JPS6119780A - Apparatus for gaseous phase growth of chemically active metal membrane - Google Patents

Apparatus for gaseous phase growth of chemically active metal membrane

Info

Publication number
JPS6119780A
JPS6119780A JP13997084A JP13997084A JPS6119780A JP S6119780 A JPS6119780 A JP S6119780A JP 13997084 A JP13997084 A JP 13997084A JP 13997084 A JP13997084 A JP 13997084A JP S6119780 A JPS6119780 A JP S6119780A
Authority
JP
Japan
Prior art keywords
container
substrate
pressure
membrane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13997084A
Other languages
Japanese (ja)
Inventor
Tatsuo Asamaki
麻蒔 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP13997084A priority Critical patent/JPS6119780A/en
Publication of JPS6119780A publication Critical patent/JPS6119780A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a gaseous phase growing apparatus capable of forming a chemically active metal membrane having high bonding strength, good step coverage and good quality onto a substrate, constituted by mounting an exhaust system capable of evacuating a vacuum container to resistance stable pressure or less. CONSTITUTION:A substrate 31 is set on the substrate holder 33 in a vacuum container 11 and the container is evacuated to predetermined resistance stable pressure P0 or less and, thereafter, a base plate 42 is heated by a heater power source 42. When the base plate 42 reaches predetermined temp., predetermined gas is introduced into the container 11 through a variable leak 53 and a membrane 32 is adhered to the surface of the substrate 31. As shown by the drawing, if the membrane 32 is formed after the container 11 is evacuated to pressure P0 of 1X10<-7>torr or less, a chemically active high purity metal having good quality is obtained almost errorlessly. With due regard to economical efficiency in the preparation of the membrane, it is effective to perform the formation of the membrane by a process such that resistance stable pressure is calculated with respect to an indivisual material before the container is evacuated to the pressure equal to or less than said calculated pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、気相中で金属の薄膜を成長させる装置に関
する。特に純度の高い薄膜を〜成長させる場合に適し、
中でも純金属、あるいはそれらの化合物混合物の薄膜を
作成する場合に適用して特に効果がある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to an apparatus for growing metal thin films in a gas phase. Particularly suitable for growing highly pure thin films.
Among these, it is particularly effective when applied to the production of thin films of pure metals or mixtures of these compounds.

(従来朴術とその問題点) 気相中で金属の薄膜を作成する装置(以下単に気相成長
装置)は、一般に高温度下で薄膜を作成し、膜の成長が
基板の表面との反応によりて行われるので、スバ、タリ
ング装置などで作られる膜と較べると、膜の付着強度が
大きい、ステップカバレージがよい、などの秀れた特徴
を持っている。
(Conventional Pakjutsu and its problems) Equipment that creates thin metal films in the gas phase (hereinafter simply referred to as vapor phase growth equipment) generally creates thin films at high temperatures, and the growth of the film is caused by reactions with the surface of the substrate. Compared to films made using submerging or taring equipment, the film has superior characteristics such as greater adhesion strength and better step coverage.

近年は特にステップカバレージの良さが改めて見直され
、半導体などマイクロエレクトロニクスの電極用薄膜作
成用として見直されつ〜ある。しかルミに代表されるI
UB族、Tiに代表されるIVA族、Nbに代表される
VA族、Moに代表されるVIA族などの化学的に活性
な金属の膜作成のときほどよく表われる。
In recent years, the step coverage in particular has been reconsidered, and it is being reconsidered for use in producing thin films for electrodes in microelectronics such as semiconductors. I represented by Rumi
It appears more frequently when creating films of chemically active metals such as the UB group, the IVA group represented by Ti, the VA group represented by Nb, and the VIA group represented by Mo.

(発明の目的) この発明の目的はこれらの欠点を除き電気抵抗の低い良
質の膜を作成することのできる装置の提供にある。
(Object of the Invention) The object of the present invention is to provide an apparatus capable of eliminating these drawbacks and producing a high-quality film with low electrical resistance.

この発明の別の目的は、深い穴の内部にもはy一様の薄
膜を伺着させることが出来且つ高純度な薄膜を作成する
ことの出来る装置の提供にある。
Another object of the present invention is to provide an apparatus capable of depositing a thin film of uniform Y even inside a deep hole and producing a highly pure thin film.

(発明の構成) 4  この発明は、真空容器内を「抵抗安定圧力」(そ
の定義は後述)以下に排気できる排気系をそなえる気相
成長装置によって、前記目的を達成するものである。
(Structure of the Invention) 4 The present invention achieves the above object by using a vapor phase growth apparatus equipped with an exhaust system that can evacuate the inside of a vacuum container to a level below a "resistance stable pressure" (the definition of which will be described later).

(実施例) 本願の発明者の実験によって薄膜の電気抵抗は、装置即
ち真空容器の到達圧力を下げることにより安定して低い
値が得られ、しかも膜の硬さも適度に低い値に押えられ
ることが判明した。従来この種の装置は、反応を1〜0
.ITorr程度の比較的高い圧力で行うので、装置の
到達圧力の影響が無視されて来たものである。従来の鵠
、置の到達圧力は、油回騙、ポンプやメカニカルブース
ターポンプを真空ポンプとする従来装置の排気系で推定
されるよう罠、低いものでもせいぜい10  Torr
程度であった。本願の発明者は、強力な排気系を設備し
て、装置をほぼ10  Torr以下と云う超高真空到
達圧力まで排気することにより、高度な薄膜作成を行う
ことができることを確認し得たのである。
(Example) According to experiments conducted by the inventor of the present application, the electrical resistance of the thin film can be stably reduced to a low value by lowering the ultimate pressure of the device, that is, the vacuum container, and the hardness of the film can also be kept to a moderately low value. There was found. Conventionally, this type of device has been able to convert reactions from 1 to 0.
.. Since this is carried out at a relatively high pressure of approximately ITorr, the influence of the ultimate pressure of the apparatus has been ignored. The ultimate pressure of conventional equipment is estimated to be 10 Torr at most, as estimated by the exhaust system of conventional equipment that uses an oil recirculation pump or a mechanical booster pump as a vacuum pump.
It was about. The inventor of the present application has confirmed that it is possible to create advanced thin films by installing a powerful exhaust system and evacuating the device to an ultra-high vacuum pressure of approximately 10 Torr or less. .

次にこの発明を図面に基き、実施例により詳しく説明す
る。
Next, the present invention will be explained in detail by examples based on the drawings.

第1図はこの発明の基本的な実施例を示す図であり、1
0は真空系で11が真空容器、12は対フラン、?であ
る。真空容器11は、七の内部が超高真空に排気出来る
ようにガス放出の少い材料、×\\\例えばステンレス
などで作られる。真空容器の内部表面は、酸処理、ブラ
スト処理などを行りておくのが望ましい。20は排気系
で本発明の特徴をもち、これには超高真空まで排気出来
る真空ポンプ21、即ち例えばクライオポンプ、トラッ
プと油拡散ポンプ、ターボモレキュラポンプなどが用い
られる。勿論補助排気系を必要とする場合は必要な系を
追加する。22は主弁である。
FIG. 1 is a diagram showing a basic embodiment of the present invention.
0 is a vacuum system, 11 is a vacuum container, 12 is for francs, ? It is. The vacuum container 11 is made of a material that releases little gas, such as stainless steel, so that the inside of the container can be evacuated to an ultra-high vacuum. It is desirable that the internal surface of the vacuum container be subjected to acid treatment, blasting treatment, etc. Reference numeral 20 denotes an evacuation system, which has the characteristics of the present invention, and uses a vacuum pump 21 capable of evacuation to an ultra-high vacuum, such as a cryopump, a trap and oil diffusion pump, or a turbo molecular pump. Of course, if an auxiliary exhaust system is required, add the necessary system. 22 is the main valve.

30は基板系で、31が基板、32が作成された薄膜、
33が基板ホルダーである。40は基板を加熱する手段
で、41はヒーター、42はその電源である。50は、
反応を行わせる気体を導入する手段で、51はボンベ、
52は流量計、53はバリ7プルリークである。
30 is a substrate system, 31 is a substrate, 32 is a thin film created,
33 is a substrate holder. 40 is means for heating the substrate, 41 is a heater, and 42 is a power source thereof. 50 is
51 is a cylinder for introducing a gas to cause a reaction;
52 is a flow meter, and 53 is a burr 7 pull leak.

この装置は次のように運転する。まず対フランジ12を
あけ、基板31を基板ホルダー33の上にセットし7ラ
ンジ12を閉じる。次いで前記の温度になったら、導入
系50を用いて所定の気体をバリアプルリーク53を通
して真空容器11内に導入する。すると基板31の表面
に薄膜が付着する。第2図は、トリインブチルアルミを
主体とする反応気体をバリアプルリーク53から導入し
アルミの薄膜32を作成した場合の例で、横軸は装置の
到達圧力(以下Po)である。Poを小さくして行くと
前記したように薄膜の固有抵抗R。
The device operates as follows. First, the pair flange 12 is opened, the board 31 is set on the board holder 33, and the 7 flange 12 is closed. Next, when the temperature reaches the above temperature, a predetermined gas is introduced into the vacuum vessel 11 through the barrier pull leak 53 using the introduction system 50. Then, a thin film is attached to the surface of the substrate 31. FIG. 2 shows an example in which a thin aluminum film 32 is created by introducing a reaction gas mainly consisting of tri-butyl aluminum through the barrier pull leak 53, and the horizontal axis represents the ultimate pressure of the apparatus (hereinafter referred to as Po). As mentioned above, as Po becomes smaller, the specific resistance R of the thin film increases.

は安定した値を示すようになるが、縦軸には、この安定
抵抗値を1としたときの抵抗比Rを示している。Rは図
示の如く、はMIXIOTorr以下の到達圧力POで
は安定した定値を示すが、それより高い到達圧力Poに
おいては不安定な値な示す。これをさらに詳しく調べる
ことによって抵抗が到達圧力に無関係に一定になるよう
な到達圧力(これを、本願では抵抗安定圧力と呼ぶ。)
は、基板の温度により若干異り、また作成する薄膜の種
類あるいは導入する気体の組成によっても異ることがわ
かった。
shows a stable value, and the vertical axis shows the resistance ratio R when this stable resistance value is taken as 1. As shown in the figure, R shows a stable constant value at the ultimate pressure PO below MIXIO Torr, but exhibits an unstable value at the ultimate pressure Po higher than that. By examining this in more detail, the ultimate pressure at which the resistance becomes constant regardless of the ultimate pressure (this is referred to as resistance stabilization pressure in this application).
It was found that the difference varies slightly depending on the temperature of the substrate, and also varies depending on the type of thin film to be formed and the composition of the gas introduced.

しかし、いろ゛いろな薄膜材料に共通して云えることは
、真空容器11内をlXl0  Torr以下の圧力ま
で排気して後薄膜32を作成すれば、殆んど間違いなく
高純度で良質の薄膜を作ることができることである。た
だし薄膜製造の経済性からすれば、個々の材料により抵
抗安定圧力を求め、それ以下の圧力まで排気して後薄膜
作成を行うのが効果的である。
However, what can be said in common with various thin film materials is that if the thin film 32 is created after evacuating the inside of the vacuum chamber 11 to a pressure of 1X10 Torr or less, it will almost certainly be a high-purity, high-quality thin film. It is possible to make However, from the economic point of view of thin film production, it is effective to find a resistance stabilizing pressure for each material, and then evacuate to a pressure lower than that and then perform thin film production.

こうして、到達圧力Paを抵抗安定圧力以下で薄膜を作
成すると、単結晶ではないが、純度の高いステップカバ
レージのよい膜を工業的に安定量産を行うことができる
。特にマイクロエレクト2二りス用として極めて有用な
薄膜を作成することができる。
In this way, by creating a thin film with the ultimate pressure Pa equal to or lower than the resistance stability pressure, it is possible to industrially and stably mass-produce a film with high purity and good step coverage, although it is not a single crystal. In particular, it is possible to create a thin film that is extremely useful for use in microelectronic devices.

なお、こメでは電気抵抗を安定な薄膜作成の検出パラメ
ータとして用いたが、これは電気抵抗が残留ガスの影響
を受は易く敏感であるためにはがならない。電気抵抗以
外にも他のいろいろな特性が検出パラメータとして利用
できることは明らかである。
In this study, electrical resistance was used as a detection parameter for creating a stable thin film, but this cannot be done because electrical resistance is easily affected by residual gas and is sensitive. It is clear that various other properties besides electrical resistance can be used as detection parameters.

なお、この実施例の装置においては靴、気体の導入系5
0は、一系統のみ用いているが、必要により多数の系統
を用いたり、反応ガスの種類によってはバブリング装置
を用いたりする。また、基板310表面を、薄膜32を
付着させる直前に清浄にした〜・場合は、化学的に活性
の強い気体を導入したり、基板31に電圧を印加して電
子やイオンの衝撃によりクリーニングしたりする。
In addition, in the device of this embodiment, shoes, gas introduction system 5
Although only one system is used in 0, multiple systems may be used if necessary, or a bubbling device may be used depending on the type of reaction gas. In addition, if the surface of the substrate 310 is cleaned immediately before attaching the thin film 32, clean it by introducing a chemically active gas or applying a voltage to the substrate 31 and cleaning it by bombarding it with electrons or ions. or

第3図には、さらに別の実施例を示しである。FIG. 3 shows yet another embodiment.

この実施例においては、装置が多室構造(本実施例では
王室)になっていて連続量産用になっている。真空容器
は11,13.14と王室設けられ外気、各室間はバル
ブ15,16.17.18で仕切られている。各室はそ
れぞれ主弁と真空ポンプ、24と23.22と21.2
6と25をそな5を閉じ排気系23.24で排気、パル
プ16をあけ基板を室11内に移送、バルブ16を閉じ
薄膜を付着、゛バルブ17をあけあらかじめ排気しであ
る室14内に移送、バルブ17を閉じバルブ18をあけ
て大気を導入し基板を大気圧の空間に取り出す。パルプ
18を閉じ容器14の内部を排気系25.26で排気す
る。という工程を単独あるいは重複並行して行う。その
他の符号については第1図の実施例と同様である。この
第3図の実施例において′は、特に真空容器即ち室11
内が常に真空に保たれているので、金属の薄膜作成時に
電気抵抗増大の原因になる活性の強い気体、例えばo2
.NZ、 Co、 002. H2Oなどを非常に少く
することができ良質な薄膜を作成することが出来る。
In this embodiment, the apparatus has a multi-chamber structure (a royal room in this embodiment) and is designed for continuous mass production. The vacuum chambers are equipped with chambers 11, 13, and 14, and each chamber is separated from the outside by valves 15, 16, 17, and 18. Each chamber has a main valve and a vacuum pump, 24 and 23.22 and 21.2.
6 and 25 are closed, the exhaust system 23 and 24 are used to exhaust the air, the pulp 16 is opened and the substrate is transferred into the chamber 11, the valve 16 is closed and the thin film is deposited, and the chamber 14, which has been previously evacuated by opening the valve 17, is Then, valve 17 is closed, valve 18 is opened to introduce atmospheric air, and the substrate is taken out into a space at atmospheric pressure. The pulp 18 is closed and the inside of the container 14 is evacuated by exhaust systems 25 and 26. These steps are performed either singly or in parallel. Other symbols are the same as those in the embodiment shown in FIG. In the embodiment of FIG.
Since the interior is always kept in a vacuum, it is not possible to contain highly active gases such as O2, which can cause an increase in electrical resistance when creating thin metal films.
.. NZ, Co., 002. H2O etc. can be extremely reduced and a high quality thin film can be created.

以上の記述は限定的な意味をもつものではなく多数の変
形が可能であることは云う迄もない。
It goes without saying that the above description does not have a limiting meaning and many variations are possible.

(発明の効果) 本発明によれば、基板上に、付着強度の大きく、ステッ
プカバレージの良い、良質の、化学的に活性な金属薄膜
を作成することができる。
(Effects of the Invention) According to the present invention, a high quality chemically active metal thin film with high adhesion strength and good step coverage can be created on a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す図、第2図は作成され
た薄膜の性質を示す図、第3図は他の実施例を示す図で
ある。 図中11.13.i4は真空容器、20は排気系、31
は基板、40は加熱手段、50は気体を導入する手段で
ある。 特許出願人  日電アネルノく株式会社ヒl◎1.3 ’Al、n至qAh−力(Torr) P。 FIG、2 手続補正書 (自発) 特許庁長官 殿       昭和60年7月27日1
、事件の表示 昭和59年 特許願 第139970勇φ゛1、発明の
名称 化学的に活性な金属薄膜の気相成長装置3、補正をする
者 事件との関係   特許出願人 住所 東京都府中市四谷 5−[3−1名称  日電ア
ネルバ株式会社 代表者  織1)善次部 7 4、代理人             −7,・住所 
東京都府中市四谷 5−8−1 6、補正の対象 明細書の発明の詳細な説明の欄および図面。 (別紙)  補正の内容 (1)明細書箱5頁11行目の[第2図は、]を次の文
に補正する。 [第2図の曲線1と2は、コ (2)明細書第6頁8行目の[以下の]を次の文に補正
する。             −6[以下(成膜温
度の低い場合で1 x 10’Torr以下)の] (3)明細書第6頁14行目の[効果的である。コの次
に改行して下記の文を挿入する。 [さらに6弗化タングステンとシランから珪化タングス
テン薄膜を350℃位の温度で作成する場合もほぼ同様
なことが言える。更に、排気後基板を加熱すると基板ホ
ルダ33や周りの構造物からのガス放出があり、圧力は
およそ10倍位になるl(この加熱状態での抵抗安定圧
力をPotとする)。 この状態で圧力を監視しながら薄膜作成を行なうと曲線
3の如くになり、Potはおよそ1xlo−5Torr
となる。Potは真空装置の汚れの状態で大きく変わる
。このように抵抗安定圧力は真空系の状態によって異な
るが、依然として油回転ポンプやメカニカルブースター
ポンプで到達できる真空の範囲外にある。] (4)明細書箱7頁12行目の[強い気体コの次に下記
の文を挿入する。 [例えば Plasma Chemistory an
d Plasma Process i ng 、Vo
lume l Number 4  (Decembe
r 1981)号のTableII (331頁、弗素
系プラズマ)やTable IV(347頁、塩素、臭
素系プラズマ)の Ga5esの欄に示されている気体
、] (5)明細書箱8頁18行目の[ことが出来る。コの次
に改行の後下記の文を挿入する。 [例えは第1図の実施例におけるPotは、高温高温期
と低温乾燥期では第2図の矢印4で示す位のバラツキが
あり、或ときは良い膜が出来、或ときは出来ないという
ことのあるのがよくわかる。 さらに本発明の効果を実証するために、真空容器11内
に強制的に水蒸気を混入してみたところ、その分圧とR
との関係はほぼ曲線3と一致した。 このことは真空装置の放出ガスの大部分が一般に水蒸気
であることから首肯されることである。水蒸気の分圧を
さらに上昇させると、極端なときは薄膜が付着しなくな
ることがある。 上記の通りであって、本発明の装置によれば再(6)第
2図を添付のものに補正する。 Y置a蓼+16w−力とTarr ) P。 1G2 −ζ1−
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the properties of the thin film produced, and FIG. 3 is a diagram showing another embodiment. 11.13 in the figure. i4 is a vacuum vessel, 20 is an exhaust system, 31
40 is a substrate, 40 is a heating means, and 50 is a means for introducing gas. Patent applicant: Nichiden Anerunoku Co., Ltd. 1.3' Al, n to qAh-Torr P. FIG. 2 Procedural Amendment (Voluntary) Commissioner of the Patent Office July 27, 1985 1
, Indication of the case 1982 Patent application No. 139970Yu 1, Name of the invention Chemically active metal thin film vapor phase growth apparatus 3, Person making the amendment Relationship to the case Patent applicant address Yotsuya, Fuchu City, Tokyo 5-[3-1 Name Nichiden Anelva Co., Ltd. Representative Ori 1) Zenjibe 7 4. Agent -7.・Address
5-8-1 Yotsuya, Fuchu-shi, Tokyo 6, detailed description of the invention and drawings in the specification subject to amendment. (Attachment) Details of the amendment (1) [Figure 2 is] on page 5, line 11 of the specification box is amended to the following sentence. [For curves 1 and 2 in FIG. 2, (2) Correct [the following] on page 6, line 8 of the specification to the following sentence. -6 [or less (1 x 10' Torr or less when the film forming temperature is low)] (3) [Effective] on page 6, line 14 of the specification. After this, insert a new line and insert the following sentence. [Furthermore, almost the same thing can be said when forming a tungsten silicide thin film from tungsten hexafluoride and silane at a temperature of about 350°C. Furthermore, when the substrate is heated after evacuation, gas is released from the substrate holder 33 and surrounding structures, and the pressure increases by approximately 10 times (the stable resistance pressure in this heated state is designated as Pot). If you create a thin film while monitoring the pressure in this state, it will look like curve 3, and the pot will be approximately 1xlo-5 Torr.
becomes. Pots vary greatly depending on how dirty the vacuum equipment is. In this way, the resistance stability pressure varies depending on the state of the vacuum system, but it is still outside the vacuum range that can be achieved with oil rotary pumps and mechanical booster pumps. (4) On page 7, line 12 of the statement box, insert the following sentence after [strong gas]. [For example, Plasma Chemistry an
d Plasma Processing, Vo.
lume l Number 4 (December
Gases shown in the Ga5es column of Table II (page 331, fluorine-based plasma) and Table IV (page 347, chlorine and bromine-based plasma) of issue 1981) (5) Statement box page 8, line 18 can [be able to]. After the line break, insert the following sentence. [For example, in the example shown in Fig. 1, the pots vary as shown by arrow 4 in Fig. 2 between the high temperature and high temperature periods and the low temperature and dry periods, which means that sometimes a good film can be formed and other times it cannot. I can clearly see that there is. Furthermore, in order to demonstrate the effects of the present invention, when water vapor was forcibly mixed into the vacuum container 11, its partial pressure and R
The relationship with curve 3 almost coincided with curve 3. This is supported by the fact that most of the gas emitted from vacuum equipment is generally water vapor. If the partial pressure of water vapor is further increased, in extreme cases the thin film may no longer adhere. As described above, according to the apparatus of the present invention, (6) FIG. 2 is corrected to the attached one. Y set a 蓼 + 16w-force and Tarr) P. 1G2 -ζ1-

Claims (1)

【特許請求の範囲】[Claims] 内部を真空にする容器、前記容器内を排気する排気系、
前記容器内に基板を設置し且つこの基板を所定の温度に
加熱する手段、及び前記容器内に所定の気体を導入する
手段を有して前記基板上に薄膜を作成する装置において
、前記排気系として前記容器の内部を抵抗安定圧力以下
に排気し得る排気系をそなえたことを特徴とする化学的
に活性な金属薄膜の気相成長装置。
A container that evacuates the inside, an exhaust system that exhausts the inside of the container,
In the apparatus for forming a thin film on the substrate by placing a substrate in the container and having means for heating the substrate to a predetermined temperature and means for introducing a predetermined gas into the container, the exhaust system 1. An apparatus for vapor phase growth of chemically active metal thin films, comprising: an exhaust system capable of evacuating the inside of the container to a pressure below a stable resistance.
JP13997084A 1984-07-06 1984-07-06 Apparatus for gaseous phase growth of chemically active metal membrane Pending JPS6119780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13997084A JPS6119780A (en) 1984-07-06 1984-07-06 Apparatus for gaseous phase growth of chemically active metal membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13997084A JPS6119780A (en) 1984-07-06 1984-07-06 Apparatus for gaseous phase growth of chemically active metal membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19659585A Division JPS61106773A (en) 1985-09-05 1985-09-05 Gas phase growing device of thin film

Publications (1)

Publication Number Publication Date
JPS6119780A true JPS6119780A (en) 1986-01-28

Family

ID=15257906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13997084A Pending JPS6119780A (en) 1984-07-06 1984-07-06 Apparatus for gaseous phase growth of chemically active metal membrane

Country Status (1)

Country Link
JP (1) JPS6119780A (en)

Similar Documents

Publication Publication Date Title
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
SG149680A1 (en) Film formation apparatus and film formation method and cleaning method
JPS6119780A (en) Apparatus for gaseous phase growth of chemically active metal membrane
JPH06279998A (en) Dry coating method for inside surface of cylinder
JPH0553871B2 (en)
JP3128573B2 (en) Method of forming high-purity thin film
JPH1081952A (en) Reactive physical vapor depositing device and reactive physical vapor depositing method
JP4845786B2 (en) Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method
JP2646582B2 (en) Plasma CVD equipment
JP3847863B2 (en) Vacuum apparatus and manufacturing method thereof
JPH0247252A (en) Production of composite material film
JPS61106773A (en) Gas phase growing device of thin film
JPH02274867A (en) Production of multiple material film
JPH07138739A (en) Vacuum vapor deposition device
JPH05148654A (en) Film forming method by pulse plasma cvd and device therefor
JPH06172987A (en) Sputtering device
WO2023099022A1 (en) Hybrid chemical-physical vapor deposition process for the synthesis of environmental barrier coatings
JP2666710B2 (en) Vacuum forming method and vacuum apparatus
JPH02194179A (en) Film forming device
JPH0244022A (en) Production of polycrystalline silicon
JP3030458B1 (en) Vacuum equipment
JP2004115899A (en) Surface treatment method, and vacuum vessel
JPH1136069A (en) Method for exhausting film forming device
JPH05271918A (en) Formation of aluminum film by sputtering
JPS639107A (en) Manufacture of magnet