JP4845786B2 - Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method - Google Patents

Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method Download PDF

Info

Publication number
JP4845786B2
JP4845786B2 JP2007080384A JP2007080384A JP4845786B2 JP 4845786 B2 JP4845786 B2 JP 4845786B2 JP 2007080384 A JP2007080384 A JP 2007080384A JP 2007080384 A JP2007080384 A JP 2007080384A JP 4845786 B2 JP4845786 B2 JP 4845786B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
gas
turbo molecular
molecular pump
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007080384A
Other languages
Japanese (ja)
Other versions
JP2007191799A (en
Inventor
忠弘 大見
Original Assignee
公益財団法人国際科学振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人国際科学振興財団 filed Critical 公益財団法人国際科学振興財団
Priority to JP2007080384A priority Critical patent/JP4845786B2/en
Publication of JP2007191799A publication Critical patent/JP2007191799A/en
Application granted granted Critical
Publication of JP4845786B2 publication Critical patent/JP4845786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は真空排気装置、半導体製造装置及び真空処理方法に係わり、特に半導体基板、ガラス基板、プラスチック基板等の上に高性能の半導体素子を安定して形成するための真空処理方法に関する。 The present invention relates to a vacuum exhaust apparatus, a semiconductor manufacturing apparatus, and a vacuum processing method, and more particularly to a vacuum processing method for stably forming a high-performance semiconductor element on a semiconductor substrate, a glass substrate, a plastic substrate, or the like.

本発明者は、半導体素子の一層の高性能化、歩留まり向上を目的とした半導体の製造方法を検討する過程で、排気系にターボ分子ポンプを用いた場合には、処理ガスに超高純度のガスを用い且つ脱ガスを抑えた表面を有する真空処理室を用いて不純物の混入防止に十分な注意を払って処理した場合でも、例えば半導体素子を構成する薄膜を成膜すると、その薄膜中には不純物が混入しており、半導体素子の特性向上を妨げることが分かった。   In the course of studying a semiconductor manufacturing method for the purpose of further improving the performance and yield of a semiconductor device, the present inventor uses an ultra-high purity as a processing gas when a turbo molecular pump is used in an exhaust system. Even when processing is performed with great care to prevent impurities from being mixed using a vacuum processing chamber having a surface that uses gas and suppresses degassing, for example, when a thin film constituting a semiconductor element is formed, It has been found that impurities are mixed and hinder the improvement of the characteristics of the semiconductor element.

そこで、この原因を鋭意検討した結果、ターボ分子ポンプの排気側から薄膜を製造する真空処理室へ一旦排気されたガス分子やターボ分子ポンプの排気側に存在する不純物ガス等が逆拡散し、これが薄膜形成時に薄膜中に混入するためであることがを見いだした。即ち、半導体素子のより一層の高性能化、高歩留まりを達成するには、かかる不純物等の逆拡散を防止した真空排気系が必要となることが分かった。   Therefore, as a result of diligent investigation of this cause, the gas molecules once exhausted from the exhaust side of the turbo molecular pump to the vacuum processing chamber for manufacturing the thin film, the impurity gas existing on the exhaust side of the turbo molecular pump, etc. are back-diffused. It has been found that this is because it is mixed into the thin film when the thin film is formed. That is, it has been found that in order to achieve higher performance and higher yield of the semiconductor element, an evacuation system that prevents back diffusion of such impurities and the like is required.

本発明は、以上の知見に基づいて完成したものであり、高性能半導体素子を安定して、高い歩留まりで作製することが可能な真空排気装置、半導体製造装置及び真空処理方法を提供することを目的とする。 The present invention has been completed on the basis of the above knowledge, and provides a vacuum exhaust apparatus, a semiconductor manufacturing apparatus, and a vacuum processing method capable of stably manufacturing a high-performance semiconductor element with a high yield. Objective.

本発明の真空排気装置は、真空室の内部を排気するための排気装置であって、ターボ分子ポンプと、該ターボ分子ポンプの排気側に接続された補助ポンプとから構成され、前記ターボ分子ポンプと前記補助ポンプとの間にArガスを導入するためのガス導入部を設け、前記Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であって、該導入部からArガスを導入しながら、前記真空室の内部を排気して、前記ターボ分子ポンプの排気側に存在する不純物ガス、水分、又はパーティクルが前記真空室へ逆拡散するのを防止した構成としたことを特徴とする。
また、本発明の真空処理方法は、真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であり、前記ターボ分子ポンプと前記補助ポンプとの間でArガスを導入し、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、又はパーティクルの逆拡散を防止することを特徴とする。
さらに、本発明の真空処理方法は、真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であり、前記ターボ分子ポンプと前記補助ポンプとの間でArガスを導入し、前記ターボ分子ポンプの排気側と前記補助ポンプとの間を分子流領域から粘性流領域とし、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、またはパーティクルの逆拡散を防止することを特徴とする。
本発明の真空排気装置は、真空室の内部を排気するための排気装置であって、ターボ分子ポンプと、該ターボ分子ポンプの排気側に接続された補助ポンプとから構成され、前記ターボ分子ポンプと前記補助ポンプとの間にN 2 ガスを導入するためのガス導入部を設け、前記N 2 ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であって、該導入部からN 2 ガスを導入しながら、前記真空室の内部を排気して、前記ターボ分子ポンプの排気側に存在する不純物ガス、水分、又はパーティクルが前記真空室へ逆拡散するのを防止した構成としたことを特徴とする。
また、本発明の真空処理方法は、真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、N 2 ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であり、前記ターボ分子ポンプと前記補助ポンプとの間でN 2 ガスを導入し、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、又はパーティクルの逆拡散を防止することを特徴とする。
さらに、本発明の真空処理方法は、真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、N 2 ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であり、前記ターボ分子ポンプと前記補助ポンプとの間でN 2 ガスを導入し、前記ターボ分子ポンプの排気側と前記補助ポンプとの間を分子流領域から粘性流領域とし、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、またはパーティクルの逆拡散を防止することを特徴とする。
The vacuum exhaust apparatus of the present invention is an exhaust apparatus for exhausting the inside of a vacuum chamber, and includes a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump, and the turbo molecular pump A gas introduction part for introducing Ar gas between the auxiliary pump and the Ar gas, wherein the Ar gas flow rate is 5% or more and less than 17.5% of the gas flow rate supplied to the vacuum chamber, A configuration in which the inside of the vacuum chamber is evacuated while introducing Ar gas from the introduction portion, and impurity gas, moisture, or particles present on the exhaust side of the turbo molecular pump is prevented from back-diffusing into the vacuum chamber. It is characterized by that.
The vacuum processing method of the present invention is a vacuum processing for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump. The flow rate of Ar gas is 5% or more and less than 17.5% of the flow rate of the gas supplied to the vacuum chamber, Ar gas is introduced between the turbo molecular pump and the auxiliary pump, The back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber is prevented.
Furthermore, the vacuum processing method of the present invention is a vacuum processing for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump. The flow rate of Ar gas is 5% or more and less than 17.5% of the flow rate of the gas supplied to the vacuum chamber, Ar gas is introduced between the turbo molecular pump and the auxiliary pump, A molecular flow region to a viscous flow region is provided between the exhaust side of the turbo molecular pump and the auxiliary pump to prevent back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber. It is characterized by.
The vacuum exhaust apparatus of the present invention is an exhaust apparatus for exhausting the inside of a vacuum chamber, and includes a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump, and the turbo molecular pump A gas introduction part for introducing N 2 gas between the auxiliary pump and the auxiliary pump , wherein the flow rate of the N 2 gas is 2% or more and less than 8% of the flow rate of the gas supplied to the vacuum chamber, While introducing N 2 gas from the introduction part, the inside of the vacuum chamber was evacuated to prevent back diffusion of impurity gas, moisture, or particles present on the exhaust side of the turbo molecular pump into the vacuum chamber. It is characterized by having a configuration.
The vacuum processing method of the present invention is a vacuum processing for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump. In this method, the flow rate of N 2 gas is 2% or more and less than 8% of the flow rate of gas supplied to the vacuum chamber, and N 2 gas is introduced between the turbo molecular pump and the auxiliary pump , The back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber is prevented.
Furthermore, the vacuum processing method of the present invention is a vacuum processing for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump. In this method, the flow rate of N 2 gas is 2% or more and less than 8% of the flow rate of gas supplied to the vacuum chamber, and N 2 gas is introduced between the turbo molecular pump and the auxiliary pump , A molecular flow region to a viscous flow region is provided between the exhaust side of the turbo molecular pump and the auxiliary pump to prevent back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber. It is characterized by.

上記所定のガスは、不活性ガス、又は前記真空室に供給するガス若しくはその一部の成分若しくはこれらと不活性ガスとの混合ガスとするのが好ましい。また、所定のガスの流量は、前記真空室に供給するガスの流量の10%以下とするのが好ましい。
また、本発明の半導体製造装置は、真空室と、該真空室に接続された上記本発明の真空排気装置とを少なくとも有し、前記真空室内で基体の処理を行うことを特徴とする。
本発明の半導体処理装置は、真空室と、該真空室に接続された上記本発明の真空排気装置とを少なくとも有し、前記真空室内で金属、半導体、または絶縁体材料の成膜を行うことを特徴とする。
また、真空室と、該真空室に接続された上記本発明の真空排気装置とを少なくとも有し、前記真空室内で金属、半導体、または絶縁体材料の表面処理を行うことを特徴とする。
本発明の半導体装置の製造方法は、上記本発明の真空処理方法を用いて、半導体素子を構成する薄膜を成膜することを特徴とする。
また、上記本発明の真空処理方法を用いて、半導体基板、ガラス基板、またはプラスチック基板上に半導体素子を形成することを特徴とする。
さらに、上記本発明の真空処理方法を用いて、基板を処理することを特徴とする。
The predetermined gas is preferably an inert gas, a gas supplied to the vacuum chamber, a component of the gas, or a mixed gas of these and an inert gas. Further, the flow rate of the predetermined gas is preferably 10% or less of the flow rate of the gas supplied to the vacuum chamber.
The semiconductor manufacturing apparatus of the present invention includes at least a vacuum chamber and the above-described vacuum exhaust apparatus of the present invention connected to the vacuum chamber, and processes the substrate in the vacuum chamber.
The semiconductor processing apparatus of the present invention has at least a vacuum chamber and the vacuum exhaust apparatus of the present invention connected to the vacuum chamber, and deposits a metal, semiconductor, or insulator material in the vacuum chamber. It is characterized by.
Further, the vacuum chamber and at least the vacuum exhaust apparatus of the present invention connected to the vacuum chamber are provided, and surface treatment of a metal, a semiconductor, or an insulator material is performed in the vacuum chamber.
A method for manufacturing a semiconductor device of the present invention is characterized in that a thin film constituting a semiconductor element is formed using the vacuum processing method of the present invention.
In addition, a semiconductor element is formed over a semiconductor substrate, a glass substrate, or a plastic substrate using the vacuum processing method of the present invention.
Furthermore, the substrate is processed using the vacuum processing method of the present invention.

また、前記真空室及び接続部材は、内面に酸化クロム不動態膜、もしくはフッ化不動態膜を形成したものであるのが好ましい。   Moreover, it is preferable that the vacuum chamber and the connection member have a chromium oxide passivated film or a fluorinated passivated film formed on the inner surface.

本発明の半導体製造装置の一例として、図1に示したスパッタ装置を用いて行った実験を通して、本発明の作用を説明する。   As an example of the semiconductor manufacturing apparatus of the present invention, the operation of the present invention will be described through an experiment conducted using the sputtering apparatus shown in FIG.

図1において、101は、内表面を酸化クロム不動態処理を行ったスパッタ成膜を行う真空室であり、放出水分量は約1×10-7Torr・L/secである。真空室101は、配管102を介してターボ分子ポンプ103の吸気側に接続され、ポンプ103の排気側はフレキシブル配管104を介して粗引きポンプ105と接続されている。また、真空室101へはマスフローコントローラ110を介して、プロセスガスが供給され、さらには、配管106、ニードルバルブ107、四重極質量分析計108、粗引きポンプ109が接続されており、真空室101内のガスの質量分析を行うことができる構成となっている。 In FIG. 1, reference numeral 101 denotes a vacuum chamber for performing sputtering film formation in which the inner surface is subjected to chromium oxide passivation treatment, and the amount of released water is about 1 × 10 −7 Torr · L / sec. The vacuum chamber 101 is connected to the intake side of the turbo molecular pump 103 via a pipe 102, and the exhaust side of the pump 103 is connected to the roughing pump 105 via a flexible pipe 104. In addition, a process gas is supplied to the vacuum chamber 101 via the mass flow controller 110, and further, a pipe 106, a needle valve 107, a quadrupole mass spectrometer 108, and a roughing pump 109 are connected to the vacuum chamber 101. 101 is configured to perform mass spectrometry of the gas in 101.

また、ターボ分子ポンプ103の排気側に所定のガスを導入する導入部114を設け、マスフローコントローラ111を介して、所定のガスが導入される。   An introduction unit 114 for introducing a predetermined gas is provided on the exhaust side of the turbo molecular pump 103, and the predetermined gas is introduced via the mass flow controller 111.

真空室101には高周波電源112からマッチングボックス113を介して高周波電力を電極(不図示)に印加され、真空室内にプラズマが生起される。   In the vacuum chamber 101, high-frequency power is applied to an electrode (not shown) from a high-frequency power source 112 through a matching box 113, and plasma is generated in the vacuum chamber.

図1のスパッタ装置を用い、プロセスガス(真空室に供給するガス)として水分濃度1ppbのArガスをマスフローコントローラ110を介して真空室101に供給し、種々の排気能力の粗引きポンプを用いて排気したとき、真空室内のH2O濃度を四重極質量分析計で測定した結果を図2に示す。 Using the sputtering apparatus of FIG. 1, Ar gas having a moisture concentration of 1 ppb is supplied to the vacuum chamber 101 via the mass flow controller 110 as a process gas (gas supplied to the vacuum chamber), and a roughing pump having various exhaust capabilities is used. FIG. 2 shows the results of measuring the H 2 O concentration in the vacuum chamber with a quadrupole mass spectrometer when evacuated.

図2が示すように、Ar流量及び粗引きポンプの排気速度によりH2O濃度は変化するものの、かなり多量の水分がプロセスガス雰囲気中に含まれていることが分かった。この水分は、ターボ分子ポンプの排気側のフレキシブル配管104から放出された水分が逆拡散したものと考えられる。 As shown in FIG. 2, it was found that although the H 2 O concentration changes depending on the Ar flow rate and the exhaust speed of the roughing pump, a considerably large amount of water is contained in the process gas atmosphere. This water is considered to be the result of the reverse diffusion of the water released from the flexible piping 104 on the exhaust side of the turbo molecular pump.

次に、ターボ分子ポンプの排気側の所定のガスの導入部114からN2ガスをマスフローコントローラ111を介して導入しながら、プロセスガスとして水分濃度1ppbのArガスを真空室101に供給し、そのときの真空室内のH2O濃度を四重極質量分析計で測定した結果を図3に示す。図2と比較すると、H2O濃度はターボ分子ポンプ111の排気側にN2ガスを供給することにより大幅に減少し、さらにはN2ガス流量をプロセスガス流量の約10%とすることで約10ppbにまで減少し、真空室内を極めて高清浄な雰囲気にすることができることが分かった。 Next, Ar gas having a moisture concentration of 1 ppb is supplied to the vacuum chamber 101 as a process gas while introducing N 2 gas from the gas introduction unit 114 on the exhaust side of the turbo molecular pump through the mass flow controller 111. FIG. 3 shows the results of measuring the H 2 O concentration in the vacuum chamber with a quadrupole mass spectrometer. Compared with FIG. 2, the H 2 O concentration is greatly reduced by supplying N 2 gas to the exhaust side of the turbo molecular pump 111, and further, the N 2 gas flow rate is set to about 10% of the process gas flow rate. It was found that the vacuum chamber was reduced to about 10 ppb, and an extremely clean atmosphere could be obtained in the vacuum chamber.

この理由の詳細は現在のところ明らかでないが、次のように考えられる。即ち、ターボ分子ポンプと補助ポンプの間に不活性ガスを導入することにより、ターボ分子ポンプの排気側と補助ポンプの間は、分子流領域から粘性流領域となってターボ分子ポンプで一旦真空室外に排気されたプロセスガス分子はそのまま粘性流によって移動し補助ポンプで排気されるため、逆拡散が起こり難くなるためと考えられる。   The details of this reason are not clear at present, but can be considered as follows. That is, by introducing an inert gas between the turbo molecular pump and the auxiliary pump, the molecular flow region is changed to the viscous flow region between the exhaust side of the turbo molecular pump and the auxiliary pump, and the turbo molecular pump is temporarily outside the vacuum chamber. This is probably because the process gas molecules exhausted in this way are moved by the viscous flow as they are and are exhausted by the auxiliary pump, so that back diffusion hardly occurs.

また、微量ではあるが真空室に逆拡散することの可能性を考慮すると、所定のガスとしては、たとえ逆拡散しても真空室内での処理に対する影響を極力抑えるために、不活性ガス、又はプロセスガスに含まれるガス、又はこれらの混合ガスを用いるのが好ましい。なお、不活性ガスとしては、Ar,N2ガス等が好適に用いられる。さらには、分子ターボポンプと補助ポンプとの接続部材(例えば配管)の内表面には、水分吸着量が少なく、脱着特性の優れた酸化クロム不動態膜、もしくはフッ化不動態膜を形成するのが好ましい。 In consideration of the possibility of back diffusion into the vacuum chamber even though it is a small amount, as the predetermined gas, in order to suppress the influence on the processing in the vacuum chamber as much as possible even if reverse diffusion, an inert gas, or It is preferable to use a gas contained in the process gas or a mixed gas thereof. As the inert gas, Ar, N 2 gas or the like is preferably used. Furthermore, on the inner surface of the connecting member (for example, piping) between the molecular turbo pump and the auxiliary pump, a chromium oxide passivated film or a fluorinated passivated film having a low moisture adsorption amount and excellent desorption characteristics is formed. Is preferred.

さらに、所定のガスの不純物濃度は1ppm以下、さらには1ppb以下が望ましいが、この純度はプロセスガスの純度、半導体素子の性能、または使用目的によってこれ以下の純度のものを用いても良いことはいうまでもない。また、所定のガスの導入量は、プロセスガス流量の10%以下であることが好ましい。ガス流量がプロセスガス流量の10%を超えると十分なターボ分子ポンプの排気特性が得られなくなるためである。これはターボ分子ポンプの排気側の圧力が上昇し圧縮比が減少するためであると考えられる。   Further, the impurity concentration of the predetermined gas is preferably 1 ppm or less, more preferably 1 ppb or less, but this purity may be less than this depending on the purity of the process gas, the performance of the semiconductor element, or the purpose of use. Needless to say. Further, the amount of the predetermined gas introduced is preferably 10% or less of the process gas flow rate. This is because if the gas flow rate exceeds 10% of the process gas flow rate, sufficient exhaust characteristics of the turbo molecular pump cannot be obtained. This is thought to be because the pressure on the exhaust side of the turbo molecular pump increases and the compression ratio decreases.

本発明において、所定のガスの導入部は、上述のようにターボ分子ポンプの排気口部に設けてもよく、また補助ポンプとの接続部材(例えば配管等)に設けても良い。   In the present invention, the predetermined gas introduction part may be provided in the exhaust port part of the turbo molecular pump as described above, or may be provided in a connection member (for example, a pipe) with the auxiliary pump.

また、より高性能な半導体素子を作製するには、上記接続部材のみならず真空室その他の配管等の内表面を酸化クロム不動態膜、もしくはフッ化不動態膜を形成するのが好ましい。   In order to fabricate a higher performance semiconductor element, it is preferable to form a chromium oxide passivated film or a fluorinated passivated film not only on the connecting member but also on the inner surface of a vacuum chamber or other piping.

なお、本発明の真空排気装置及び真空処理方法は、スパッタ、真空蒸着、ドライエッチング、イオン注入装置その他の半導体製造装置の他、AES、SIMS等の分析装置等の種々の真空関連装置、及び金属、半導体、絶縁体材料の成膜、表面処理等に好適に適用される。   The vacuum evacuation apparatus and the vacuum processing method of the present invention include various vacuum related apparatuses such as sputtering, vacuum deposition, dry etching, ion implantation apparatus and other semiconductor manufacturing apparatuses, analyzers such as AES and SIMS, and metals. It is preferably applied to film formation of semiconductor and insulator materials, surface treatment, and the like.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明がこれら実施例に限定されることはない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

本実施例では、図1示すスパッタ装置を用いてAl膜を作製し、その評価を行った。   In this example, an Al film was produced using the sputtering apparatus shown in FIG. 1 and evaluated.

図1のスパッタチャンバ(真空室)101の基板電極(不図示)にシリコン基板を設置し、チャンバ内を10-8Torrまで排気する。水分濃度1ppb以下のArガスをマスフロー110を介して200sccm導入し、チャンバ内の圧力を10mTorrとして高周波電力を印加し、Al膜を約100nm成膜した。この際、成膜雰囲気中の水分濃度を四重極質量分折計で測定した。 A silicon substrate is placed on a substrate electrode (not shown) of the sputtering chamber (vacuum chamber) 101 in FIG. 1, and the inside of the chamber is evacuated to 10 −8 Torr. Ar gas having a moisture concentration of 1 ppb or less was introduced at 200 sccm through the mass flow 110, high-frequency power was applied at a pressure in the chamber of 10 mTorr, and an Al film was formed to a thickness of about 100 nm. At this time, the moisture concentration in the film forming atmosphere was measured with a quadrupole mass spectrometer.

成膜条件を一定とし、マスフローコントローラ111を介して所定のガス(Ar)0〜50sccm導入し、この時のArガス導入流量とチャンバー内の水分量及びAlの比抵抗との関係を調べた。結果を図4に示す。図4において、横軸はマスフローコントローラ111より導入したAr流量、縦軸はチャンバ内の水分量及びAl膜の比抵抗である。図から明らかなように、水分量及び比抵抗はArガス流量の増加により減少し、チャンバに導入したArガス流量の1/10(20sccm)で極小となり、さらにマスフローコントローラ111から導入するArガス流量を増加すると水分量、比抵抗とも増大することが分かった。
図4に示す通り、10sccm(0.5/10=5%)以上から35sccm(1.75/10=17.5%)の範囲においては、それ以外の範囲に比べて水分濃度が著しく減少(0.1ppm以下)していることがわかる。特に15sccm(0.75/10=7.5%)以上30sccm(1.5/10=15%)の範囲においては0.01ppm以下であり、さらに優れていることがわかる。
A predetermined gas (Ar) of 0 to 50 sccm was introduced through the mass flow controller 111 with the film forming conditions kept constant, and the relationship between the Ar gas introduction flow rate, the moisture content in the chamber, and the Al resistivity was examined. The results are shown in FIG. In FIG. 4, the horizontal axis represents the Ar flow rate introduced from the mass flow controller 111, and the vertical axis represents the moisture content in the chamber and the specific resistance of the Al film. As is apparent from the figure, the water content and specific resistance decrease with an increase in the Ar gas flow rate, become minimal at 1/10 (20 sccm) of the Ar gas flow rate introduced into the chamber, and further, the Ar gas flow rate introduced from the mass flow controller 111. It was found that increasing the amount increases both the water content and the specific resistance.
As shown in FIG. 4, in the range of 10 sccm (0.5 / 10 = 5%) or more to 35 sccm (1.75 / 10 = 17.5%), the water concentration is significantly reduced compared to the other ranges ( 0.1 ppm or less). In particular, in the range of 15 sccm (0.75 / 10 = 7.5%) or more and 30 sccm (1.5 / 10 = 15%), it is 0.01 ppm or less, which shows that it is further excellent.

また、Al膜中の酸素量をSIMS(2次イオン質量分析計)で測定したところ、酸素濃度の変化は比抵抗の変化と一致し、Ar流量20sccmで極小となることが確認された。   Further, when the amount of oxygen in the Al film was measured by SIMS (secondary ion mass spectrometer), it was confirmed that the change in oxygen concentration coincided with the change in specific resistance, and became minimum at an Ar flow rate of 20 sccm.

以上の実験結果から明らかなように、ターボ分子ポンプ排気側と補助ポンプの間に、ガスを供給することにより、高品質な薄膜が形成されることが分かる。   As is apparent from the above experimental results, it is understood that a high-quality thin film is formed by supplying gas between the turbo molecular pump exhaust side and the auxiliary pump.

本実施例では、図1と同様の構造を持つプラズマCVD装置を用いて、窒化シリコン膜の成長を行い、その耐圧特性を調べた。   In this example, a silicon nitride film was grown using a plasma CVD apparatus having a structure similar to that shown in FIG.

基板として、ガラス基板に金属電極を形成したものを用い、基板温度300℃、SiH4ガス=100sccm、NH3=200sccm、N2=200sccmをチャンバ内にマスフローコントローラを介して導入する。圧力を100Paとし、高周波電力を印加して窒化シリコン膜を300nm堆積させた。 A substrate in which a metal electrode is formed on a glass substrate is used, and a substrate temperature of 300 ° C., SiH 4 gas = 100 sccm, NH 3 = 200 sccm, and N 2 = 200 sccm are introduced into the chamber via a mass flow controller. A silicon nitride film was deposited to a thickness of 300 nm by applying high-frequency power at a pressure of 100 Pa.

この成膜条件を一定とし、ターボ分子ポンプと補助ポンプの間にSiH4、NH3、N2の混合ガスをチャンバ内に導入した流量比である1:2:2を保ちながら、総流量のみを0〜70sccmの間で導入し、成膜した窒化シリコン膜の絶縁耐圧及び基板に付着している0.3μm以上のパーティクル数を調べた。図5はその結果である。 While keeping the film forming conditions constant, only the total flow rate is maintained while maintaining a flow rate ratio of 1: 2: 2 in which a mixed gas of SiH 4 , NH 3 , and N 2 is introduced between the turbo molecular pump and the auxiliary pump. Was introduced between 0 and 70 sccm, and the withstand voltage of the formed silicon nitride film and the number of particles of 0.3 μm or more adhering to the substrate were examined. FIG. 5 shows the result.

ターボ分子ポンプの排気側に総流量30sccm導入したときにパーティクルの総数は最小となり、絶縁耐圧は最高値となることが分かった。これは、ターボ分子ポンプの排気口側にガスを導入することによって、SiH4及びNH3がプラズマ中で分解された際に生成された反応生成物がチャンバ内に逆拡散せずに完全に排気されたためと考えられる。 It was found that when the total flow rate of 30 sccm was introduced into the exhaust side of the turbo molecular pump, the total number of particles was the smallest and the withstand voltage was the highest. This is because by introducing gas to the exhaust port side of the turbo molecular pump, the reaction products generated when SiH 4 and NH 3 are decomposed in the plasma are completely exhausted without back diffusion into the chamber. This is probably because

次に、ターボ分子ポンプの排気側にガスを導入しない場合と、最適値である30sccm導入した場合において、同一条件で連続50枚の成膜をそれぞれ行い、各々の絶縁耐圧のばらつきを調べた。結果を図6に示す。図6が示すように、ガスを導入しない場合の絶縁耐圧のばらつきは±10%であったのに対し、30sccm導入した場合のばらつきは±2%に抑えられ、かつ平均耐圧を高くできることが分かった。   Next, when no gas was introduced into the exhaust side of the turbo molecular pump and when 30 sccm, which is the optimum value, was introduced, 50 consecutive films were formed under the same conditions, and the variation in dielectric strength was examined. The results are shown in FIG. As shown in FIG. 6, the variation in the dielectric breakdown voltage when no gas was introduced was ± 10%, whereas the variation when 30 sccm was introduced was suppressed to ± 2%, and the average breakdown voltage could be increased. It was.

本発明により、真空室の清浄度を著しく高めることが可能となり、その結果より高精度の真空処理が可能となるため、構成の半導体装置等を安定して、高歩留まりで提供することが可能となる。   According to the present invention, it becomes possible to remarkably increase the cleanliness of the vacuum chamber, and as a result, it becomes possible to perform highly accurate vacuum processing, and thus it is possible to stably provide a semiconductor device or the like with a high yield. Become.

本発明の半導体製造装置の一例を示すスパッタ装置の概念図である。It is a conceptual diagram of the sputtering device which shows an example of the semiconductor manufacturing apparatus of this invention. 真空室に供給するガスの流量とH2O濃度を示すグラフである。Is a graph showing the flow rate and H 2 O concentration of the gas supplied into the vacuum chamber. 真空室内のH2O濃度とターボ分子ポンプ排気側に導入する所定のガスの流量との関係を示すグラフである。Is a graph showing the relationship between the flow rate of the predetermined gas to be introduced in H 2 O concentration and the turbo molecular pump exhaust side of the vacuum chamber. Al比抵抗とターボ分子ポンプ排気側に導入するArガスの流量との関係を示すグラフである。It is a graph which shows the relationship between Al specific resistance and the flow volume of Ar gas introduce | transduced into a turbo-molecular pump exhaust side. 窒化シリコン膜の絶縁耐圧とターボ分子ポンプ排気側に導入するArガスの流量との関係を示すグラフである。It is a graph which shows the relationship between the withstand voltage of a silicon nitride film, and the flow volume of Ar gas introduce | transduced into the turbo-molecular pump exhaust side. 絶縁耐圧のばらつきを示すグラフである。It is a graph which shows the dispersion | variation in a withstand voltage.

符号の説明Explanation of symbols

101 真空室、
102 配管、
103 ターボ分子ポンプ、
104 フレキシブル配管、
105 粗引きポンプ、
106 配管、
107 ニードルバルブ、
108 四重極質量分析計、
109 粗引きポンプ、
110、111 マスフローコントローラ、
112 高周波電源、
113 マッチングボックス、
114 所定のガス導入部。
101 vacuum chamber,
102 piping,
103 turbomolecular pump,
104 Flexible piping,
105 roughing pump,
106 piping,
107 needle valve,
108 quadrupole mass spectrometer,
109 roughing pump,
110, 111 mass flow controller,
112 high frequency power supply,
113 matching box,
114 A predetermined gas introduction part.

Claims (16)

真空室の内部を排気するための排気装置であって、
ターボ分子ポンプと、該ターボ分子ポンプの排気側に接続された補助ポンプとから構成され、
前記ターボ分子ポンプと前記補助ポンプとの間にArガスを導入するためのガス導入部を設け、
前記Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であって、
該導入部からArガスを導入しながら、前記真空室の内部を排気して、前記ターボ分子ポンプの排気側に存在する不純物ガス、水分、又はパーティクルが前記真空室へ逆拡散するのを防止した構成としたことを特徴とする真空排気装置。
An exhaust device for exhausting the inside of the vacuum chamber,
A turbo molecular pump and an auxiliary pump connected to the exhaust side of the turbo molecular pump;
A gas introduction part for introducing Ar gas between the turbo molecular pump and the auxiliary pump;
The flow rate of the Ar gas is 5% or more and less than 17.5% of the flow rate of the gas supplied to the vacuum chamber,
While introducing Ar gas from the introduction part, the inside of the vacuum chamber was evacuated to prevent back diffusion of impurity gas, moisture, or particles present on the exhaust side of the turbo molecular pump into the vacuum chamber. An evacuation apparatus characterized by having a configuration.
真空室の内部を排気するための排気装置であって、
ターボ分子ポンプと、該ターボ分子ポンプの排気側に接続された補助ポンプとから構成され、
前記ターボ分子ポンプと前記補助ポンプとの間にN2ガスを導入するためのガス導入部を設け、
前記N2ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であって、
該導入部からN2ガスを導入しながら、前記真空室の内部を排気して、前記ターボ分子ポンプの排気側に存在する不純物ガス、水分、又はパーティクルが前記真空室へ逆拡散するのを防止した構成としたことを特徴とする真空排気装置。
An exhaust device for exhausting the inside of the vacuum chamber,
A turbo molecular pump and an auxiliary pump connected to the exhaust side of the turbo molecular pump;
A gas introduction part for introducing N 2 gas is provided between the turbo molecular pump and the auxiliary pump,
The flow rate of the N 2 gas is 2% or more and less than 8% of the flow rate of the gas supplied to the vacuum chamber,
While introducing N 2 gas from the introduction part, the inside of the vacuum chamber is evacuated to prevent back diffusion of impurity gas, moisture, or particles present on the exhaust side of the turbo molecular pump into the vacuum chamber. An evacuation apparatus characterized by having a configuration as described above.
前記ターボ分子ポンプと前記補助ポンプとの接続に用いる接続部材の内表面は、酸化クロム不動態膜もしくはフッ化不動態膜が形成されていることを特徴とする請求項1又は2に記載の真空排気装置。 The vacuum according to claim 1 or 2, wherein a chromium oxide passivated film or a fluorinated passivated film is formed on an inner surface of a connecting member used for connecting the turbo molecular pump and the auxiliary pump. Exhaust system. 前記真空室へプロセスガスを供給している際に逆拡散するのを防止した構成とした請求項1〜3のいずれか1項に記載の真空排気装置。 The evacuation apparatus according to any one of claims 1 to 3, wherein a back diffusion is prevented when a process gas is supplied to the vacuum chamber. 真空室と、該真空室に接続された請求項1〜4のいずれか1項に記載の真空排気装置とを少なくとも有し、前記真空室内で基体の処理を行うことを特徴とする半導体製造装置。 5. A semiconductor manufacturing apparatus comprising at least a vacuum chamber and the vacuum exhaust apparatus according to claim 1 connected to the vacuum chamber, wherein the substrate is processed in the vacuum chamber. . 前記真空室は、内表面に酸化クロム不動態膜もしくはフッ化不動態膜が形成されていることを特徴とする請求項5に記載の半導体製造装置。 6. The semiconductor manufacturing apparatus according to claim 5, wherein the vacuum chamber has a chromium oxide passivated film or a fluorinated passivated film formed on an inner surface thereof. 真空室と、該真空室に接続された請求項1〜4のいずれか1項に記載の真空排気装置とを少なくとも有し、前記真空室内で金属、半導体、または絶縁体材料の成膜を行うことを特徴とする処理装置。 A vacuum chamber and at least the vacuum exhaust device according to any one of claims 1 to 4 connected to the vacuum chamber, and forming a metal, semiconductor, or insulator material in the vacuum chamber. The processing apparatus characterized by the above-mentioned. 真空室と、該真空室に接続された請求項1〜4のいずれか1項に記載の真空排気装置とを少なくとも有し、前記真空室内で金属、半導体、または絶縁体材料の表面処理を行うことを特徴とする処理装置。 A vacuum chamber and at least the vacuum exhaust apparatus according to any one of claims 1 to 4 connected to the vacuum chamber, and performing a surface treatment of a metal, a semiconductor, or an insulator material in the vacuum chamber. The processing apparatus characterized by the above-mentioned. 真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、
Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であり、
前記ターボ分子ポンプと前記補助ポンプとの間でArガスを導入し、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、又はパーティクルの逆拡散を防止することを特徴とする真空処理方法。
A vacuum processing method for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump,
The flow rate of Ar gas is 5% or more and less than 17.5% of the flow rate of the gas supplied to the vacuum chamber,
Ar gas is introduced between the turbo molecular pump and the auxiliary pump to prevent back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber. Processing method.
真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、
Arガスの流量は前記真空室に供給するガスの流量の5%以上17.5%未満であり、
前記ターボ分子ポンプと前記補助ポンプとの間でArガスを導入し、前記ターボ分子ポンプの排気側と前記補助ポンプとの間を分子流領域から粘性流領域とし、
前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、またはパーティクルの逆拡散を防止することを特徴とする真空処理方法。
A vacuum processing method for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump,
The flow rate of Ar gas is 5% or more and less than 17.5% of the flow rate of the gas supplied to the vacuum chamber,
Ar gas is introduced between the turbo molecular pump and the auxiliary pump, the molecular flow region to the viscous flow region between the exhaust side of the turbo molecular pump and the auxiliary pump,
A vacuum processing method characterized by preventing back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump into the vacuum chamber.
真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、
2ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であり、
前記ターボ分子ポンプと前記補助ポンプとの間でN2ガスを導入し、前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、又はパーティクルの逆拡散を防止することを特徴とする真空処理方法。
A vacuum processing method for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump,
The flow rate of N 2 gas is 2% or more and less than 8% of the flow rate of the gas supplied to the vacuum chamber,
N 2 gas is introduced between the turbo molecular pump and the auxiliary pump to prevent back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump to the vacuum chamber. Vacuum processing method.
真空室の内部を、ターボ分子ポンプと該ターボ分子ポンプの排気側に接続された補助ポンプとにより排気しながら、前記真空室内で基体の処理を行う真空処理方法であって、
2ガスの流量は前記真空室に供給するガスの流量の2%以上8%未満であり、
前記ターボ分子ポンプと前記補助ポンプとの間でN2ガスを導入し、前記ターボ分子ポンプの排気側と前記補助ポンプとの間を分子流領域から粘性流領域とし、
前記ターボ分子ポンプの排気側から前記真空室への不純物ガス、水分、またはパーティクルの逆拡散を防止することを特徴とする真空処理方法。
A vacuum processing method for processing a substrate in the vacuum chamber while exhausting the inside of the vacuum chamber by a turbo molecular pump and an auxiliary pump connected to an exhaust side of the turbo molecular pump,
The flow rate of N 2 gas is 2% or more and less than 8% of the flow rate of the gas supplied to the vacuum chamber,
N 2 gas is introduced between the turbo molecular pump and the auxiliary pump, and the molecular flow region is changed to the viscous flow region between the exhaust side of the turbo molecular pump and the auxiliary pump,
A vacuum processing method characterized by preventing back diffusion of impurity gas, moisture, or particles from the exhaust side of the turbo molecular pump into the vacuum chamber.
前記真空室へプロセスガスを供給している際に逆拡散するのを防止する請求項9〜12のいずれか1項に記載の真空処理方法。 The vacuum processing method according to claim 9, wherein reverse diffusion is prevented when a process gas is supplied to the vacuum chamber. 請求項9〜13のいずれか1項に記載の真空処理方法を用いて、半導体素子を構成する薄膜を成膜することを特徴とする半導体装置の製造方法。 A thin film forming a semiconductor element is formed by using the vacuum processing method according to claim 9. 請求項9〜13のいずれか1項に記載の真空処理方法を用いて、半導体基板、ガラス基板、またはプラスチック基板上に半導体素子を形成することを特徴とする半導体装置の製造方法。 A semiconductor device manufacturing method, wherein a semiconductor element is formed on a semiconductor substrate, a glass substrate, or a plastic substrate by using the vacuum processing method according to claim 9. 請求項9〜13のいずれか1項に記載の真空処理方法を用いて、基板を処理することを特徴とする半導体装置の製造方法。 A method for manufacturing a semiconductor device, wherein a substrate is processed using the vacuum processing method according to claim 9.
JP2007080384A 2007-03-26 2007-03-26 Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method Expired - Fee Related JP4845786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080384A JP4845786B2 (en) 2007-03-26 2007-03-26 Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080384A JP4845786B2 (en) 2007-03-26 2007-03-26 Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7126271A Division JPH08321448A (en) 1995-05-25 1995-05-25 Vacuum pumping equipment, semiconductor manufacturing equipment, and vacuum processing method

Publications (2)

Publication Number Publication Date
JP2007191799A JP2007191799A (en) 2007-08-02
JP4845786B2 true JP4845786B2 (en) 2011-12-28

Family

ID=38447720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080384A Expired - Fee Related JP4845786B2 (en) 2007-03-26 2007-03-26 Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method

Country Status (1)

Country Link
JP (1) JP4845786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240462A1 (en) * 2010-04-02 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507518B2 (en) * 1988-02-29 1996-06-12 株式会社日立製作所 Vacuum exhaust device
JP3298999B2 (en) * 1993-08-24 2002-07-08 忠弘 大見 Welding method, welding apparatus, and process apparatus for forming a chromium oxide passivation film on a weld

Also Published As

Publication number Publication date
JP2007191799A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP3725100B2 (en) Deposition method
EP1612857B1 (en) Cvd apparatus and method for cleaning cvd apparatus
KR100781408B1 (en) Method for cleaning of processing chamber in semiconductor processing apparatus
JP5006938B2 (en) Surface treatment apparatus and substrate treatment method thereof
JP5491170B2 (en) Etching method
US20190311896A1 (en) Method to fabricate thermally stable low k-finfet spacer
JPH08321448A (en) Vacuum pumping equipment, semiconductor manufacturing equipment, and vacuum processing method
JP6807278B2 (en) Silicon nitride film deposition method and film deposition equipment
TW201736629A (en) PECVD tungsten containing hardmask films and methods of making
WO2007072708A1 (en) Substrate processing apparatus
GB2319533A (en) Methods of forming a barrier layer based on titanium nitride
US12060640B2 (en) Film forming method and system
US10056236B2 (en) Plasma processing method
CN105070646B (en) A kind of preparation method of low stress nitride silicon thin film
JP4845786B2 (en) Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method
TWI812827B (en) Method for depositing nitride film
JPH05125518A (en) Formation of passivated film
WO2021124810A1 (en) Method for manufacturing passivation film
US12116675B2 (en) Adhesion removal method and film-forming method
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JP4059792B2 (en) Semiconductor manufacturing method
WO2004006317A1 (en) Method of cleaning substrate treatment apparatus
JPH09263931A (en) Vacuum treatment and vacuum treating device
JPH01241126A (en) Low temperature dry etching
JP2742381B2 (en) Method of forming insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees