JPS61195937A - Treatment of mercury-containing waste gas - Google Patents

Treatment of mercury-containing waste gas

Info

Publication number
JPS61195937A
JPS61195937A JP60038215A JP3821585A JPS61195937A JP S61195937 A JPS61195937 A JP S61195937A JP 60038215 A JP60038215 A JP 60038215A JP 3821585 A JP3821585 A JP 3821585A JP S61195937 A JPS61195937 A JP S61195937A
Authority
JP
Japan
Prior art keywords
mercury
gas
cooling water
cooling
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60038215A
Other languages
Japanese (ja)
Inventor
Masaki Kondo
正樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP60038215A priority Critical patent/JPS61195937A/en
Publication of JPS61195937A publication Critical patent/JPS61195937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover efficiently metallic mercury at a high yield and to make non-polluting a mercury vapor-contg. waste gas by treating the waste gas with a condenser using cooling water and treating further the gas after the treatment with a scrubbing and cooling column using cooling water. CONSTITUTION:The mercury-contg. waste gas discharged from a mercury ion reducing and evaporating device (not shown) is treated with the condenser 1 using the cooling water. The mercury and condensate are fed into a mercury settling tank 2 where the metallic mercury is separated and recovered. The outlet gas thereof is passed to the scrubbing and cooling column 3. The above- mentioned gas is treated by the countercurrent contact with the cooling water supplied by a circulation pump 9 in a packed bed. The cooling water contg. mercury is put into a storage tank 4 where the water is cooled to about 5 deg.C by a cooler 5 and further the metallic mercury is separated and recovered by a liquid cyclone 6, etc. The cooling water is returned to the scrubbing and cooling column top. On the other hand, the waste gas is brought into contact with an absorbent liquid such as KMnO4-H2SO4 soln. mixture in a mercury absorption column 7 by which the remaining mercury is absorbed away from the gas. The gas is then released into the atmosphere.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水銀含有廃ガスの処理方法に関し。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for treating mercury-containing waste gas.

詳しくは、水銀含有廃ガスを二段に冷却して効率よく水
銀を金属水銀として回収するようにした方法に関する。
Specifically, the present invention relates to a method for efficiently recovering mercury as metallic mercury by cooling mercury-containing waste gas in two stages.

〔従来技術〕[Prior art]

電池、螢光ランプ々どの水銀又は水銀化合物を含有する
廃棄物を焼却した場合、排煙(焼却廃ガス)中に水銀が
含まれているため、そのまま焼却廃ガスを大気中に放散
させることはできない。こうしたことは水銀を含むガス
例えば水銀鉱山廃ガス等において本同様である、そこで
、これら焼却廃ガス等は水、アルカリ液などで洗浄され
てから大気中に放出されるのが通常である。その廃水あ
るいは抗酸廃水には水銀が含有されることになるから、
この水銀を除去しなければ放流できない。水銀含有廃水
はフェライト法、還元気化法などで処理されるが、一般
的にはフェライト法により大部分の水銀の除去し、次い
で、そのフェライト法の採用により得られた処理液に還
元剤及び空気(又は窒素ガス)を加える還元気化法によ
シ処理されている。
When waste containing mercury or mercury compounds, such as batteries and fluorescent lamps, is incinerated, the flue gas (incineration waste gas) contains mercury, so it is not possible to release the incineration waste gas directly into the atmosphere. Can not. This is the same for gases containing mercury, such as mercury mine waste gas, etc. Therefore, these incineration waste gases are usually washed with water, alkaline liquid, etc. before being released into the atmosphere. Because the wastewater or anti-acid wastewater will contain mercury,
The water cannot be released unless this mercury is removed. Mercury-containing wastewater is treated by the ferrite method, reduction vaporization method, etc., but generally most of the mercury is removed by the ferrite method, and then the treatment liquid obtained by the ferrite method is mixed with a reducing agent and air. (or nitrogen gas).

水銀含有廃水に還元剤を存在させ空気又は窒素ガスを通
気することによって金属水銀、水銀化合物は気化する。
Metal mercury and mercury compounds are vaporized by making a reducing agent exist in the mercury-containing wastewater and passing air or nitrogen gas through it.

従って、この気化した水銀は下記1.2.3.4等の手
段によって金属水銀や水銀化合物として回収される(還
元気化法)。
Therefore, this vaporized mercury is recovered as metallic mercury or mercury compounds by means such as 1.2.3.4 below (reductive vaporization method).

なお、これらlないし4の手段は必要であれば前記の洗
酸廃ガス擲の処理に本適用されてもよ〈、また、前記抗
酸廃液等の代りに水銀鉱山廃水が利用されて4よい。
Incidentally, if necessary, these means 1 to 4 may be applied to the treatment of the above-mentioned acid washing waste gas (also, mercury mine wastewater may be used instead of the above-mentioned anti-acid waste liquid, etc.). .

l)ガス冷却法・・・冷却水(常温又は冷水)Kよる間
接冷却で、ガスを低温(例えば10℃以下)まで冷却す
るのict:i大型冷却器を必要とする。処理後もガス
中の水銀濃度は高い。
l) Gas cooling method: Indirect cooling using cooling water (room temperature or cold water) to cool the gas to a low temperature (for example, 10° C. or lower) requires a large cooler. Even after treatment, the mercury concentration in the gas remains high.

2)深冷法・・・NaOH又はKOH溶液で深冷する装
置が複雑である。
2) Cryogenic method: The equipment for deep cooling with NaOH or KOH solution is complicated.

3)吸収法・・・過マンガン酸カリ−硫酸混合液。3) Absorption method: Potassium permanganate-sulfuric acid mixture.

過硫酸アンモニウム、Na0IQなどの有効塩素を含む
水溶液が主として使用される。
Aqueous solutions containing available chlorine such as ammonium persulfate and Na0IQ are mainly used.

高濃度のHfイオンを含む排吸収液は還元剤等で処理し
、金属水銀を回収しなければならない、 4)吸着法・・・0aC4や101等を担持した活性炭
が主に使用され、水銀を塩化水銀として回収する。ガス
中の水銀濃度が低く、かつ、処理の規模が小さいものに
適している、活性炭の再生がむずかしいのが難点である
The waste and absorption liquid containing a high concentration of Hf ions must be treated with a reducing agent, etc. to recover metallic mercury. 4) Adsorption method: Activated carbon carrying 0aC4, 101, etc. is mainly used to remove mercury. Recover as mercury chloride. The disadvantage is that activated carbon, which has a low mercury concentration in the gas and is suitable for small-scale processing, is difficult to regenerate.

しかしながら、近時は廃棄物の増大に伴って、前記処理
によって本、焼却廃ガス更にはその廃ガスの水洗等によ
って生じる廃水中の水銀、水銀化合物の含有量が増える
傾向にあり、その対策が要望されている。
However, in recent years, with the increase in waste, the content of mercury and mercury compounds in the wastewater generated from books, incineration waste gas, and the washing of the waste gas with water has tended to increase. It is requested.

〔目  的〕〔the purpose〕

本発明は、水銀含有廃水を水銀イオン還元気化装置で処
理した際の水銀蒸気含有ガスから、金属水銀をほぼ完全
に回収できるようkした水銀除去方法を提供するもので
ある。
The present invention provides a method for removing mercury that can almost completely recover metallic mercury from gas containing mercury vapor when mercury-containing wastewater is treated with a mercury ion reduction vaporizer.

〔構 成〕〔composition〕

本発明に係る水銀含有廃ガスの処理方法は、水銀イオン
還元気化装置から排出されるガスを冷却水を用いたコン
デンサーで処理し、更に。
The method for treating mercury-containing waste gas according to the present invention includes treating gas discharged from a mercury ion reduction vaporization device with a condenser using cooling water;

そのコンデンサー出口ガスを冷却水を用いた水洗冷却塔
で処理して該ガス中の水銀を金属水銀として回収するこ
とを特徴としている。
It is characterized in that the condenser outlet gas is treated in a water washing cooling tower using cooling water to recover the mercury in the gas as metallic mercury.

ちなみに本発明者#i、従来の水銀イオン還元気化装置
排ガス(還元気化法の実施で生成した水銀含有ガス)の
処理・水銀回収が間接冷却(前記1)と吸着法(前記4
)との組合せで行なわれているものの、依然として水銀
回収は思わしくないことの原因が冷却されたガスが常温
以上となっているためであることを確めた。即ち、冷却
されたガスの温度が常温以上では、ガス中のHtflk
度が比較的高く、吸着器への負荷が増し、かつ、湿ガス
でけHf吸着能が低下してしまうのである。本発明はか
かる知見に基づいてなされたものである。
By the way, inventor #i said that the treatment and mercury recovery of conventional mercury ion reduction vaporization equipment exhaust gas (mercury-containing gas generated by implementing the reduction vaporization method) is achieved by indirect cooling (see 1 above) and adsorption method (see 4 above).
), it was confirmed that the reason why the mercury recovery was still unsatisfactory was because the temperature of the cooled gas was above room temperature. That is, when the temperature of the cooled gas is above room temperature, Htflk in the gas
The Hf adsorption capacity is relatively high, increasing the load on the adsorber and reducing the Hf adsorption capacity due to wet gas. The present invention has been made based on this knowledge.

以下、本発明を添附図面に従った実施例によシ更に詳細
に説明する。なお、ここでは、重金属含有廃水CHfを
含む)をフェライト法で処理し、その処理液中に還元剤
(例えば塩化纂−錫。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in more detail below by means of embodiments according to the accompanying drawings. Here, waste water containing heavy metals (including CHf) is treated by the ferrite method, and a reducing agent (for example, tin chloride) is added to the treatment liquid.

水素化硼素ナトリウムなど)を添加したもの忙空気を加
え爆気させて得られた排ガス(Hp蒸気含有ガス)を便
宜上処理対象ガスとしている、前記処理液の温度は室温
以上であり、また、その液のpHFiアルカリ側になっ
ている。
For convenience, the gas to be treated is the exhaust gas (Hp vapor-containing gas) obtained by adding Hp vapor and exploding a mixture containing sodium borohydride (sodium borohydride, etc.). The pHFi of the liquid is on the alkaline side.

いま、水蒸気で飽和した約60℃の排ガス75 N&/
hr  (乾ガス)の1−1f濃度は240.5岬/N
d−乾ガスであり、これを供試ガスとした。
Now, the exhaust gas at about 60℃ saturated with water vapor is 75N&/
The 1-1f concentration of hr (dry gas) is 240.5 cape/N
d-dry gas, which was used as the test gas.

このガスをコンデンサーlに通し冷却水(22℃)で3
0℃まで間接冷却した。出口ガス中のHf濃度は34 
M97Nd−乾ガスであった。コンデンサー1で生成し
た金属Hf及び凝縮水は水銀沈降槽2に一移される。
This gas is passed through a condenser 1 and cooled with cooling water (22℃).
Cooled indirectly to 0°C. The Hf concentration in the outlet gas is 34
It was M97Nd-dry gas. Metal Hf and condensed water generated in the condenser 1 are transferred to a mercury settling tank 2.

水銀沈降槽2では、金H4klfは灰黒色の微細々粒子
として沈澱するが徐々に結合し1〜3置φのHf粒とな
ってくる。また、水銀沈降槽2のオーツセーフロー水は
水銀70 pI)bを含むので図示していないフェライ
ト反応槽又は水銀イオン還元気化装置に戻される。コン
デンサーl及び水銀沈降槽2でのHf回収率は約86%
である、コンデンサー出口ガスは水銀濃度がいまだ高い
ため、再に処理される。もつとも、このコンデンサー出
口ガスのHf濃度を低く押えるには、コンデンサー1の
冷却水温変を0℃近くまで下げることにより十分可能で
あるが、気液系の間接冷却では伝熱係数を大きくとれな
いこと及び気液の温度差が小さいことから、コンデンサ
ー1の伝熱面積を広くしなければならない8そこで、本
発明では気液系の直接接触により2 コンデンサー出口
ガス温度の低下を同っている。
In the mercury settling tank 2, the gold H4klf is precipitated as grayish-black fine particles, but they gradually combine to form Hf grains of 1 to 3 diameters. Furthermore, since the auto-safe flow water in the mercury settling tank 2 contains 70 pI)b of mercury, it is returned to a ferrite reaction tank or a mercury ion reduction vaporizer (not shown). Hf recovery rate in condenser 1 and mercury settling tank 2 is approximately 86%
Since the mercury concentration in the condenser outlet gas is still high, it is reprocessed. Of course, it is possible to keep the Hf concentration in the condenser outlet gas low by lowering the temperature change of the cooling water in condenser 1 to near 0°C, but indirect cooling using a gas-liquid system cannot achieve a large heat transfer coefficient. Since the temperature difference between the gas and liquid is small, the heat transfer area of the condenser 1 must be widened. Therefore, in the present invention, the temperature of the condenser outlet gas is simultaneously lowered by direct contact of the gas and liquid system.

水洗冷却塔3に導入されたコンデンサー出口ガスI/i
5℃まで冷却された。水洗冷却塔3は300wφで、1
インチラシヒリングを】溝充填してあり、5℃の冷却水
を塔頂から供給し、ガスと向流に接触させるようにした
ものである。
Condenser outlet gas I/i introduced into water washing cooling tower 3
Cooled to 5°C. The water washing cooling tower 3 has a diameter of 300 wφ and 1
A groove was filled with an Inchraschig ring, and cooling water at 5°C was supplied from the top of the tower and brought into contact with the gas in a countercurrent flow.

ここでは気液が直接接触するため、気液間の熱移動が容
易で簡単にガス冷却を行なうことができるn5℃となっ
た排ガス中のHf濃度は3.6岬/Ni −乾ガスであ
り、これまでの工程を経ることにより、フェライト化処
理排ガス(供試ガス)中の金属水銀を98.5%回収す
ることができたことになる。
Here, since the gas and liquid come into direct contact, heat transfer between the gas and liquid is easy and gas cooling can be easily performed. By going through the steps so far, it was possible to recover 98.5% of the metallic mercury in the ferrite treatment exhaust gas (sample gas).

水洗冷却塔3で使用される又は使用された冷却水は、貯
槽4でクーラー5により5℃に冷却されているが、0℃
付近まで下げられてもかまわない1本実施例では、水洗
冷却塔3の入口ガス(コンデンサー出口ガス)と出口ガ
ス(5℃の排ガス)との工ンタルーー差は約20Kca
A/〜−乾ガスであり、クーラー5は小容量のもので済
んでいる。
The cooling water used in the washing cooling tower 3 is cooled to 5°C by the cooler 5 in the storage tank 4, but it is 0°C.
In this embodiment, the difference between the inlet gas (condenser outlet gas) and the outlet gas (5°C exhaust gas) of the water washing cooling tower 3 is approximately 20Kca.
A/~-Dry gas, and the cooler 5 only needs to have a small capacity.

貯槽4内の冷却水は液体サイクロン6で微細な水銀粒子
を分離した後、水洗冷却塔3の塔頂へと戻される6また
、塔内で凝縮した水分は冷却水とともに貯槽4に落され
るが、貯槽4でオーツセーフローした分は貯槽4に設け
られたオーJR−フロ一孔(図示していない)より水銀
沈降槽2を経て、コンデンサー1のドレンとともに。
After the cooling water in the storage tank 4 separates fine mercury particles in a liquid cyclone 6, it is returned to the top of the water washing cooling tower 36.Moreover, the water condensed in the tower is dropped into the storage tank 4 together with the cooling water. However, the OATSAFE flow in the storage tank 4 passes through the mercury sedimentation tank 2 through an OJR-FLO hole (not shown) provided in the storage tank 4, and together with the drain of the condenser 1.

フェライト反応槽又は水銀イオン還元気化装置へ戻され
る。
It is returned to the ferrite reaction tank or mercury ion reduction vaporizer.

前記から推察されるように、水洗冷却塔3での操作は、
ガス冷却の効果のみならず、コンデンサー1で捕集され
なかったHf微粒子も捕集できる効果をもっている。だ
が、室内におけるHf濃度の許容tけ労働行政上O,O
S岬/N−とされていることから、水洗冷却塔3の出口
ガスCHf濃庸3.6岬/N−)は再処理が必要である
As inferred from the above, the operation in the water washing cooling tower 3 is as follows:
This has not only the effect of gas cooling but also the ability to collect Hf fine particles that were not collected by the condenser 1. However, the permissible indoor Hf concentration is O, O due to labor administration.
Since the CHf concentration of the outlet gas from the water washing cooling tower 3 is 3.6 Cape/N-, it is necessary to reprocess it.

低濃度の水銀含有ガスの処理には種々の手段が採りうる
が、図面に示した本実施例で#′io、2sチ過マンガ
ン飲カリの硫酸混合液SOZを用いてHf吸収を行なっ
ている。即ち、水洗冷却塔出口ガスを水銀吸収塔7に導
びき、前記混合液と接触させて水銀を酸化吸収した。そ
の結果、水銀吸収塔7の出口ガスHf@度qo、03岬
/Nn?−乾ガスとなり、大気中への放出が可能となっ
た。
Various methods can be used to treat low-concentration mercury-containing gas, but in this example shown in the drawing, Hf absorption is carried out using #'io, 2s sulfuric acid mixed solution of manganese peroxide and potash SOZ. . That is, the water washing cooling tower outlet gas was led to the mercury absorption tower 7, and brought into contact with the liquid mixture to oxidize and absorb mercury. As a result, the outlet gas of mercury absorption tower 7 Hf @ degree qo, 03 Misaki/Nn? - It became a dry gas and could be released into the atmosphere.

上記の混合液(Hf吸収液)IIi過マンガン酸カリの
赤桃色が消えるまで水銀吸収能力があるが、この吸収能
力は約2カ月間維持された。水銀吸収能力のなくなった
排液収液は、少量(]01)ずつ58簡に分けて2図示
していないフェライト化処理用−Hfイオン還元気化装
置における一原水槽(20m’)K戻すよう和した。こ
れにより、フェライト化処理用原水の水銀イオン濃度は
4”IFA、マンガンイオン濃度は4.411117t
の増加となるが、この程度の各金属イオン濃度の上昇#
″t、フェライト法実施での水銀及びマンガンの除去、
並びに、水銀の還元気化に影響を及ぼすものではなかっ
た。
The above mixed solution (Hf absorption solution) IIi had the ability to absorb mercury until the reddish-pink color of potassium permanganate disappeared, and this absorption ability was maintained for about two months. The collected wastewater, which has lost its mercury absorption capacity, is divided into 58 small portions (]01) and returned to a water tank (20m'K) in the -Hf ion reduction and vaporization equipment for ferrite processing (not shown). did. As a result, the mercury ion concentration of raw water for ferrite treatment is 4"IFA, and the manganese ion concentration is 4.411117t.
However, this degree of increase in the concentration of each metal ion #
"t, Removal of mercury and manganese in the implementation of ferrite method,
In addition, it did not affect the reductive vaporization of mercury.

なお、図面中8は吸収液貯槽、9及び10は循環ポンプ
を表わしている。
In addition, in the drawing, 8 represents an absorption liquid storage tank, and 9 and 10 represent a circulation pump.

上記のように、本発明方法はコンデンサーに冷却水を用
い、また、水洗冷却塔に冷却水を用い、これらコンデン
サー及び水洗冷却塔を組合せることによって、 Hf蒸
気含有ガスを0〜10℃程度まで容易かつ効果的に冷却
し金tIHfを凝縮回収するものである、 本発明方法の実施で処理対象とされる水銀含有廃ガスの
例としては、焼却廃ガスの他に、水銀を使用する工場か
らの廃ガス、水銀鉱山廃ガスなどがあげられる。
As mentioned above, the method of the present invention uses cooling water in the condenser and cooling water in the washing cooling tower, and by combining these condensers and washing cooling towers, the Hf vapor-containing gas can be heated to about 0 to 10°C. Examples of mercury-containing waste gas that can be treated by implementing the method of the present invention, which allows easy and effective cooling and condensation recovery of gold tIHf, include incineration waste gas as well as waste gas from factories that use mercury. examples include mercury mine waste gas and mercury mine waste gas.

なお、水洗冷却塔出口ガスは、既述のとおり。The water washing cooling tower outlet gas is as described above.

水銀吸収液(過マンガン酸カリ−硫酸混合液や有効塩素
を有する吸収液など)で処理されるが、Hfイオンを含
む排液収液は水銀イオン還元気化工程例えばフェライト
化処理工程などに導びかれて無害化される。また、水洗
冷却塔出口ガスは低温であるためガス中の水分が低く、
その出口ガスを水銀吸着活性炭等で乾式処理してもHP
吸着能の低下に及ぼす影響は少ない。
It is treated with a mercury absorption liquid (potassium permanganate-sulfuric acid mixture, absorption liquid containing available chlorine, etc.), and the collected waste liquid containing Hf ions is led to a mercury ion reduction vaporization process, such as a ferritization process. and rendered harmless. In addition, since the water washing cooling tower outlet gas is at a low temperature, the moisture content in the gas is low.
Even if the outlet gas is dry-treated with mercury-adsorbing activated carbon, etc., the HP
It has little effect on the decrease in adsorption capacity.

〔効 果〕〔effect〕

本発明の水銀含有廃ガス処理法によれば次のごとき効果
がもたらされる、 1)水洗冷却塔を設けたことによりHf吸収塔。
According to the mercury-containing waste gas treatment method of the present invention, the following effects are brought about: 1) Hf absorption tower by providing a water washing cooling tower.

Hf吸着塔などへの負荷が軽減される。The load on Hf adsorption towers etc. is reduced.

II)  水洗冷却塔内での気液間熱移動は間接冷却よ
りも大きく、従って、効果的なガス冷却と金j14Hf
微粒子の水洗・捕集ができる。
II) The gas-liquid heat transfer in the water-washed cooling tower is greater than that in indirect cooling, thus reducing effective gas cooling and gold j14Hf
Can wash and collect fine particles with water.

―) 水洗冷却塔出口ガスは水銀吸収液での処理によシ
はぼ完全に脱水銀され、 Hf含有排吸収液はフェライ
ト化処理等におけるHfイオン還元気化作用をもつ重金
属処理設備での処理により液中のHfイオンを金属Hf
として回収するというクローズドシステムが採用されて
いる。
-) The water washing cooling tower outlet gas is almost completely demercuryed by treatment with a mercury absorption liquid, and the Hf-containing waste and absorption liquid is treated with heavy metal processing equipment that reduces and vaporizes Hf ions in ferrite processing, etc. Hf ions in the liquid are converted into metal Hf
A closed system is adopted in which waste is collected as waste.

lv)  はぼ完壁な水銀回収ができる。lv) Almost perfect mercury recovery is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法を説明するためのフローシートである
。 l・・・コンデンサー   2・・・水銀沈降槽3・・
・水洗冷却塔   4・・・貯 槽5・・・クーラー 
    6・・・液体サイクロン7・・・水銀吸収塔 
  8・・・吸収液貯槽9、lO・・・循M1/ンプ
The drawing is a flow sheet for explaining the method of the present invention. l...Condenser 2...Mercury settling tank 3...
・Water washing cooling tower 4...Storage tank 5...Cooler
6...Liquid cyclone 7...Mercury absorption tower
8...Absorption liquid storage tank 9, lO...Circulation M1/ump

Claims (1)

【特許請求の範囲】 1、水銀イオン還元気化装置から排出されるガスを冷却
水を用いたコンデンサーで処理し、更に、そのコンデン
サー出口ガスを冷却水を用いた水洗冷却塔で処理して該
ガス中の水銀を金属水銀として回収することを特徴とす
る水銀含有廃ガスの処理方法。 2、水洗冷却塔出口ガスを水銀吸収液で処理し、得られ
た排水銀吸収液は水銀イオン還元気化装置に導びかれる
特許請求の範囲第1項記載の処理方法。
[Claims] 1. The gas discharged from the mercury ion reduction vaporization device is treated with a condenser using cooling water, and the condenser outlet gas is further treated with a washing cooling tower using cooling water to produce the gas. A method for treating mercury-containing waste gas, characterized by recovering the mercury contained therein as metallic mercury. 2. The treatment method according to claim 1, wherein the water washing cooling tower outlet gas is treated with a mercury absorption liquid, and the obtained wastewater silver absorption liquid is led to a mercury ion reduction vaporization device.
JP60038215A 1985-02-27 1985-02-27 Treatment of mercury-containing waste gas Pending JPS61195937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038215A JPS61195937A (en) 1985-02-27 1985-02-27 Treatment of mercury-containing waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038215A JPS61195937A (en) 1985-02-27 1985-02-27 Treatment of mercury-containing waste gas

Publications (1)

Publication Number Publication Date
JPS61195937A true JPS61195937A (en) 1986-08-30

Family

ID=12519086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038215A Pending JPS61195937A (en) 1985-02-27 1985-02-27 Treatment of mercury-containing waste gas

Country Status (1)

Country Link
JP (1) JPS61195937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093489A (en) * 2006-06-28 2008-04-24 National Institute For Minamata Disease Ministry Of The Environment Mercury adsorbing method
JP2015186801A (en) * 2007-09-20 2015-10-29 スカイオニック コーポレイション Method of removing carbon dioxide from waste gas stream through co-generation of carbonate and/or bicarbonate mineral

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093489A (en) * 2006-06-28 2008-04-24 National Institute For Minamata Disease Ministry Of The Environment Mercury adsorbing method
JP2015186801A (en) * 2007-09-20 2015-10-29 スカイオニック コーポレイション Method of removing carbon dioxide from waste gas stream through co-generation of carbonate and/or bicarbonate mineral

Similar Documents

Publication Publication Date Title
US4847057A (en) Process and installation for ammonia treatment of a gas
WO2021082308A1 (en) Flue gas low-temperature adsorption denitration method
US4443417A (en) Method for separating gaseous, elementary mercury from a gas
KR920017700A (en) Process for treating gas mainly containing electrolyte fluorine which may contain uranium compounds
KR100892892B1 (en) Method for the concentration of spent acid
CA1100290A (en) Method for recovering concentrated sulphur dioxide from waste gases containing sulphur dioxide
JPS6254531B2 (en)
JPS61195937A (en) Treatment of mercury-containing waste gas
JP2001081479A (en) Method and apparatus for purifying coke oven gas
US4596698A (en) Apparatus for utilizing impure steam with extraction of one or more substances therefrom
JP3773668B2 (en) Advanced treatment method for incinerator exhaust gas
JPS63147519A (en) Method for removing total of mercury contained in exhaust gas and mercury contained in waste water of smoke cleaning
US4277451A (en) Wet process for the desulfurization of exhaust gas
JPS59132921A (en) Apparatus for treating exhaust gas
JPH0338219A (en) Removing and recovering method for carbon dioxide gas out of exhaust gas
JPH0938445A (en) Method for regenerating adsorption tower
JPH0824818B2 (en) Exhaust gas purification method
US4774066A (en) Utilization of impure steam with extraction of one or more contaminants therefrom
DK170420B1 (en) Process for mercury recovery from mercury-containing wash water
JPH0225472Y2 (en)
US4532114A (en) Purification of geothermal steam containing boron, arsenic or mercury
JP3202566B2 (en) Method and apparatus for separating and concentrating volatile substances in water
US1844563A (en) Process for recovering bromine
JPWO2022127019A5 (en)
US1212456A (en) Purification of gases.