JPH01219367A - Evacuation device - Google Patents

Evacuation device

Info

Publication number
JPH01219367A
JPH01219367A JP4438788A JP4438788A JPH01219367A JP H01219367 A JPH01219367 A JP H01219367A JP 4438788 A JP4438788 A JP 4438788A JP 4438788 A JP4438788 A JP 4438788A JP H01219367 A JPH01219367 A JP H01219367A
Authority
JP
Japan
Prior art keywords
oil
pump
rotary pump
oil rotary
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4438788A
Other languages
Japanese (ja)
Other versions
JP2507518B2 (en
Inventor
Yoshitsugu Tsutsumi
芳紹 堤
Shinjiro Ueda
上田 新次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4438788A priority Critical patent/JP2507518B2/en
Publication of JPH01219367A publication Critical patent/JPH01219367A/en
Application granted granted Critical
Publication of JP2507518B2 publication Critical patent/JP2507518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To check the back diffusion of oil by purging infinitesimal purge gas from the upstream side of an oil-sealed rotary vacuum pump at the time of a process operating this oil sealed rotary vacuum pump to the extent of ultimate pressure. CONSTITUTION:In order to prevent any oil contamination due to its back diffusion being produced when an oil-sealed rotary vacuum pump 6 operates in and around its ultimate pressure, infinitesimal purge gas is made to flow from the upstream side of the oil-sealed rotary vacuum pump 6 from the outset of exhaust with an oil circuit pump 6 by a purge gas minute flow feed mechanism 23 at times of roughing vacuum of a vacuum vessel 1, regular exhaust of a molecular pump 2, roughing vacuum and regeneration. In this connection, as for gas being purged, a chemically stable inert gas is desirable, but pure air or the like, uninclusive of nitrogen gas or oil content, may be used instead.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子ポンプと油回転ポンプ又は分子ポンプと
メカニカルブースタおよび油回転ポンプの組合せを排気
ポンプとする真空排気装置に係り、特に被排気側の油汚
染を防止するのに好適な真空排気装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a vacuum evacuation device using a molecular pump and an oil rotary pump or a combination of a molecular pump, a mechanical booster, and an oil rotary pump as an evacuation pump, and particularly relates to The present invention relates to a vacuum evacuation device suitable for preventing side oil contamination.

[従来の技術〕 第9図は実開昭52−96408号公報に記載された分
子ポンプとメカニカルブースタおよび油回転ポンプの組
合せを排気ポンプとする従来の真空排気装置の一例で示
したものである。同図において真空容器1を排気する際
、真空容器1の体積が大きいか、又はガス負荷が大きい
場合には、本排気ポンプである分子ポンプ2は大型とな
り十分に低い圧力でしか作動できないので、真空容器1
内の圧力を分子ポンプ2が運転できる圧力まで粗引きす
ることが必要になる。そこで、まず粗引きバルブ3を開
きメカニカルブースタ5と油回転ポンプ6にて真空容器
1を排気する。真空容器1内の圧力が分子ポンプ2が十
分作動する圧力まで低くなったら粗引きバルブ3を閉じ
、分子ポンプ吐出バルブ8を開き、本排気バルブ9を開
いて本排気を行なう、排気ポンプの停止時には本排気バ
ルブ9を閉じ、ガスリークバルブ10を開いてノズル1
1により排気ポンプに使われている油よりも離脱エネル
ギの小さい気体をリークさせて停止させる。
[Prior Art] Figure 9 shows an example of a conventional vacuum evacuation device using a combination of a molecular pump, a mechanical booster, and an oil rotary pump as an evacuation pump, as described in Japanese Utility Model Application Publication No. 52-96408. . In the figure, when evacuating the vacuum container 1, if the volume of the vacuum container 1 is large or the gas load is large, the molecular pump 2, which is the main evacuation pump, becomes large and can only operate at a sufficiently low pressure. Vacuum container 1
It is necessary to roughly reduce the pressure inside to a pressure at which the molecular pump 2 can operate. Therefore, first, the roughing valve 3 is opened and the vacuum vessel 1 is evacuated using the mechanical booster 5 and the oil rotary pump 6. When the pressure inside the vacuum container 1 becomes low enough to operate the molecular pump 2, close the rough evacuation valve 3, open the molecular pump discharge valve 8, open the main exhaust valve 9 to perform main exhaust, and stop the exhaust pump. Sometimes, the main exhaust valve 9 is closed, the gas leak valve 10 is opened, and the nozzle 1 is
1, the pump is stopped by leaking a gas whose desorption energy is smaller than that of the oil used in the exhaust pump.

なお第9図において、12は本排気配管、13は粗引き
配管、15は分子ポンプ吐出配管である。
In FIG. 9, 12 is a main exhaust pipe, 13 is a rough evacuation pipe, and 15 is a molecular pump discharge pipe.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年真空排気装置の真空容器1に関しては、排気に用い
る排気ポンプの油の逆拡散による真空容器1内の油汚染
が問題となっている。特に到達圧力付近で作動している
油回転ポンプ6では油の逆拡散が激しく発生している。
In recent years, regarding the vacuum vessel 1 of a vacuum evacuation system, oil contamination within the vacuum vessel 1 due to back diffusion of oil from an exhaust pump used for evacuation has become a problem. In particular, in the oil rotary pump 6 operating near the ultimate pressure, back diffusion of oil occurs violently.

この油汚染の発生源である油回転ポンプ6の油の逆拡散
を低減させれば、真空容器1内の油汚染を低減させるこ
とができる。
By reducing back diffusion of oil from the oil rotary pump 6, which is the source of oil pollution, oil pollution within the vacuum container 1 can be reduced.

しかし上記従来の真空排気装置では排気ポンプ停止時の
油の逆拡散の防止については考慮されているが、油汚染
の最大の原因となる粗引き時に到達圧力付近で作動して
いるメカニカルブースタ5と油回転ポンプ6に使われて
いる油の粗引き配管13を通じての真空容器1への逆拡
散を防止することについては考慮されていなかった。ま
た本排気中には分子ポンプ吐出バルブ8を開き分子ポン
プ吐出配管15を通じてメカニカルブースタ5と油回転
ポンプ6にて分子ポンプ2の後段排気をする。この場合
真空容器1内の圧力が低くなり到達圧力付近になるとメ
カニカルブースタ5.油回転ポンプ6も到達圧力付近で
作動することとなり、このとき油の逆拡散を発生する。
However, although the above-mentioned conventional vacuum evacuation equipment takes into consideration the prevention of back diffusion of oil when the exhaust pump is stopped, the mechanical booster 5 operates near the ultimate pressure during rough evacuation, which is the biggest cause of oil contamination. No consideration was given to preventing the oil used in the oil rotary pump 6 from back diffusing into the vacuum vessel 1 through the roughing piping 13. During the main evacuation, the molecular pump discharge valve 8 is opened and the mechanical booster 5 and the oil rotary pump 6 are used to perform the subsequent exhaust of the molecular pump 2 through the molecular pump discharge piping 15. In this case, when the pressure inside the vacuum vessel 1 becomes low and near the ultimate pressure, the mechanical booster 5. The oil rotary pump 6 also operates near the ultimate pressure, and at this time, back diffusion of oil occurs.

この逆拡散した油は分子ポンプ吐出配管15.分子ポン
プ2の内面吐出側を汚染する。この油の逆拡散による汚
染を防止するために、メカニカルブースタ5の吸込口側
(上流側)にコールドトラップ又は吸着剤の入ったトラ
ップを設ける方法があるが、いずれの場合も配管中にこ
れらの要素を設けると、配管のコンダクタンスが小さく
なるため排気速度が低下したり、トラップに付着した油
の除去や吸着剤の交換が必要になるなどという問題があ
った。
This back-diffused oil is discharged from the molecular pump discharge piping 15. The inner discharge side of the molecular pump 2 is contaminated. In order to prevent contamination due to back diffusion of this oil, there is a method of installing a cold trap or a trap containing an adsorbent on the suction port side (upstream side) of the mechanical booster 5, but in either case, these traps are installed in the piping. Providing such elements reduces the conductance of the piping, which causes problems such as lowering the pumping speed and making it necessary to remove oil adhering to the trap and replace the adsorbent.

本発明の目的は、油回転ポンプなどの排気ポンプの吸込
口側(上流側)より微量のパージガスをパージし、油の
逆転数を抑えるようにした真空排気装置を提供すること
にある。
An object of the present invention is to provide a vacuum evacuation device that purges a small amount of purge gas from the suction port side (upstream side) of an evacuation pump such as an oil rotary pump to suppress the number of oil reversals.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的達成のため、本発明は、真空容器と、この真
空容器を排気するための分子ポンプと、この分子ポンプ
と前記真空容器を連結する本排気配管と、この本排気配
管に配設された本排気バルブと、前記真空容器を粗引き
するための油回転ポンプと、この油回転ポンプと前記真
空容器とを連結する粗引き配管と、この粗引き配管に配
設された粗引きバルブと、前記油回転ポンプの吐出口に
配設された油回転ポンプ吐出蛇管とからなる真空排気装
置において、前記油回転ポンプを列数圧力まで運転する
過程時に微量のパージガスを前記油回転ポンプの上流側
よりパージするパージガス微小流量供給機構を設けたも
のである。
To achieve this objective, the present invention provides a vacuum vessel, a molecular pump for evacuating the vacuum vessel, a main exhaust pipe connecting the molecular pump and the vacuum vessel, and a main exhaust pipe disposed in the main exhaust pipe. a main exhaust valve, an oil rotary pump for roughing the vacuum container, a roughing piping connecting the oil rotary pump and the vacuum container, and a roughing valve disposed on the roughing piping; In a vacuum evacuation device consisting of an oil rotary pump discharge serpentine pipe disposed at a discharge port of the oil rotary pump, a small amount of purge gas is supplied from the upstream side of the oil rotary pump during the process of operating the oil rotary pump to a row pressure. It is equipped with a purge gas minute flow supply mechanism for purging.

〔作用〕[Effect]

上述のの構成によれば、油回転ポンプの吸込口−(上流
側)に設けられたパージカス微小流量供給機構により、
油回転ポンプを到達圧力まで運転する過程時に同ポンプ
に使われている油の吸込口側への逆拡散を抑えるのに十
分な最小量のパージガスが油回転ポンプの吸込口側にパ
ージされる。
According to the above configuration, the purge gas minute flow rate supply mechanism provided at the suction port (upstream side) of the oil rotary pump,
During the process of operating the oil rotary pump to the ultimate pressure, a minimum amount of purge gas is purged to the suction side of the oil rotary pump, sufficient to suppress back diffusion of oil used in the pump to the suction side.

このときのパージガスの量は従来のパージガスの量の約
数十分の一程度となり、排気系の到達圧力にほとんど影
響を与えず、清浄な真空が得られる。
The amount of purge gas at this time is about a few tenths of the amount of conventional purge gas, which hardly affects the ultimate pressure of the exhaust system and provides a clean vacuum.

これにより被排気系の油汚染の少ない真空排気装置が得
られる。
As a result, a vacuum evacuation device with less oil contamination of the system to be evacuated can be obtained.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基いて説明する。 The present invention will be explained below based on embodiments shown in the drawings.

第1図は本発明の第1実施例に係り、第9図に示す従来
装置と同−又は同等の部分には同一符号を付して説明す
る。
FIG. 1 relates to a first embodiment of the present invention, and the same or equivalent parts as in the conventional device shown in FIG. 9 will be described with the same reference numerals.

真空容器1には、気体を導入するためのリークバルブ2
1、本排気配管12および粗引き配管13が連結されて
いる。本排気配管12の他端は本排気ポンプである分子
ポンプ2に連結されている0本排気配管12の途中には
本排気バルブ9が設けらている0分子ポンプ2の吐出口
には分子ボンプ吐出配管15が連結されており、この分
子ポンプ吐出配管15の途中には分子ポンプ吐出バルブ
8が設けられている1分子ポンプ吐出配管15の他端は
油回転ポンプ6に連結されている。また粗引き配管13
の他端は分子ポンプ吐出バルブ8と油回転ポンプ6との
間の分子ポンプ吐出配管15に連結されている。また粗
引き配管13の途中には粗引きバルブ3が設けられてい
る。油回転ポンプ6の吐出口には油回転ポンプ吐出配管
22が設けらている。
The vacuum container 1 includes a leak valve 2 for introducing gas.
1. The main exhaust pipe 12 and the rough evacuation pipe 13 are connected. The other end of the main exhaust pipe 12 is connected to a molecular pump 2 which is a main exhaust pump.A main exhaust valve 9 is provided in the middle of the main exhaust pipe 12.A molecular pump is connected to the discharge port of the main exhaust pipe 12. A discharge pipe 15 is connected thereto, and a molecular pump discharge valve 8 is provided in the middle of this molecular pump discharge pipe 15. The other end of the monomolecular pump discharge pipe 15 is connected to an oil rotary pump 6. In addition, rough drawing piping 13
The other end is connected to a molecular pump discharge pipe 15 between the molecular pump discharge valve 8 and the oil rotary pump 6. Further, a roughing valve 3 is provided in the middle of the roughing piping 13. An oil rotary pump discharge pipe 22 is provided at the discharge port of the oil rotary pump 6.

パージガス微小流量供給機構23は、油回転ポンプ6の
吸込口側、すなわち上流側、駒の実施例では粗引き配管
13が分子ポンプ吐出配管15と連結する点と油回転ポ
ンプ6との間に設けられており、分子ポンプ吐出配管1
5に連結されたパージガス配管25と、このパージガス
配管25に上流側より順次設けられた微小流量オリフィ
ス26およびフィルタ28とから構成されている。
The purge gas minute flow rate supply mechanism 23 is provided on the suction port side of the oil rotary pump 6, that is, on the upstream side, and in the embodiment of the piece, between the point where the roughing piping 13 connects with the molecular pump discharge piping 15 and the oil rotary pump 6. The molecular pump discharge piping 1
5, and a minute flow rate orifice 26 and a filter 28 provided in this purge gas pipe 25 sequentially from the upstream side.

なお油回転ポンプ6は、第9図に示すメカニカルブース
タ5と組合せて使用するようにしてもよい。
Note that the oil rotary pump 6 may be used in combination with the mechanical booster 5 shown in FIG. 9.

つぎに、本発明の第1実施例の作用を説明する。Next, the operation of the first embodiment of the present invention will be explained.

はず分子ポンプ2内を粗引きするために分子ポンプ吐出
バルブ8を開き油回転ポンプ6により粗引きを行なう、
この粗引きが終わったら分子ポンプ2の運転を開始し、
分子ポンプ吐出バルブ8を閉じる。つぎに真空容器1内
を粗引きするためにリークバルブ21および本排気バル
ブ9を閉じ粗引きバルブ3を開いて油回転ポンプ6によ
り真空容器1を排気する。そして真空容器1内の圧力が
分子ポンプ2が作動する圧力まで低下した後粗引きバル
ブ3を閉じ本排気バルブ9を開いて本排気を行なう、油
回転ポンプ6により真空容器1内の粗引きをする過程時
に油回転ポンプ6内の圧力が到達圧力付近になると、同
ポンプ内に使われている油が激しく逆拡散を起こし、真
空容器1内を油汚染する。また本排気時には油回転ポン
プ6は分子ポンプ2の後段排気をしているが、分子ポン
プ2が到達圧力付近となると油回転ポンプ6もその到達
圧力付近の圧力で作動することになり油回転ポンプ6に
使われている油は分子ポンプ2の吐出側に激しく逆拡散
して分子ポンプ2内の吐出側を汚染する。さらに油回転
ポンプ6により分子ポンプ2内の粗引きをする過程時に
油回転ポンプ6内の圧力が到達圧力付近になると、同ポ
ンプ内に使われている油が激しく逆拡散を起こし、分子
ポンプ2内を油汚染する。また分子ポンプ2の再生時に
は本排気バルブ9と粗引きバルブ3を閉じ分子ポンプ2
を昇温させて分子ポンプ2内の分子面に吸着した気体を
離脱させ、この気体を油回転ポンプ6により排気する。
In order to roughly pump the inside of the molecular pump 2, open the molecular pump discharge valve 8 and perform rough pumping with the oil rotary pump 6.
Once this rough evacuation is complete, start operating the molecular pump 2.
Close the molecular pump discharge valve 8. Next, the leak valve 21 and the main exhaust valve 9 are closed, the rough evacuation valve 3 is opened, and the vacuum vessel 1 is evacuated by the oil rotary pump 6 in order to roughly evacuation of the inside of the vacuum vessel 1 . After the pressure inside the vacuum vessel 1 has decreased to the pressure at which the molecular pump 2 operates, the rough evacuation valve 3 is closed and the main exhaust valve 9 is opened to perform main evacuation. When the pressure inside the oil rotary pump 6 reaches near the ultimate pressure during the process, the oil used in the pump undergoes intense back-diffusion, contaminating the inside of the vacuum container 1 with oil. In addition, during the main evacuation, the oil rotary pump 6 performs the latter stage exhaustion of the molecular pump 2, but when the molecular pump 2 reaches around the ultimate pressure, the oil rotary pump 6 also operates at a pressure around that ultimate pressure, so the oil rotary pump 6 The oil used in the molecular pump 2 is violently back-diffused to the discharge side of the molecular pump 2 and contaminates the discharge side of the molecular pump 2. Furthermore, when the pressure inside the oil rotary pump 6 reaches around the ultimate pressure during the process of roughing the inside of the molecular pump 2 with the oil rotary pump 6, the oil used inside the pump undergoes intense back-diffusion, and the molecular pump 2 Contaminates the inside with oil. Also, when regenerating the molecular pump 2, the main exhaust valve 9 and the roughing valve 3 are closed.
is heated to release the gas adsorbed on the molecular surface within the molecular pump 2, and this gas is exhausted by the oil rotary pump 6.

この過程時の終わりには油回転ポンプ6は到達圧力付近
で作動することになり、同ポンプ内に使われている油が
激しく逆拡散を起こし、分子ポンプ2内を油汚染する。
At the end of this process, the oil rotary pump 6 operates near the ultimate pressure, and the oil used in the pump undergoes intense back-diffusion, contaminating the inside of the molecular pump 2.

上記のような油回転ポンプ6が到達圧力付近で作動する
ときに発生する逆拡散による油汚染を防止するため、真
空容器1の粗引き時、分子ポンプ2の本排気時、粗引き
時、再生時には、パージガス微小流量供給機構23によ
り油回転ポンプ6で排気する始めから微量のパージガス
を油回転ポンプ6の上流側より流す0本実施例ではパー
ジする気体としてフィルタ28を通して清浄な空気を使
用しており、この清浄な空気は微小オリフィス26、パ
ージガス配管25を通って油回転ポンプ6の上流側へと
パージされる。
In order to prevent oil contamination due to back-diffusion that occurs when the oil rotary pump 6 operates near the ultimate pressure as described above, it is necessary to Sometimes, a small amount of purge gas is flowed from the upstream side of the oil rotary pump 6 from the beginning of exhaustion by the oil rotary pump 6 using the purge gas minute flow rate supply mechanism 23. In this embodiment, clean air that has passed through the filter 28 is used as the purging gas. This clean air passes through the micro orifice 26 and the purge gas pipe 25 and is purged to the upstream side of the oil rotary pump 6.

なおパージするガスは、化学的に安定な不活性ガスが好
ましいが、窒素ガス又は油分を含まない清浄な空気など
でも十分効果があり、実験の結果では分子量の大きいガ
ス程少ない流量で効果があることが表1に示すように立
証されている。
The purging gas is preferably a chemically stable inert gas, but nitrogen gas or clean air that does not contain oil is also sufficiently effective, and experimental results show that the gas with a larger molecular weight is more effective with a smaller flow rate. This has been proven as shown in Table 1.

表1 第2図は油回転ポンプ6の上流側から窒素ガスをパージ
したときの到達圧力付近の油回転ポンプ6吸込口側の残
留ガスを四重極質量分析器で分析したときの残留ガスス
ペクトルを示したもので、縦軸はイオン電流値、横軸は
質量数である。得られたスペクトルは、空気の残留ガス
スペクトルで、きわめて清浄な状態が得られたことがわ
かる。
Table 1 Figure 2 shows the residual gas spectrum when the residual gas on the suction side of the oil rotary pump 6 was analyzed using a quadrupole mass spectrometer near the ultimate pressure when nitrogen gas was purged from the upstream side of the oil rotary pump 6. , where the vertical axis is the ion current value and the horizontal axis is the mass number. The obtained spectrum is a residual gas spectrum of air, and it can be seen that an extremely clean state was obtained.

第3図は微小流量のパージを行なわないときの油回転ポ
ンプ6の吸込口側の残留ガススペクトルである。油回転
ポンプ6に使用されている油の成分(炭化水素)による
ピークが質量数39以上に多数検出されており、油の逆
拡散が激しく進展していることがわかる。
FIG. 3 shows a residual gas spectrum on the suction port side of the oil rotary pump 6 when purging at a minute flow rate is not performed. Many peaks due to the components (hydrocarbons) of the oil used in the oil rotary pump 6 are detected at mass numbers of 39 or more, indicating that the back-diffusion of the oil is progressing rapidly.

第4図はパージするガスの量による残留ガス、油回転ポ
ンプ6の吸込口の圧力(以下、単に吸込口圧力という)
の変化を調べるために、窒素ガスをパージした結果を示
したものである。左側の縦軸は残留ガスの検出ピークに
対するイオン電流値で、右側の縦軸は吸込口圧力、横軸
はパージ量を表わしている。
Figure 4 shows residual gas and pressure at the suction port of the oil rotary pump 6 depending on the amount of gas to be purged (hereinafter simply referred to as suction port pressure).
This figure shows the results of purging with nitrogen gas in order to investigate changes in . The vertical axis on the left side represents the ion current value with respect to the detection peak of residual gas, the vertical axis on the right side represents the suction port pressure, and the horizontal axis represents the purge amount.

以上を比較すると、わずかな量のパージによって油の各
成分ごとにみると微小流量のパージを行なった場合の油
成分のピークは、パージを行なわない場合の約1/10
0程度となり、十分清浄な真空が得られていることがわ
かる。このときパージを行なった量と従来のパージ量と
を比較すると、本発明のパージ量がきわめてわずかの量
となることがわかる。1例として排気速度が240 Q
 / winの油回転ポンプ6についてパージするガス
の量を従来の方法によるものと本発明によるものとを比
較する。
Comparing the above, when looking at each component of oil by a small amount of purge, the peak of oil component when purge is performed at a minute flow rate is about 1/10 of that when no purge is performed.
It can be seen that a sufficiently clean vacuum is obtained. Comparing the amount purged at this time with the conventional purge amount, it can be seen that the purge amount of the present invention is extremely small. As an example, the pumping speed is 240 Q
The amount of gas to be purged for the oil rotary pump 6 of Win/Win will be compared between the conventional method and the present invention.

油回転ポンプ6の排気速度をS、排気量をQ。The pumping speed of the oil rotary pump 6 is S, and the pumping volume is Q.

吸込口圧力をPとすると、各々の関係は次式で与えられ
る。
When the suction port pressure is P, each relationship is given by the following equation.

Q=SP              ・・・(1)S
=240Q/+++inとし、パージによる油の逆拡散
防止には従来は圧力Q 、 I Torr以上がよいと
されているため、P = 0 、 I Torrとする
と従来の方法によるパージ量は、式(1)より Qx=0.4TorrQ/s”r328ccMとなり、
本発明によるパージの量Qzは第4図によると0.6S
CCM (到達圧カフ X 10−”Torrのとき)
でも十分に効果があることからQ z = 0 、68
CCMとすると、従来量に比べて約1153と少ない、
パージする量がわずかであるため油回転ポンプの到達圧
力を劣化させない0以上により微量のパージガスの油回
転ポンプ6上流側へのパージにより油の逆拡散を抑えら
れることがわかる。
Q=SP...(1)S
= 240Q/+++in, and since it is conventionally said that a pressure of Q, I Torr or higher is good for preventing back diffusion of oil by purging, if P = 0, I Torr, the purge amount by the conventional method is expressed by the formula (1 ), Qx=0.4TorrQ/s"r328ccM,
According to FIG. 4, the amount of purge Qz according to the present invention is 0.6S.
CCM (at ultimate pressure cuff x 10-”Torr)
However, since it is sufficiently effective, Q z = 0, 68
In terms of CCM, it is about 1153, which is less than the conventional amount.
It can be seen that back diffusion of oil can be suppressed by purging a small amount of purge gas upstream of the oil rotary pump 6, which is greater than 0 and does not degrade the ultimate pressure of the oil rotary pump because the amount to be purged is small.

本実施例によれば比較的少ない装置の改造により油汚染
の少ない真空が得られる。
According to this embodiment, a vacuum with less oil contamination can be obtained with a relatively small amount of equipment modification.

第5図は本発明の第2実施例に係り、本発明を真空容器
1の体積が少ない場合、すなわち、ガス負荷の小さい場
合に適用した他の実施例である。
FIG. 5 relates to a second embodiment of the present invention, and is another embodiment in which the present invention is applied when the volume of the vacuum container 1 is small, that is, when the gas load is small.

この実施例ではガス負荷が小さいため分子ポンプ2が作
動できる圧力となる粗引き時間が短いので粗引きは分子
ポンプ2も粗引き過程時に運転したまま本排気バルブ9
を開き、本排気配管12を通して行なうことができる。
In this embodiment, since the gas load is small, the roughing time required to reach the pressure at which the molecular pump 2 can operate is short.
This can be done by opening the main exhaust pipe 12.

そのため本実施例では粗引き配管系を省くことができる
装置が簡単になるという特徴がある。
Therefore, this embodiment is characterized in that the roughing piping system can be omitted and the apparatus is simplified.

第6図は本発明の第3実施例に係り、本発明を分子ポン
プ2と油回転ポンプ6とを排気ポンプとする真空排気装
置に適用した他の実施例である。
FIG. 6 relates to a third embodiment of the present invention, and is another embodiment in which the present invention is applied to a vacuum exhaust system using a molecular pump 2 and an oil rotary pump 6 as exhaust pumps.

本実施例ではパージガス微小流量供給機構23は、微小
流量供給バルブ29.微小流量供給流量計30、パージ
カス源31.パージガス配管25から構成されており、
この実施例ではパージするパージガスを空気とは異なる
別のパージガス源31としたものである0本実施例によ
れば、第4図に示したように残留ガスの主成分はパージ
したガス種となるため、真空容器1内を任意のガス雰囲
気にできるという特徴がある。
In this embodiment, the purge gas minute flow rate supply mechanism 23 includes a minute flow rate supply valve 29. Micro flow rate supply flow meter 30, purge gas source 31. Consists of purge gas piping 25,
In this embodiment, the purge gas to be purged is a separate purge gas source 31 different from air.According to this embodiment, as shown in FIG. 4, the main component of the residual gas is the purged gas type. Therefore, the vacuum container 1 is characterized in that an arbitrary gas atmosphere can be created inside the vacuum container 1.

第7図は本発明の第4実施例に係り、本発明を通常の分
子ポンプ2より高い圧力まで作動する複合分子ポンプ3
2と油回転ポンプ6とを排気ポンプとする真空排気装置
に適用した他の実施例である9本実施例では本排気ポン
プである分子ポンプが、通常の分子ポンプ2よりも高い
圧力でも作動する複合分子ポンプ32を用いているため
本排気を始める圧力が高くてよいため、粗引き時間が短
かくできるという特徴がある。
FIG. 7 shows a fourth embodiment of the present invention, in which a composite molecular pump 3 operates to a higher pressure than the ordinary molecular pump 2.
This is another embodiment of a vacuum evacuation system in which the vacuum pump 2 and the oil rotary pump 6 are used as exhaust pumps. Since the composite molecular pump 32 is used, the pressure at which the main evacuation starts can be high, so the rough evacuation time can be shortened.

第8図は本発明の第5実施例に係り、本発明を分子ポン
プ2と油回転ポンプ6とを排気ポンプとする真空排気装
置に適用した他の実施例である。
FIG. 8 relates to a fifth embodiment of the present invention, and is another embodiment in which the present invention is applied to a vacuum evacuation device using a molecular pump 2 and an oil rotary pump 6 as exhaust pumps.

本実施例ではパージガス微小流量供給機構23は。In this embodiment, the purge gas minute flow rate supply mechanism 23 is as follows.

パージガス配管25.微小流量供給マスプローコントロ
ーラ33(この構造および原理は「計測技術」86、増
刊号55頁から62頁に記載されている)フィルタ28
から構成されている0本実施例によればパージするガス
の流量を常時測定、制御しているため系の信頼性が向上
するという特徴がある。
Purge gas piping 25. Micro flow rate supply mass blower controller 33 (the structure and principle are described in “Measurement Technology” 86, special issue pages 55 to 62) filter 28
According to this embodiment, since the flow rate of the gas to be purged is constantly measured and controlled, the reliability of the system is improved.

〔発明の効果〕〔Effect of the invention〕

上述のとおり、本発明によれば、メカニカルブースタと
油回転ポンプの組合せ又は油回転ポンプをその到達圧力
まで運転する過程時に、油回転ポンプに使われている油
の油回転ポンプ吸込口側への逆拡散が抑えられるので、
被排気系の油汚染の少ない真空排気装置が得られる。
As described above, according to the present invention, during the process of operating a combination of a mechanical booster and an oil rotary pump or an oil rotary pump to its ultimate pressure, oil used in the oil rotary pump is discharged to the oil rotary pump suction side. Because back-diffusion is suppressed,
A vacuum pumping device with less oil contamination of the pumped system can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の第1実施例に係り、第1図
は本発明を分子ポンプと油回転ポンプとを排気系とする
真空排気装置に適用した構成図、第2図はパージを行な
ったときの油回転ポンプ上流側の残留ガススペクトル、
第3図はパージを行ないわないときの油回転ポンプ上流
側の残留ガススペクトル、第4図はパージガスの量と残
留ガスの成分の検出ピークの変化とポンプ吸込口圧力の
変化との関係図、第5図から第8図は本発明の第2実施
例から第4実施例に係り、本発明を分子ポンプと油回転
ポンプとを排気系とする真空排気装置に適用した他の実
施例の構成図、第9図は従来の分子ポンプ、メカニカル
ブースタ、油回転ポンプを排気系とする真空排気装置の
構成図である。 1・・・真空容器、2,32・・・分子ポンプ、3・・
・粗引きポンプ、5・・・メカニカルブースタ、9・・
・本排気バルブ、12・・・本排気配管、13・・・粗
引き配管、22・・・油回転ポンプ、23・・・パージ
ガス微小流量供給機構。 第 l 図 第 2 圀 へ[4丈 (’シくジン ¥ 3 国 V号数(嘔〕 藤 4− 国 ’/234r6 を秦“力゛スへ°−ヅ量(SCCMン 境 タ 因 第 6 目 第 7 潟 32・ 4名N分与ボンフ・ 第 81!1 / 354タル人會イ井給マスフ虻 コンYローフ
1 to 4 relate to a first embodiment of the present invention, FIG. 1 is a configuration diagram in which the present invention is applied to a vacuum evacuation system using a molecular pump and an oil rotary pump as an evacuation system, and FIG. 2 is a block diagram of the invention. Residual gas spectrum on the upstream side of the oil rotary pump when purging is performed,
Fig. 3 is a residual gas spectrum on the upstream side of the oil rotary pump when no purge is performed, Fig. 4 is a relationship diagram between the amount of purge gas, changes in detected peaks of residual gas components, and changes in pump suction port pressure. 5 to 8 relate to the second to fourth embodiments of the present invention, and are the configurations of other embodiments in which the present invention is applied to a vacuum evacuation device using a molecular pump and an oil rotary pump as an evacuation system. 9 are configuration diagrams of a vacuum evacuation system using a conventional molecular pump, mechanical booster, and oil rotary pump as an evacuation system. 1...Vacuum container, 2,32...Molecular pump, 3...
・Roughing pump, 5... Mechanical booster, 9...
- Main exhaust valve, 12... Main exhaust piping, 13... Roughing piping, 22... Oil rotary pump, 23... Purge gas minute flow rate supply mechanism. Figure l Figure 2 To the country [4 length ('shikujin\ 3 country V number (voice)] wisteria 4- country' / 234r6 to the Qin "force °-ㅅ amount (SCCM boundary ta cause number 6) No. 7 lagoon 32, 4 people N distribution Bonfu, No. 81! 1 / 354 Tarujinkai Iiyakumasufukon Y loaf

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器と、この真空容器を排気するための分子ポ
ンプと、この分子ポンプと前記真空容器を連結する本排
気配管と、この本排気配管に配設された本排気バルブと
、前記真空容器を粗引きするための油回転ポンプと、こ
の油回転ポンプと前記真空容器とを連結する粗引き配管
と、この粗引き配管に配設された粗引バルブと、前記油
回転ポンプの吐出口に配設された油回転ポンプ吐出配管
とからなる真空排気装置において、前記油回転ポンプを
到達圧力まで運転する過程時に微量のパージガスを前記
油回転ポンプの上流側よりパージするパージカスを微小
流量供給機構を設けた真空排気装置。
1. A vacuum vessel, a molecular pump for evacuating the vacuum vessel, a main exhaust pipe connecting the molecular pump and the vacuum vessel, a main exhaust valve disposed on the main exhaust pipe, and the vacuum vessel. an oil rotary pump for roughing, a roughing piping connecting the oil rotary pump and the vacuum container, a roughing valve disposed on the roughing piping, and a discharge port of the oil rotary pump. In a vacuum evacuation device consisting of a disposed oil rotary pump discharge pipe, a minute flow rate supply mechanism is provided for purging a small amount of purge gas from the upstream side of the oil rotary pump during the process of operating the oil rotary pump to the ultimate pressure. Vacuum exhaust equipment installed.
JP4438788A 1988-02-29 1988-02-29 Vacuum exhaust device Expired - Fee Related JP2507518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4438788A JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4438788A JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Publications (2)

Publication Number Publication Date
JPH01219367A true JPH01219367A (en) 1989-09-01
JP2507518B2 JP2507518B2 (en) 1996-06-12

Family

ID=12690098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4438788A Expired - Fee Related JP2507518B2 (en) 1988-02-29 1988-02-29 Vacuum exhaust device

Country Status (1)

Country Link
JP (1) JP2507518B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191799A (en) * 2007-03-26 2007-08-02 Foundation For Advancement Of International Science Vacuum treatment method
JP2014122602A (en) * 2012-12-21 2014-07-03 High Energy Accelerator Research Organization Hybrid vacuum device and exhausting method using the same
US9209401B2 (en) 2012-06-20 2015-12-08 Joled Inc Method for manufacturing organic EL element, organic EL element, organic EL display panel, organic EL display apparatus, and organic EL light-emitting apparatus
US9224956B2 (en) 2012-03-27 2015-12-29 Joled Inc. Method for manufacturing organic thin-film element, apparatus for manufacturing organic thin-film element, method for forming organic film, and method for manufacturing organic EL element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191799A (en) * 2007-03-26 2007-08-02 Foundation For Advancement Of International Science Vacuum treatment method
US9224956B2 (en) 2012-03-27 2015-12-29 Joled Inc. Method for manufacturing organic thin-film element, apparatus for manufacturing organic thin-film element, method for forming organic film, and method for manufacturing organic EL element
US9209401B2 (en) 2012-06-20 2015-12-08 Joled Inc Method for manufacturing organic EL element, organic EL element, organic EL display panel, organic EL display apparatus, and organic EL light-emitting apparatus
JP2014122602A (en) * 2012-12-21 2014-07-03 High Energy Accelerator Research Organization Hybrid vacuum device and exhausting method using the same

Also Published As

Publication number Publication date
JP2507518B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP4769350B2 (en) Noble gas recovery method and apparatus
KR100370776B1 (en) Method and apparatus for recovering rare gas
JP2005330967A (en) Vacuum pump system for light gas
JP2607572B2 (en) Analysis device and method using charged particles
JPH01219367A (en) Evacuation device
JP2000120992A (en) Gas charging method to gas cylinder and gas charging device
US20150202564A1 (en) Method For Permeation Extraction of Hydrogen From an Enclosed Volume
JP4430913B2 (en) Gas supply method and apparatus
JP2507518C (en)
WO2001020221A1 (en) Dewatering method for gas supply systems
KR20190136588A (en) Semiconductor Device Manufacturing System with recoverable Fluorocarbon-based Precursor
JPS63285924A (en) Device for manufacturing semiconductor
Odaka et al. A new activation method for titanium sublimation pumps and its application to extremely high vacuums
Akaishi et al. Production of ultrahigh vacuum by helium glow discharge cleaning in an unbaked vacuum chamber
JP2013124659A (en) Vacuum exhauster
JPH0599139A (en) Cryopump regenerating mechanism
JPH11343584A (en) Dry etching device and operation thereof
JP2001153300A (en) Moisture removal method for gas supply system
De Rijke Factors affecting cryopump base pressure
JP2704052B2 (en) Vacuum equipment
KR20010051686A (en) Gas flow purification system and method
JPH08296800A (en) Distributing method of ultra-high purity gas minimally stopping corrosion
JPH08279471A (en) Manufacturing for semiconductor device
JP2003016990A (en) Inductively coupled plasma mass spectrometer
JPH0422121A (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees