JP2507518B2 - Vacuum exhaust device - Google Patents

Vacuum exhaust device

Info

Publication number
JP2507518B2
JP2507518B2 JP4438788A JP4438788A JP2507518B2 JP 2507518 B2 JP2507518 B2 JP 2507518B2 JP 4438788 A JP4438788 A JP 4438788A JP 4438788 A JP4438788 A JP 4438788A JP 2507518 B2 JP2507518 B2 JP 2507518B2
Authority
JP
Japan
Prior art keywords
pump
rotary pump
oil
oil rotary
roughing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4438788A
Other languages
Japanese (ja)
Other versions
JPH01219367A (en
Inventor
芳紹 堤
新次郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4438788A priority Critical patent/JP2507518B2/en
Publication of JPH01219367A publication Critical patent/JPH01219367A/en
Application granted granted Critical
Publication of JP2507518B2 publication Critical patent/JP2507518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子ポンプと油回転ポンプ又は分子ポンプ
とメカニカルブースタおよび油回転ポンプの組合せを排
気ポンプとする真空排気装置に係り、特に被排気側の油
汚染を防止するのに好適な真空排気装置に関する。
Description: TECHNICAL FIELD The present invention relates to a vacuum evacuation device having a combination of a molecular pump and an oil rotary pump or a combination of a molecular pump, a mechanical booster, and an oil rotary pump as an exhaust pump, and particularly to an exhaust target. The present invention relates to a vacuum exhaust device suitable for preventing oil contamination on the side.

〔従来の技術〕[Conventional technology]

第9図は実開昭52−96408号公報に記載された分子ポ
ンプとメカニカルブースタおよび油回転ポンプの組合せ
を排気ポンプとする従来の真空排気装置の一例で示した
ものである。同図において真空容器1を排気する際、真
空容器1の体積が大きいか、又はガス負荷が大きい場合
には、本排気ポンプである分子ポンプ2は大型となり十
分に低い圧力でしか作動できないので、真空容器1内の
圧力を分子ポンプ2が運転できる圧力まで粗引きするこ
とが必要になる。そこで、まず粗引きバルブ3を開きメ
カニカルブースタ5と油回転ポンプ6にて真空容器1を
排気する。真空容器1内の圧力が分子ポンプ2が十分作
動する圧力まで低くなつたら粗引きバルブ3を閉じ、分
子ポンプ吐出バルブ8を開き、本排気バルブ9を開いて
本排気を行なう。排気ポンプの停止時には本排気バルブ
9を閉じ、ガスリークバルブ10を開いてノズル11により
排気ポンプに使われている油よりも離脱エネルギの小さ
い気体をリークさせて停止させる。
FIG. 9 shows an example of a conventional vacuum exhaust device which uses a combination of a molecular pump, a mechanical booster, and an oil rotary pump described in Japanese Utility Model Publication No. 52-96408 as an exhaust pump. In the figure, when the vacuum container 1 is evacuated and the volume of the vacuum container 1 is large or the gas load is large, the molecular pump 2 which is the main exhaust pump becomes large and can operate only at a sufficiently low pressure. It is necessary to roughly pull the pressure in the vacuum container 1 to a pressure at which the molecular pump 2 can be operated. Therefore, first, the roughing valve 3 is opened and the vacuum container 1 is evacuated by the mechanical booster 5 and the oil rotary pump 6. When the pressure in the vacuum container 1 becomes low enough to operate the molecular pump 2, the roughing valve 3 is closed, the molecular pump discharge valve 8 is opened, and the main exhaust valve 9 is opened to perform the main exhaust. When the exhaust pump is stopped, the exhaust valve 9 is closed and the gas leak valve 10 is opened to cause the nozzle 11 to leak and stop the gas having a smaller dissociation energy than the oil used in the exhaust pump.

なお第9図において、12は本排気配管、13は粗引き配
管、15は分子ポンプ吐出配管である。
In FIG. 9, 12 is the main exhaust pipe, 13 is the roughing pipe, and 15 is the molecular pump discharge pipe.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

近年真空排気装置の真空容器1に関しては、排気に用
いる排気ポンプの油の逆拡散による真空容器1内の油汚
染が問題となつている。特に到達圧力付近で作動してい
る油回転ポンプ6では油の逆拡散が激しく発生してい
る。この油汚染の発生源である油回転ポンプ6の油の逆
拡散を低減させれば、真空容器1内の油汚染を低減させ
ることができる。
In recent years, regarding the vacuum container 1 of the vacuum exhaust device, oil contamination in the vacuum container 1 due to back diffusion of oil of an exhaust pump used for exhaust has become a problem. Particularly in the oil rotary pump 6 operating near the ultimate pressure, oil back diffusion is severely generated. If the back diffusion of the oil of the oil rotary pump 6 which is the source of this oil pollution is reduced, the oil pollution in the vacuum container 1 can be reduced.

しかし上記従来の真空排気装置では排気ポンプ停止時
の油の逆拡散の防止については考慮されているが、油汚
染の最大の原因となる粗引き時に到達圧力付近で作動し
ているメカニカルブースタ5と油回転ポンプ6に使われ
ている油の粗引き配管13を通じての真空容器1への逆拡
散を防止することについては考慮されていなかつた。ま
た本排気中には分子ポンプ吐出バルブ8を開き分子ポン
プ吐出配管15を通じてメカニカルブースタ5と油回転ポ
ンプ6にて分子ポンプ2の後段排気をする。この場合真
空容器1内の圧力が低くなり到達圧力付近になるとメカ
ニカルブースタ5,油回転ポンプ6も到達圧力付近で作動
することとなり、このとき油の逆拡散を発生する。この
逆拡散した油は分子ポンプ吐出配管15,分子ポンプ2の
内面吐出側を汚染する。この油の逆拡散による汚染を防
止するために、メカニカルブースタ5の吸込口側(上流
側)にコールドトラツプ又は吸着剤の入つたトラツプを
設ける方法があるが、いずれの場合も配管中にこれらの
要素を設けると、配管のコンダクタンスが小さくなるた
め排気速度が低下したり、トラツプに付着した油の除去
や吸着剤の交換が必要になるなどという問題があつた。
However, in the above-mentioned conventional vacuum exhaust device, although consideration is given to the prevention of back diffusion of oil when the exhaust pump is stopped, the mechanical booster 5 operating near the ultimate pressure during rough evacuation, which is the largest cause of oil contamination, is used. No consideration has been given to preventing back diffusion of the oil used in the oil rotary pump 6 into the vacuum vessel 1 through the roughing piping 13. Further, during the main exhaust, the molecular pump discharge valve 8 is opened and the mechanical pump 5 and the oil rotary pump 6 exhaust the latter stage of the molecular pump 2 through the molecular pump discharge pipe 15. In this case, when the pressure in the vacuum container 1 becomes low and becomes close to the ultimate pressure, the mechanical booster 5 and the oil rotary pump 6 also operate near the ultimate pressure, at which time back diffusion of oil occurs. This oil that has diffused back contaminates the molecular pump discharge pipe 15 and the inner discharge side of the molecular pump 2. In order to prevent contamination due to the reverse diffusion of this oil, there is a method of providing a cold trap or a trap containing an adsorbent on the suction inlet side (upstream side) of the mechanical booster 5, but in any case, these are provided in the pipe. If the element is provided, there are problems that the conductance of the pipe is reduced and the exhaust speed is reduced, and it is necessary to remove the oil adhering to the trap and replace the adsorbent.

本発明の目的は、油回転ポンプなどの排気ポンプの吸
込口側(上流側)より微量のパージガスをパージし、油
の逆転散を抑えるようにした真空排気装置を提供するこ
とにある。
An object of the present invention is to provide a vacuum evacuation device in which a small amount of purge gas is purged from the suction port side (upstream side) of an exhaust pump such as an oil rotary pump to suppress reverse dispersion of oil.

〔課題を解決するための手段〕[Means for solving the problem]

かかる目的達成のため、本発明は、真空容器と、この
真空容器を排気するための分子ポンプと、この分子ポン
プと前記真空容器を連結する本排気配管と、この本排気
配管に配設された本排気バルブと、前記真空容器を粗引
きするための油回転ポンプと、この油回転ポンプと前記
真空容器とを連結する粗引き配管と、この粗引き配管に
配設された粗引きバルブと、前記油回転ポンプの吐出口
に配設された油回転ポンプ吐出配管とからなる真空排気
装置において、前記油回転ポンプを到散圧力まで運転す
る過程時に微量のパージガスを前記油回転ポンプの上流
側よりパージするパージガス微小流量供給機構を設けた
ものである。
To achieve such an object, the present invention provides a vacuum container, a molecular pump for exhausting the vacuum container, a main exhaust pipe connecting the molecular pump and the vacuum container, and a main exhaust pipe. A main exhaust valve, an oil rotary pump for roughing the vacuum container, a roughing pipe connecting the oil rotary pump and the vacuum container, and a roughing valve arranged in the roughing pipe, In a vacuum exhaust device consisting of an oil rotary pump discharge pipe arranged at the discharge port of the oil rotary pump, a small amount of purge gas is supplied from the upstream side of the oil rotary pump during the process of operating the oil rotary pump up to the diffuse pressure. This is provided with a purge gas minute flow rate supply mechanism for purging.

〔作用〕[Action]

上述の構成によれば、油回転ポンプの吸込口側(上流
側)に設けられたパージガス微小流量供給機構により、
油回転ポンプを到達圧力まで運転する過程時に同ポンプ
に使われている油の吸込口側への逆拡散を抑えるのに十
分な最小量のパージガスが油回転ポンプの吸込口側にパ
ージされる。このときのパージガスの量は従来のパージ
ガスの量の約数十分の一程度となり、排気系の到達圧力
にほとんど影響を与えず、清浄な真空が得られる。これ
により被排気系の油汚染の少ない真空排気装置が得られ
る。
According to the above configuration, the purge gas minute flow rate supply mechanism provided on the suction port side (upstream side) of the oil rotary pump
During the process of operating the oil rotary pump up to the ultimate pressure, the minimum amount of purge gas used in the oil rotary pump is suppressed to the suction port side and the minimum amount of purge gas is purged to the oil rotary pump suction port side. At this time, the amount of the purge gas is about several tenths of the amount of the conventional purge gas, and the ultimate pressure of the exhaust system is hardly affected, and a clean vacuum can be obtained. As a result, a vacuum exhaust device with less oil contamination of the exhaust system can be obtained.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて説明す
る。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1図は本発明の第1実施例に係り、第9図に示す従
来装置と同一又は同等の部分には同一符号を付して説明
する。
FIG. 1 relates to a first embodiment of the present invention, and the same or equivalent parts as those of the conventional apparatus shown in FIG.

真空容器1には、気体を導入するためのリークバルブ
21、本排気配管12および粗引き配管13が連結されてい
る。本排気配管12の他端は本排気ポンプである分子ポン
プ2に連結されている。本排気配管12の途中には本排気
バルブ9が設けらている。分子ポンプ2の吐出口には分
子ポンプ吐出配管15が連結されており、この分子ポンプ
吐出配管15の途中には分子ポンプ吐出バルブ8が設けら
れている。分子ポンプ吐出配管15の他端は油回転ポンプ
6に連結されている。また粗引き配管13の他端は分子ポ
ンプ吐出バルブ8と油回転ポンプ6との間の分子ポンプ
吐出配管15に連結されている。また粗引き配管13の途中
には粗引きバルブ3が設けられている。油回転ポンプ6
の吐出口には油回転ポンプ吐出配管22が設けられてい
る。
The vacuum container 1 has a leak valve for introducing gas.
21, the main exhaust pipe 12 and the roughing pipe 13 are connected. The other end of the main exhaust pipe 12 is connected to the molecular pump 2 which is the main exhaust pump. A main exhaust valve 9 is provided in the middle of the main exhaust pipe 12. A molecular pump discharge pipe 15 is connected to the discharge port of the molecular pump 2, and a molecular pump discharge valve 8 is provided in the molecular pump discharge pipe 15. The other end of the molecular pump discharge pipe 15 is connected to the oil rotary pump 6. The other end of the roughing pipe 13 is connected to the molecular pump discharge pipe 15 between the molecular pump discharge valve 8 and the oil rotary pump 6. A roughing valve 3 is provided in the middle of the roughing piping 13. Oil rotary pump 6
An oil rotary pump discharge pipe 22 is provided at the discharge port.

パージガス微小流量供給機構23は、油回転ポンプ6の
吸込口側、すなわち上流側、この実施例では粗引き配管
13が分子ポンプ吐出配管15と連結する点と油回転ポンプ
6との間に設けられており、分子ポンプ吐出配管15に連
結されたパージガス配管25と、このパージガス配管25に
上流側より順次設けられた微小流量オリフイス26および
フイルタ28とから構成されている。
The purge gas minute flow rate supply mechanism 23 is a suction port side of the oil rotary pump 6, that is, an upstream side, in this embodiment, a roughing piping.
13 is provided between the point connected to the molecular pump discharge pipe 15 and the oil rotary pump 6, and the purge gas pipe 25 connected to the molecular pump discharge pipe 15 and the purge gas pipe 25 are sequentially provided from the upstream side. And a micro flow rate orifice 26 and a filter 28.

なお油回転ポンプ6は、第9図に示すメカニカルブー
スタ5と組合せて使用するようにしてもよい。
The oil rotary pump 6 may be used in combination with the mechanical booster 5 shown in FIG.

つぎに、本発明の第1実施例の作用を説明する。 Next, the operation of the first embodiment of the present invention will be described.

まず分子ポンプ2内を粗引きするために分子ポンプ吐
出バルブ8を開き油回転ポンプ6により粗引きを行な
う。この粗引きが終わつたら分子ポンプ2の運転を開始
し、分子ポンプ吐出バルブ8を閉じる。つぎに真空容器
1内を粗引きするためにリークバルブ21および本排気バ
ルブ9を閉じる粗引きバルブ3を開いて油回転ポンプ6
により真空容器1を排気する。そして真空容器1内の圧
力が分子ポンプ2が作動する圧力まで低下した後粗引き
バルブ3を閉じ本排気バルブ9を開いて本排気を行な
う。油回転ポンプ6により真空容器1内の粗引きをする
過程時に油回転ポンプ6内の圧力が到達圧力付近になる
と、同ポンプ内に使われている油が激しく逆拡散を起こ
し、真空容器1内を油汚染する。また本排気時には油回
転ポンプ6は分子ポンプ2の後段排気をしているが、分
子ポンプ2が到達圧力付近となると油回転ポンプ6もそ
の到達圧力付近の圧力で作動することになり油回転ポン
プ6に使われている油は分子ポンプ2の吐出側に激しく
逆拡散して分子ポンプ2内の吐出側を汚染する。さらに
油回転ポンプ6により分子ポンプ2内の粗引きをする過
程時に油回転ポンプ6内の圧力が到達圧力付近になる
と、同ポンプ内に使われている油が激しく逆拡散を起こ
し、分子ポンプ2内を油汚染する。
First, in order to roughly pull the inside of the molecular pump 2, the molecular pump discharge valve 8 is opened and the oil rotary pump 6 performs roughing. When this rough evacuation ends, the operation of the molecular pump 2 is started, and the molecular pump discharge valve 8 is closed. Next, in order to roughly pull the inside of the vacuum container 1, the leak valve 21 and the main exhaust valve 9 are closed, and the roughing valve 3 is opened to open the oil rotary pump 6.
The vacuum container 1 is evacuated by. Then, after the pressure inside the vacuum container 1 has dropped to the pressure at which the molecular pump 2 operates, the roughing valve 3 is closed and the main exhaust valve 9 is opened to perform main exhaust. When the pressure in the oil rotary pump 6 becomes close to the ultimate pressure during the process of roughing the vacuum container 1 by the oil rotary pump 6, the oil used in the pump violently back-diffuses and the vacuum container 1 Pollute oil. Further, during the main exhaust, the oil rotary pump 6 is performing post-stage exhaust of the molecular pump 2. However, when the molecular pump 2 reaches the ultimate pressure, the oil rotary pump 6 also operates at a pressure near the ultimate pressure. The oil used for 6 violently diffuses back to the discharge side of the molecular pump 2 and contaminates the discharge side in the molecular pump 2. Furthermore, when the pressure inside the oil rotary pump 6 becomes close to the ultimate pressure during the process of roughing the inside of the molecular pump 2 by the oil rotary pump 6, the oil used in the same pump violently diffuses back, and the molecular pump 2 The inside is polluted with oil.

上記のような油回転ポンプ6が到達圧力付近で作動す
るときに発生する逆拡散による油汚染を防止するため、
真空容器1の粗引き時、分子ポンプ2の本排気時、粗引
き時、再生時には、パージガス微小流量供給機構23によ
り油回転ポンプ6で排気する始めから微量のパージガス
を油回転ポンプ6の上流側より流す。本実施例ではパー
ジする気体としてフイルタ28を通して清浄な空気を使用
しており、この清浄な空気は微小オリフイス26,バージ
ガス配管25を通つて油回転ポンプ6の上流側へとバージ
される。
In order to prevent oil contamination due to back diffusion that occurs when the oil rotary pump 6 as described above operates near the ultimate pressure,
During the rough evacuation of the vacuum container 1, during the main exhaust of the molecular pump 2, during the rough evacuation, and during the regeneration, a small amount of purge gas is discharged upstream from the oil rotary pump 6 from the beginning of exhausting by the oil rotary pump 6 by the purge gas minute flow rate supply mechanism 23. Shed more. In this embodiment, clean air is used as the gas to be purged through the filter 28, and this clean air is purged to the upstream side of the oil rotary pump 6 through the minute orifice 26 and the barge gas pipe 25.

なおパージするガスは、化学的に安定な不活性ガスが
好ましいが、窒素ガス又は油分を含まない清浄な空気な
どでも十分効果があり、実験の結果では分子量の大きい
ガス程少ない流量で効果があることが表1に示すように
立証されている。
The purge gas is preferably a chemically stable inert gas, but nitrogen gas or clean air that does not contain oil is also sufficiently effective, and the experimental results show that a gas with a larger molecular weight has a smaller flow rate. This is proved as shown in Table 1.

第2図は油回転ポンプ6の上流側から窒素ガスをパー
ジしたときの到達圧力付近の油回転ポンプ6吸込口側の
残留ガスを四重極質量分析器で分析したときの残留ガス
スペクトルを示したもので、縦軸はイオン電流値、横軸
は質量数である。得られたスペクトルは、空気の残留ガ
ススペクトルで、きわめて清浄な状態が得られたことが
わかる。
FIG. 2 shows a residual gas spectrum when residual gas on the suction port side of the oil rotary pump 6 near the ultimate pressure when purging nitrogen gas from the upstream side of the oil rotary pump 6 is analyzed by a quadrupole mass spectrometer. The vertical axis is the ion current value and the horizontal axis is the mass number. The obtained spectrum is the residual gas spectrum of air, and it can be seen that an extremely clean state was obtained.

第3図は微小流量のパージを行なわないときのときの
油回転ポンプ6の吸込口側の残留ガススペクトルであ
る。油回転ポンプ6に使用されている油の成分(炭化水
素)によるピークが質量数39以上に多数検出されてお
り、油の逆拡散が激しく進展していることがわかる。
FIG. 3 shows a residual gas spectrum on the suction port side of the oil rotary pump 6 when the minute flow rate is not purged. A large number of peaks due to the component (hydrocarbon) of the oil used in the oil rotary pump 6 were detected at a mass number of 39 or more, and it can be seen that the reverse diffusion of the oil is significantly progressing.

第4図はパージするガスの量による残留ガス、油回転
ポンプ6の吸込口の圧力(以下、単に吸込口圧力とい
う)の変化を調べるために、窒素ガスをパージした結果
を示したものである。左側の縦軸は残留ガスの検出ピー
クに対するイオン電流値で、右側の縦軸は吸込口圧力、
横軸はパージ量を表わしている。
FIG. 4 shows the result of purging nitrogen gas in order to investigate changes in the residual gas and the pressure at the suction port of the oil rotary pump 6 (hereinafter simply referred to as suction port pressure) depending on the amount of gas to be purged. . The left vertical axis is the ion current value for the residual gas detection peak, the right vertical axis is the inlet pressure,
The horizontal axis represents the purge amount.

以上を比較すると、わずかな量のパージによつて油の
各成分ごとにみると微小流量のパージを行なつた場合の
油成分のピークは、パージを行なわない場合の約1/100
程度となり、十分清浄な真空が得られていることがわか
る。このときパージを行なつた量と従来のパージ量とを
比較すると、本発明のパージ量がきわめてわずかの量と
なることがわかる。1例として排気速度が240l/minの油
回転ポンプ6についてパージするガスの量を従来の方法
によるものと本発明によるものとを比較する。
Comparing the above, the peak of the oil component when a small flow rate purge is performed is about 1/100 of that when no purge is performed when looking at each component of the oil with a small amount of purge.
It can be seen that a sufficiently clean vacuum is obtained. At this time, comparing the purged amount with the conventional purge amount, it can be seen that the purge amount of the present invention is extremely small. As an example, the amount of gas to be purged for the oil rotary pump 6 having an evacuation speed of 240 l / min is compared between the conventional method and the present invention.

油回転ポンプ6の排気速度をS,排気量をQ,吸込口圧力
をPとすると、各々の関係は次式で与えられる。
When the exhaust speed of the oil rotary pump 6 is S, the exhaust amount is Q, and the suction port pressure is P, the respective relationships are given by the following equations.

Q=SP …(1) S=240l/minとし、パージによる油の逆拡散防止には
従来は圧力0.1Torr以上がよいとされているため、P=
0.1Torrとすると従来の方法によるパージ量は、式
(1)より Q1=0.4Torrl/s≒32SCCM となり、本発明によるパージの量Q2は第4図によると0.
6SCCM(到達圧力7×10-3Torrのとき)でも十分に効果
があることからQ2=0.6SCCMとすると、従来量に比べて
約1/53と少ない。パージする量がわずかであるため油回
転ポンプの到達圧力を劣化させない。以上により微量の
パージガスの油回転ポンプ6上流側へのパージにより油
の逆拡散を抑えられることがわかる。本実施例によれば
比較的少ない装置の改造により油汚染の少ない真空が得
られる。
Q = SP (1) S = 240 l / min, and the pressure of 0.1 Torr or more is conventionally recommended to prevent reverse diffusion of oil by purging, so P =
Assuming 0.1 Torr, the purge amount by the conventional method becomes Q 1 = 0.4 Torrl / s≈32 SCCM from the equation (1), and the purge amount Q 2 according to the present invention is 0 according to FIG.
Since 6SCCM (at the ultimate pressure of 7 × 10 -3 Torr) is sufficiently effective, when Q 2 = 0.6SCCM, it is about 1/53 less than the conventional amount. Since the amount to be purged is small, the ultimate pressure of the oil rotary pump is not deteriorated. From the above, it is understood that the reverse diffusion of oil can be suppressed by purging a small amount of purge gas to the upstream side of the oil rotary pump 6. According to the present embodiment, a vacuum with less oil contamination can be obtained by modifying the device with a relatively small number.

第5図は本発明の第2実施例に係り、本発明を真空容
器1の体積が少ない場合、すなわち、ガス負荷の小さい
場合に適用した他の実施例である。この実施例ではガス
負荷が小さいため分子ポンプ2が作動できる圧力となる
粗引き時間が短いので粗引きは分子ポンプ2も粗引き過
程時に運転したまま本排気バルブ9を開き、本排気配管
12を通して行なうことができる。そのため本実施例では
粗引き配管系を省くことができる装置が簡単になるとい
う特徴がある。
FIG. 5 relates to the second embodiment of the present invention, and is another embodiment in which the present invention is applied when the volume of the vacuum container 1 is small, that is, when the gas load is small. In this embodiment, since the gas load is small, the roughing time required to operate the molecular pump 2 is short. Therefore, in the roughing, the main exhaust valve 9 is opened while the molecular pump 2 is still operating during the roughing process.
Can be done through 12. Therefore, the present embodiment is characterized in that the apparatus that can omit the roughing piping system is simplified.

第6図は本発明の第3実施例に係り、本発明を分子ポ
ンプ2と油回転ポンプ6とを排気ポンプとする真空排気
装置に適用した他の実施例である。本実施例ではパージ
ガス微小流量供給機構23は、微小流量供給バルブ29,微
小流量供給流量計30,パージカス源31,パージガス配管25
から構成されており、この実施例ではパージするパージ
ガスを空気とは異なる別のパージガス源31としたもので
ある。本実施例によれば、第4図に示したように残留ガ
スの主成分はパージしたガス種となるため、真空容器1
内を任意のガス雰囲気にできるという特徴がある。
FIG. 6 relates to a third embodiment of the present invention and is another embodiment in which the present invention is applied to a vacuum exhaust device having the molecular pump 2 and the oil rotary pump 6 as exhaust pumps. In this embodiment, the purge gas minute flow rate supply mechanism 23 includes a minute flow rate supply valve 29, a minute flow rate supply flow meter 30, a purge residue source 31, and a purge gas pipe 25.
In this embodiment, the purge gas to be purged is another purge gas source 31 different from air. According to this embodiment, the main component of the residual gas is the purged gas species as shown in FIG.
There is a feature that the inside can be made into an arbitrary gas atmosphere.

第7図は本発明の第4実施例に係り、本発明を通常の
分子ポンプ2より高い圧力まで作動する複合分子ポンプ
32と油回転ポンプ6とを排気ポンプとする真空排気装置
に適用した他の実施例である。本実施例では本排気ポン
プである分子ポンプが、通常の分子ポンプ2よりも高い
圧力でも作動する複合分子ポンプ32を用いているため本
排気を始める圧力が高くてよいため、粗引き時間が短か
くできるという特徴がある。
FIG. 7 relates to a fourth embodiment of the present invention, and is a composite molecular pump that operates the present invention to a pressure higher than that of a normal molecular pump 2.
It is another embodiment applied to a vacuum exhaust device in which 32 and the oil rotary pump 6 are exhaust pumps. In this embodiment, since the molecular pump that is the main exhaust pump uses the composite molecular pump 32 that operates even at a higher pressure than the normal molecular pump 2, the pressure for starting the main exhaust may be high, so that the roughing time is short. There is a feature that can be done.

第8図は本発明の第5実施例に係り、本発明を分子ポ
ンプ2と油回転ポンプ6とを排気ポンプとする真空排気
装置に適用した他の実施例である。本実施例ではパージ
ガス微小流量供給機構23、はパージガス配管25,微小流
量供給マスフローコントローラ33(この構造および原理
は「計測技術」86、増刊号55頁から62頁に記載されてい
る)フイルタ28から構成されている。本実施例によれば
パージするガスの流量を常時測定,制御しているため系
の信頼性が向上するという特徴がある。
FIG. 8 relates to a fifth embodiment of the present invention, and is another embodiment in which the present invention is applied to a vacuum exhaust device using the molecular pump 2 and the oil rotary pump 6 as exhaust pumps. In this embodiment, the purge gas minute flow rate supply mechanism 23, the purge gas pipe 25, the minute flow rate supply mass flow controller 33 (this structure and principle are described in “Measurement Technology” 86, special issue No. 55 to page 62) filter 28 It is configured. According to this embodiment, since the flow rate of the gas to be purged is constantly measured and controlled, the reliability of the system is improved.

上述の例では、分子ポンプを対象として説明したが、
クライオポンプの場合にも本発明を適用することができ
る。この場合、クライオポンプの再生時には、排気バル
ブと粗引きバルブを閉じクライオポンプを昇温させてク
ライオポンプ内の分子面に吸着した気体を離脱させ、こ
の気体を油回転ポンプにより排気する。この過程時の終
わりには油回転ポンプは到達圧力付近で作動することに
なり、同ポンプ内に使われている油が激しく逆拡散を起
こし、クライオポンプ内を油汚染するが、上記実施例と
同様に微量のパージカスを油回転ポンプの上流側から流
すことにより防止できる。
In the above example, the molecular pump is explained, but
The present invention can also be applied to the case of a cryopump. In this case, when the cryopump is regenerated, the exhaust valve and the roughing valve are closed to raise the temperature of the cryopump to release the gas adsorbed on the molecular surface in the cryopump, and the gas is exhausted by the oil rotary pump. At the end of this process, the oil rotary pump operates near the ultimate pressure, and the oil used in the pump violently diffuses back to contaminate the cryopump. Similarly, it can be prevented by causing a small amount of purge dust to flow from the upstream side of the oil rotary pump.

〔発明の効果〕〔The invention's effect〕

上述のとおり、本発明によれば、メカニカルブースタ
と油回転ポンプの組合せ又は油回転ポンプをその到達圧
力まで運転する過程時に、油回転ポンプに使われている
油の油回転ポンプ吸込口側への逆拡散が抑えられるの
で、被排気系の油汚染の少ない真空排気装置が得られ
る。
As described above, according to the present invention, during the process of operating the combination of the mechanical booster and the oil rotary pump or the oil rotary pump up to its ultimate pressure, the oil used in the oil rotary pump is transferred to the oil rotary pump suction port side. Since back diffusion is suppressed, it is possible to obtain a vacuum exhaust device with less oil contamination of the exhaust system.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図は本発明の第1実施例に係り、第1図
は本発明を分子ポンプと油回転ポンプとを排気系とする
真空排気装置に適用した構成図、第2図はパージを行な
つたときの油回転ポンプ上流側の残留ガススペクトル、
第3図はパージを行ないわないときの油回転ポンプ上流
側の残留ガススペクトル、第4図はパージガスの量と残
留ガスの成分の検出ピークの変化とポンプ吸込口圧力の
変化との関係図、第5図から第8図は本発明の第2実施
例から第4実施例に係り、本発明を分子ポンプと油回転
ポンプとを排気系とする真空排気装置に適用した他の実
施例の構成図、第9図は従来の分子ポンプ,メカニカル
ブースタ,油回転ポンプを排気系とする真空排気装置の
構成図である。 1……真空容器、2,32……分子ポンプ、6……油回転ポ
ンプ、5……メカニカルブースタ、9……本排気バル
ブ、12……本排気配管、13……粗引き配管、22……油回
転ポンプ、23……パージガス微小流量供給機構。
1 to 4 relate to a first embodiment of the present invention, and FIG. 1 is a structural diagram in which the present invention is applied to a vacuum exhaust device having a molecular pump and an oil rotary pump as an exhaust system, and FIG. Residual gas spectrum on the upstream side of the oil rotary pump when purging,
FIG. 3 is a residual gas spectrum on the upstream side of the oil rotary pump when purging is not performed, and FIG. 4 is a relationship diagram between the amount of purge gas, changes in the detection peaks of residual gas components, and changes in pump inlet pressure, FIGS. 5 to 8 relate to the second to fourth embodiments of the present invention, and are the configurations of other embodiments in which the present invention is applied to a vacuum exhaust apparatus having a molecular pump and an oil rotary pump as an exhaust system. FIG. 9 and FIG. 9 are configuration diagrams of a conventional vacuum pumping system having a molecular pump, a mechanical booster, and an oil rotary pump as a pumping system. 1 ... Vacuum container, 2,32 ... Molecular pump, 6 ... Oil rotary pump, 5 ... Mechanical booster, 9 ... Main exhaust valve, 12 ... Main exhaust pipe, 13 ... Roughing pipe, 22 ... … Oil rotary pump, 23 …… Purge gas micro flow rate supply mechanism.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空容器と、この真空容器を排気するため
の分子ポンプと、この分子ポンプと前記真空容器を連結
する本排気配管と、この本排気配管に配設された本排気
バルブと、前記真空容器を粗引きするための油回転ポン
プと、この油回転ポンプと前記真空容器とを連結する粗
引き配管と、この粗引き配管に配設された粗引バルブ
と、前記油回転ポンプの吐出口に配設された油回転ポン
プ吐出配管とからなる真空排気装置において、前記油回
転ポンプを到達圧力まで運転する過程時に微量のパージ
ガスを前記油回転ポンプの上流側よりパージするパージ
ガス微小流量供給機構を設けた真空排気装置。
1. A vacuum container, a molecular pump for evacuating the vacuum container, a main exhaust pipe connecting the molecular pump and the vacuum container, and a main exhaust valve arranged in the main exhaust pipe. An oil rotary pump for roughing the vacuum container, a roughing pipe connecting the oil rotary pump and the vacuum container, a roughing valve arranged in the roughing pipe, and an oil rotary pump In a vacuum exhaust device consisting of an oil rotary pump discharge pipe arranged at the discharge port, a minute amount of purge gas for purging a small amount of purge gas from the upstream side of the oil rotary pump during the process of operating the oil rotary pump to the ultimate pressure A vacuum exhaust device equipped with a mechanism.
JP4438788A 1988-02-29 1988-02-29 Vacuum exhaust device Expired - Fee Related JP2507518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4438788A JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4438788A JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Publications (2)

Publication Number Publication Date
JPH01219367A JPH01219367A (en) 1989-09-01
JP2507518B2 true JP2507518B2 (en) 1996-06-12

Family

ID=12690098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4438788A Expired - Fee Related JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Country Status (1)

Country Link
JP (1) JP2507518B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845786B2 (en) * 2007-03-26 2011-12-28 公益財団法人国際科学振興財団 Vacuum exhaust apparatus, semiconductor manufacturing apparatus, and vacuum processing method
US9224956B2 (en) 2012-03-27 2015-12-29 Joled Inc. Method for manufacturing organic thin-film element, apparatus for manufacturing organic thin-film element, method for forming organic film, and method for manufacturing organic EL element
JPWO2013190764A1 (en) 2012-06-20 2016-02-08 株式会社Joled Organic EL element manufacturing method, organic EL element, organic EL display panel, organic EL display device, and organic EL light emitting device
JP2014122602A (en) * 2012-12-21 2014-07-03 High Energy Accelerator Research Organization Hybrid vacuum device and exhausting method using the same

Also Published As

Publication number Publication date
JPH01219367A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JP4769350B2 (en) Noble gas recovery method and apparatus
JP2005330967A (en) Vacuum pump system for light gas
US7021903B2 (en) Fore-line preconditioning for vacuum pumps
JPH0778775A (en) Evacuation of vacuum chamber for supervacuum and method of scavenging
TW200532108A (en) Apparatus and method for control, pumping and abatement for vacuum process chambers
JPH01315682A (en) Vacuum pump
JP2507518B2 (en) Vacuum exhaust device
JP2607572B2 (en) Analysis device and method using charged particles
JP2000120992A (en) Gas charging method to gas cylinder and gas charging device
US20150202564A1 (en) Method For Permeation Extraction of Hydrogen From an Enclosed Volume
JP2507518C (en)
US20120037189A1 (en) Ex-situ component recovery
JPH1048087A (en) Helium leak detector
JPS63285924A (en) Device for manufacturing semiconductor
JPH03157585A (en) Vacuum device and usage thereof
JPH09306851A (en) Decompression exhaust system and decompression vapor-phase treating apparatus
JPH05180165A (en) Vacuum exhaust device for vacuum container
JP3156409B2 (en) Evacuation system
JPS5811074B2 (en) Exhaust system in vacuum equipment
JP2704052B2 (en) Vacuum equipment
JPH0599139A (en) Cryopump regenerating mechanism
JPH08279471A (en) Manufacturing for semiconductor device
JP3376185B2 (en) Vacuum refining apparatus and operation method thereof
JPH06256948A (en) Vacuum treating device
EP1541709A1 (en) Arrangement for the control of the flow rate of cleaning agents in a recirculation dispositive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees