 (en) Ammonia managemant system
JP2009067851A (en) Hydrocarbon recovery system, deaeration apparatus used therefor and hydrocarbon recovery method
JP2023168655A (en) Selective reduction catalyst system and reductant spray method
KR102584151B1 (en) Ammonia treatment system of ship
WO2023002646A1 (en) Selective catalyst reduction system and reducing-agent stockpiling method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538972

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096900.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237035482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035482

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944228

Country of ref document: EP

Kind code of ref document: A1