JPH0338219A - Removing and recovering method for carbon dioxide gas out of exhaust gas - Google Patents

Removing and recovering method for carbon dioxide gas out of exhaust gas

Info

Publication number
JPH0338219A
JPH0338219A JP1169960A JP16996089A JPH0338219A JP H0338219 A JPH0338219 A JP H0338219A JP 1169960 A JP1169960 A JP 1169960A JP 16996089 A JP16996089 A JP 16996089A JP H0338219 A JPH0338219 A JP H0338219A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
absorption
dioxide gas
absorbing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1169960A
Other languages
Japanese (ja)
Other versions
JPH0521610B2 (en
Inventor
Kazushige Kawamura
和茂 川村
Ataru Wakabayashi
若林 中
Eiji Awai
英司 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP1169960A priority Critical patent/JPH0338219A/en
Publication of JPH0338219A publication Critical patent/JPH0338219A/en
Publication of JPH0521610B2 publication Critical patent/JPH0521610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To absorb, remove and recover CO2 efficiently by absorbing CO2 into an absorbing solution containing Na2CO3 and/or NaHCO3, heating the said absorbing solution for its regenerating, cooling the regenerated absorbing solution and returning the same to the absorption process. CONSTITUTION:In the process to recover and remove carbon dioxide gas or sulfur dioxide out of exhaust gas, carbon dioxide gas is absorbed into an aqueous absorbing solution containing a slurry composed of sodium carbon and/or sodium bicarbonate. At least, a part of the aqueous absorbing solution having absorbed carbon dioxide gas is extracted and heated to exhaust carbon dioxide gas and regenerate the aqueous absorbing solution. Further, the regenerated aqueous absorbing solution is cooled and returned to the absorption process. Sulfur dioxide in the exhaust gas is fixed as sulfate by introducing oxidative gas containing oxygen into the aqueous absorbing solution in the said absorption process or an intermediate process between the absorption process and the regeneration process. In the said process, a special additive is not required and a harmful secondary reaction is not occurred, also the discharge of malodorous and harmful material is not generated, and any special water drain treatment is not required.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排ガス中から酸性ガス、特に炭酸ガス(COt
) 、亜硫酸ガス(SO,) 、を吸収除去し、純度の
高い炭酸ガスとして回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention aims to remove acid gas from exhaust gas, particularly carbon dioxide (COt).
), sulfur dioxide gas (SO, ), and a method of absorbing and removing it and recovering it as highly pure carbon dioxide gas.

(従来の技術及び 発明が解決しようとする課題〕 炭酸ガスは、トライアイスの原料等種々な用途を有する
有用な物質であるか、一方においては、近年、地球環境
に!!!要なJvllをおよぼす原因物質として大気中
へのその多量な放出か問題とされている。このような状
況下1種々な排ガスに含まれる炭酸ガスを直接大気中に
放出することなしに除去1回収することは環境上及び経
済上、より重要な課題となってきている。
(Problems to be solved by conventional techniques and inventions) Carbon dioxide gas is a useful substance that has various uses such as the raw material for Tri-ice, and on the other hand, in recent years, it has become important to The issue is whether large amounts of carbon dioxide gas are released into the atmosphere as a causative agent.Under these circumstances, it is important to remove and recover carbon dioxide contained in various exhaust gases without directly releasing them into the atmosphere. This is becoming a more important issue from a global and economic perspective.

炭酸ガスの除去法としては従来、吸着法、アルカノール
アミン法、熱炭酸カリ法、深冷分離法、膜分離法等が提
案され実施されている。しかしながらこれらの方法は、
建設費、運転費か高くなることに加え、液の分解による
臭気の発生、排水処理設備の必要性、装置の腐蝕、Mの
耐久性、副反応による性能の低下等の多くの問題点かあ
る。
As methods for removing carbon dioxide gas, adsorption methods, alkanolamine methods, hot potassium carbonate methods, cryogenic separation methods, membrane separation methods, etc. have been proposed and put into practice. However, these methods
In addition to higher construction and operating costs, there are many problems such as odor generation due to decomposition of the liquid, need for wastewater treatment equipment, corrosion of equipment, durability of M, and reduced performance due to side reactions. .

また、炭酸ガスの吸収、除去に炭酸ナトリウム(Na2
CO3)の水溶液を用いる方法も知られている。しかし
なかこの方法は単に吸収液のアルカリ性を利用して酸性
ガスである炭酸ガスを吸収する方法にすぎない、また吸
収の効率も、NaHCO,の溶解度かKHCO3よりも
劣るため、炭酸カリ法よりも劣るとされている。さらに
、この方法においては吸収液の再生効率か低いため建設
費、運転費か細注に比較して高くなる欠点があると言わ
れている。
In addition, sodium carbonate (Na2) is used to absorb and remove carbon dioxide gas.
A method using an aqueous solution of CO3) is also known. However, this method is simply a method of absorbing carbon dioxide, which is an acidic gas, by using the alkalinity of the absorption liquid, and the absorption efficiency is also inferior to the solubility of NaHCO or KHCO3, so it is better than the potassium carbonate method. It is considered inferior. Furthermore, this method is said to have the disadvantage that the regeneration efficiency of the absorption liquid is low, resulting in higher construction and operating costs compared to fine injection.

排ガス、特にボイラー排ガスやキルン排ガス中にはダス
ト、水分が多く含まれ、Jxmガス濃度か5〜20%で
ありかつ処理量か多いため建設費、運転費か高く、また
、悪臭等の二次公害の問題もあり、上記従来法の適用は
困難である。
Exhaust gas, especially boiler exhaust gas and kiln exhaust gas, contains a lot of dust and moisture, and the Jxm gas concentration is 5 to 20%, and the amount of treatment is large, resulting in high construction and operating costs, and secondary problems such as bad odors. Due to the problem of pollution, it is difficult to apply the above conventional method.

従って1本発明の目的は、上記従来技術の欠点を有さな
い排ガス、特にボイラー排ガス中のlJi’酸ガスを除
去、回収する方法を提供することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for removing and recovering lJi' acid gases in exhaust gases, in particular boiler exhaust gases, which does not have the disadvantages of the prior art described above.

さらに1本発明の目的は、排ガス中の有害ガス、特に亜
硫酸ガスを除去し、排ガス中から高効率で高純度の炭酸
ガスを除去、回収する方法を提供することである。
A further object of the present invention is to provide a method for removing harmful gases, particularly sulfur dioxide gas, from exhaust gas, and removing and recovering highly purified carbon dioxide gas from exhaust gas with high efficiency.

〔課題を解決するための手段) 前記目的を遠戚するための本発明は、排ガスから炭酸ガ
スを除去、回収する方法において、水性吸収液による炭
酸ガスの吸収工程、炭酸ガスを吸収した水性吸収液の少
なくとも一部分を抜き出して加熱し、炭酸ガスを放出さ
せる水性吸収液の再生工程、及び再生された水性吸収液
を冷却し、前記吸収工程に戻す工程を含み、前記水性吸
収液か主として炭酸ナトリウム及び炭酸水素ナトリウム
からなるスラリーを含むことを特徴とする方法、である
[Means for Solving the Problems] The present invention, which is distantly related to the above object, provides a method for removing and recovering carbon dioxide from exhaust gas, which includes a step of absorbing carbon dioxide with an aqueous absorption liquid, and an aqueous absorption process that absorbs carbon dioxide. a regeneration step of the aqueous absorption liquid in which at least a portion of the liquid is extracted and heated to release carbon dioxide gas, and a step of cooling the regenerated aqueous absorption liquid and returning it to the absorption step, wherein the aqueous absorption liquid is mainly made of sodium carbonate. and a slurry consisting of sodium bicarbonate.

本発明においては、炭酸ガスの吸収液として炭酸ナトリ
ウム及び炭酸水素ナトリウムから主としてなるスラリー
を含む水性吸収液を用いる。吸収工程ては、炭酸ガスは
、溶解した及び固体の炭酸ナトリウムと反応して炭酸水
素ナトリウムを生成するか、本発明の吸収液においては
、炭酸水素ナトリウムは飽和状態にあるため、炭酸ガス
の反応吸収によって生成した炭酸水素ナトリウムはその
まま固体として析出する。
In the present invention, an aqueous absorption liquid containing a slurry mainly composed of sodium carbonate and sodium hydrogen carbonate is used as the carbon dioxide absorption liquid. In the absorption process, carbon dioxide gas reacts with dissolved and solid sodium carbonate to produce sodium hydrogen carbonate, or in the absorption liquid of the present invention, since sodium hydrogen carbonate is in a saturated state, the reaction of carbon dioxide gas occurs. Sodium hydrogen carbonate produced by absorption precipitates as a solid.

Na2CO3+CO2+)120−+2NaflCO3
NaHCO= (液) −+NaHC(Jr (固)↓
したかって、本吸収液には強力なpH緩衝作用かあり、
さらに再生吸収液スラリーが循環により投入されること
から炭酸ガスの反応吸収によるpHの低下かほとんど生
しることなく、炭酸ガスの吸収に適した高いpHか常に
雑持されることになる(第1図参f!り。
Na2CO3+CO2+)120-+2NaflCO3
NaHCO= (liquid) -+NaHC(Jr (solid)↓
Therefore, this absorption liquid has a strong pH buffering effect,
Furthermore, since the regenerated absorption liquid slurry is fed in through circulation, there is almost no pH drop due to reaction and absorption of carbon dioxide gas, and a high pH suitable for carbon dioxide absorption is always present. See Figure 1 f!

本発明の吸収工程の際及び/又は吸収工程の後において
、酸素を含む酸化性ガスを吸収液スラリーに導入するこ
とによって排ガス中に含まれる亜硫酸ガス(SO2)を
硫酸塩(SO4”−)として吸収液スラリー中に固定す
ることができる。
During and/or after the absorption process of the present invention, sulfur dioxide gas (SO2) contained in the exhaust gas is converted into sulfate (SO4''-) by introducing an oxidizing gas containing oxygen into the absorption liquid slurry. It can be immobilized in an absorbent slurry.

従来技術においては、排ガス中のC02と802の除去
は別々に行なわれることが好ましいと考えられる。すな
わち1例えば、SO3をCa系の吸収剤で除去し、C0
2をアミン系の吸収剤で除去する方法である。このとき
、SO2除去後のガスにその吸収剤か随伴し、C02の
吸収剤中に混入することによる吸収効率の低下等の問題
の発生、あるいはシステムか極めて複雑になるという問
題等が考えられる。
In the prior art, it is considered preferable that the removal of C02 and 802 in the exhaust gas be performed separately. That is, 1. For example, by removing SO3 with a Ca-based absorbent, CO
2 is removed using an amine-based absorbent. At this time, the absorbent accompanies the gas after SO2 removal and mixes into the CO2 absorbent, which may cause problems such as a decrease in absorption efficiency, or the system becomes extremely complicated.

しかし、本発明の方法によれば異質の吸収剤からなる系
を使用する必要かなく、上記問題点を全く生しることな
しに、一連の工程において効率よ〈S02及びCO3を
除去することができる、かつ、吸収液に酸素を含む酸化
性ガスを導入することにより再生工程て52032−な
どの副生物の生成を無くすことかできるので、副生物の
特別な系外排出工程か不要になる。
However, according to the method of the present invention, it is not necessary to use a system consisting of a different type of absorbent, and it is possible to efficiently remove S02 and CO3 in a series of steps without causing any of the above problems. By introducing an oxidizing gas containing oxygen into the absorption liquid, it is possible to eliminate the production of by-products such as 52032- during the regeneration process, thereby eliminating the need for a special process for discharging by-products from the system.

さらに、本発明によるSO□の固定化はSO1除表な目
的とする場合たけてなく SOxを排煙脱硫装置で除去
し、その後、CO3の除去を行う場合にも有効である。
Furthermore, the immobilization of SO□ according to the present invention is not only effective when the purpose is to remove SO1, but also when SOx is removed by a flue gas desulfurization device and then CO3 is removed.

排煙脱硫装置で脱硫されたガス中にも少量のSO□は残
存しているので、これにより得られるCO□カスの純度
の低下や副生物の生成等の問題か発生するので本発明の
酸化性ガスの導入は。
Since a small amount of SO□ remains in the gas desulfurized by the flue gas desulfurization equipment, this may cause problems such as a decrease in the purity of the CO□ residue obtained and the generation of by-products. The introduction of sexual gases.

これらに対して効果を発揮することかできる。It can be effective against these.

また、本発明の方法において、SO2の除去をCO2の
吸収工程の前の工程において別途行なうこともできる。
Furthermore, in the method of the present invention, SO2 removal can be performed separately in a step before the CO2 absorption step.

このS02の除去工程における吸収液としては上記炭酸
ナトリウム及び炭酸水素ナトリウムのスラリーを含む吸
収液を循環使用することもできるか、この吸収液の固−
液分離後のP液を用いることか好ましい、SO□の吸収
工程において、C02の吸収が起こらない条件にするた
めには、吸収液のpHはガス中CO□の平衡分圧の関係
から7.0以下か好ましく、SO□吸収能力の面から3
以上であることか好ましい。
As the absorption liquid in this S02 removal step, it is possible to use the above-mentioned absorption liquid containing a slurry of sodium carbonate and sodium bicarbonate in a circulating manner, or to remove the solids of this absorption liquid.
It is preferable to use the P liquid after liquid separation. In order to create conditions in which CO2 absorption does not occur in the SO□ absorption process, the pH of the absorption liquid should be set to 7.0 from the equilibrium partial pressure of CO□ in the gas. 0 or less, preferably 3 from the standpoint of SO□ absorption capacity
It is preferable that it is above.

また、 SO,の吸収方法は、亜硫酸のpH1衝作用を
利用する方法や吸収同時酸化方式(空気の導入)等にて
行うことかてきる。
In addition, SO can be absorbed by a method that utilizes the pH 1 oxidation effect of sulfite, or by an absorption and simultaneous oxidation method (introduction of air).

このように前段においてS02の吸収を行なう場合、S
O□の吸収工程においては、Soまたけでなく、IIF
、 11α等の有害ガス、ダスト等も除去できるので、
後段のCO□吸収工程に与える悪影響を小さくし、CO
tの吸収効率を高めることができる。従って、この方法
は、多くの夾雑物を含む排ガス、例えば石油1石炭燃焼
ボイラーの排ガス用に適している。
In this way, when absorbing S02 in the previous stage, S
In the absorption process of O□, not only So but also IIF
It can also remove harmful gases such as , 11α, dust, etc.
Reduces the negative impact on the subsequent CO□ absorption process and reduces CO□
The absorption efficiency of t can be increased. This method is therefore suitable for exhaust gases containing many impurities, for example the exhaust gases of oil-coal fired boilers.

この場合においても吸収液中に酸素を含む酸化性ガスを
導入すれば、SO8をSO1′−として吸収液中に固定
できる。吸収液中に生成された5042−は所望により
環境問題を全く生しることなしに、放流、晶析あるいは
隔膜重席分離等により糸外へ排出することかできる。
Even in this case, if an oxidizing gas containing oxygen is introduced into the absorption liquid, SO8 can be fixed in the absorption liquid as SO1'-. If desired, the 5042- produced in the absorbing liquid can be discharged out of the yarn by discharge, crystallization, diaphragm separation, etc. without causing any environmental problems.

炭酸ガスのNa、GO,による反応吸収工程は、Na、
C03+COt+H,0: Na1lC03の平衡の面
からは低温であることか望ましいが、反応速度及び熱収
支による運転費用の経済性を併せて考慮したとき40〜
60℃で行なうことが好ましい。
The reaction absorption process of carbon dioxide gas with Na, GO,
C03+COt+H,0: From the viewpoint of equilibrium of Na1lC03, it is desirable that the temperature is low, but when considering the economy of operating costs due to reaction rate and heat balance, 40~
Preferably, the temperature is 60°C.

上記吸収工程において炭酸ガスを吸収した吸収液スラリ
ーの全部又は一部分か吸収液スラリーの炭酸ガス放出の
ため再生工程に移送される。再生工程へ移送される吸収
液スラリーの炭酸水素ナトリウムを含む固形分濃度を加
熱再生を行なう前に適当な装置1例えばサイクロン、シ
ックナー、遠心分離機等を用いて上げておくことか1吸
収液単位量当りのCO3含有酸を上げることになり、従
って加熱再生に必要な熱量を低減することとなるので好
ましい。
All or a portion of the absorbent slurry that has absorbed carbon dioxide gas in the absorption step is transferred to a regeneration step in order to release carbon dioxide gas from the absorbent slurry. Before heating and regenerating the absorbent slurry to be transferred to the regeneration process, it is necessary to increase the concentration of solids containing sodium bicarbonate using an appropriate device such as a cyclone, thickener, centrifuge, etc. This is preferable because it increases the amount of CO3-containing acid per unit amount and therefore reduces the amount of heat required for thermal regeneration.

本発明において炭酸ガス吸収に用いられる装置は特に制
限的ではなく1通常ガス吸収に用いられる装置を使用す
ることかできるか、スラリー生成を伴うことから、対ス
ラリー性を有する装置1例えば特公昭55−37295
に開示されているガスバブリング方式を採用するものか
奸ましい。
In the present invention, the device used for absorbing carbon dioxide gas is not particularly limited; 1. Devices normally used for gas absorption may be used; or, since slurry generation is involved, a device having slurry resistance 1, for example, Japanese Patent Publication No. 55 -37295
It seems suspicious that it uses the gas bubbling method disclosed in .

炭酸ガスを吸収した吸収液スラリーを約110〜130
°Cに加熱することによって加熱再生を行なう、この加
熱再生は再生に通常使用される棚段塔、充項塔等を使用
して行なうことかできるが、スラリーに対応か容易な蒸
発缶を使用することが好ましい。また適宜フラッシュタ
ンクの併用も可能である。
About 110 to 130% of the absorbent slurry that has absorbed carbon dioxide gas
Thermal regeneration is performed by heating to °C. This heating regeneration can be performed using plate columns, packed columns, etc. that are normally used for regeneration, but an evaporator can be used because it is easy to handle slurry. It is preferable to do so. It is also possible to use a flash tank as appropriate.

この加熱による温度上昇に伴いNaHC(1+の溶解度
か−E昇し溶液中のNa*CO,/ Na1lCO,比
か小さくなる。このために、pHは自動的に低下し、C
02の放出(吸収液スラリーの再生)に有利な条件か生
じるが1通常、CO□の放出か進行するとpHか次第に
上昇し、徐々にCO3の放出に不利な条件となる。
As the temperature rises due to this heating, the solubility of NaHC (1+ -E increases and the ratio of Na*CO,/Na1lCO, in the solution decreases. Therefore, the pH automatically decreases and the
Conditions are favorable for the release of CO2 (regeneration of the absorbent slurry), but as the release of CO□ progresses, the pH gradually increases, and conditions gradually become unfavorable for the release of CO3.

しかしながら、本方法では、吸収液中にはC02放出に
ともないNatCOt濃度は飽和状態となり加熱再生に
よって生成した%a、CO,はそのまま固体として析出
する。また、C02の放出により減少した溶液中のNa
HCO3は固体のNaHCOsの溶解により補充される
ために、はぼ飽和状態で一定に保持される。このために
、木刀法においては、CO□の放出によるpiの上昇か
ほとんど生しることなく、COtの放出に有利な条件が
維持される(第1図参照)。
However, in this method, the concentration of NatCOt in the absorption liquid reaches a saturated state as CO2 is released, and the %a, CO, produced by heating regeneration is deposited as a solid. In addition, Na in the solution decreased due to the release of CO2.
The HCO3 is kept constant near saturation because it is replenished by dissolving solid NaHCOs. For this reason, in the Bokuto method, there is almost no increase in pi due to the release of CO□, and conditions favorable to the release of COt are maintained (see Figure 1).

上記再生工程で再生された吸収液スラリー(主としてN
a2GO+を含む固形物からなる)は冷却されて、吸収
工程へ移送され、循環使用に供される。このとき再生工
程へ移送される低温の吸収液スラリーと吸収工程へ移送
される高温の吸収液スラリーとの間で相互に熱交換を行
なうことか運転費の経済上有利である。
The absorbent slurry regenerated in the above regeneration process (mainly N
The solid material containing a2GO+) is cooled and transferred to the absorption process for recycling. At this time, it is advantageous in terms of operating costs to mutually exchange heat between the low-temperature absorbent slurry transferred to the regeneration process and the high-temperature absorbent slurry transferred to the absorption process.

本発明の循環使用される水性吸収液にアルカノールアミ
ン及び/又はその化合物(例えばアルカノールアミンホ
ウ酸カリ)を水性吸収液の前記重量に対して5重量%以
下の量で添加することによりCOlの吸収効率を上げる
ことができる。5重量%より多く添加すると、アルカノ
ールアミンの分解による悪臭の発生や運転費か高くなる
等の問題か生し易くなるので好ましくない。
Absorption of COl by adding an alkanolamine and/or its compound (for example, alkanolamine potassium borate) to the aqueous absorption liquid used for circulation in the present invention in an amount of 5% by weight or less based on the weight of the aqueous absorption liquid. It can increase efficiency. Addition of more than 5% by weight is not preferable because problems such as generation of bad odor due to decomposition of the alkanolamine and increase in operating costs are likely to occur.

以下、実施例により本発明をより異体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) 木11にNa2COz 180 gとNaHCO338
0gを加えて、主としてNaHCO3からなる固形物を
含む吸収液を調整した。この吸収液にCO,12%を含
有するg素ガスを400旧/時間のfIi、量で導入し
、バブリング方式の気液接触を行なわせた。
(Example 1) 180 g of Na2COz and 338 NaHCO on wood 11
0 g was added to prepare an absorption liquid containing solids mainly consisting of NaHCO3. A gram gas containing 12% CO was introduced into this absorption liquid at an amount of 400 fIi/hour to effect gas-liquid contact by bubbling.

この炭酸ガスを吸収した吸収液の一部分を加熱槽に送り
、115〜135℃で加熱してCOtを放出させた。放
出したC02ガスは多量の水蒸気を含むため冷却して水
を分離した。
A portion of the absorption liquid that absorbed carbon dioxide gas was sent to a heating tank and heated at 115 to 135°C to release COt. Since the released CO2 gas contained a large amount of water vapor, it was cooled to separate water.

COt放出後の再生スラリー液は冷却後、吸収液に混合
した。
After COt release, the regenerated slurry liquid was cooled and mixed with the absorption liquid.

以上の結果、安定した70%以上のCO□吸収率及び9
5%以上の純度を有するCO2ガスが得られた。また吸
収液のCOD値は0であった。
As a result of the above, a stable CO□ absorption rate of 70% or more and a
CO2 gas with a purity of more than 5% was obtained. Moreover, the COD value of the absorption liquid was 0.

従って、特別な排水処理設備は不要であることか確認さ
れた。
Therefore, it was confirmed that special wastewater treatment equipment is not required.

また、同一装置において吸収液としてモノエタノールア
ミンの25%水溶液を用いた場合の約60%の熱量で吸
収液を再生することができた。
Furthermore, in the same apparatus, the absorption liquid could be regenerated with approximately 60% of the amount of heat required when a 25% aqueous solution of monoethanolamine was used as the absorption liquid.

(実施例2) 吸収液として、実施例1で用いた吸収液に3@量%のジ
ェタノールアミンを添加した吸収液を使用した以外は実
施例1と同様にして実験を行なった。
(Example 2) An experiment was conducted in the same manner as in Example 1, except that an absorption liquid obtained by adding 3% by weight of jetanolamine to the absorption liquid used in Example 1 was used as the absorption liquid.

その結果、CO□の吸収率は約15%上昇し、85%か
得られた。また、吸収液の再生に要した熱量は実施例1
の場合とほぼ同等であった。
As a result, the absorption rate of CO□ increased by about 15%, reaching 85%. In addition, the amount of heat required to regenerate the absorption liquid is as shown in Example 1.
It was almost the same as in the case of .

処理ガス中に臭気は認められなかった。No odor was observed in the treated gas.

(実施例3) 被処理ガスとしてCO□12%、90,200ppmを
含有する窒素ガスを用い、さらに加熱槽へ送る前にmJ
ガスを、2ONI/時間のfIi量て吸収液に導入した
以外は実施例1と同様にして実験を行なった。
(Example 3) Nitrogen gas containing 12% CO□ and 90,200 ppm was used as the gas to be treated, and further mJ was used before sending it to the heating tank.
The experiment was carried out in the same manner as in Example 1, except that the gas was introduced into the absorption liquid in an amount fIi of 2 ONI/hour.

その結果、CO6の吸収率は70%以上であり、SO2
の吸収率は90%以上であった。得られたCO,ガスの
純度は95%以上であった。
As a result, the absorption rate of CO6 was over 70%, and the absorption rate of SO2 was over 70%.
The absorption rate was 90% or more. The purity of the obtained CO gas was 95% or more.

なお、上記の実施例において酸素ガスを導入しなかった
場合、得られたCO,ガス中にはS02ガスか確認され
、また、冷却器(熱交換器〉より排出するトレン中には
S〇−−が含まれていた。また、吸収液中にはCODに
寄与するS、03の生成が認められた。
In addition, when oxygen gas was not introduced in the above example, S02 gas was confirmed in the CO and gas obtained, and S02 gas was found in the train discharged from the cooler (heat exchanger). In addition, the production of S,03, which contributes to COD, was observed in the absorption liquid.

(実施例4) CO□の吸収工程の前の工程において、まずSO2の吸
収を行なった。 SORの吸収液としては炭酸ガスの吸
収液の固−液分離後のr液を用いpua、sにて吸収を
行った。被処理ガスであるC0.12%、SOx 20
0 ppmを含む窒素ガスを400 N+/時間の流量
で吸収液に導入し、同時に酸素ガスを2ON+/時間の
流量で導入した、そして、吸収液の一部を系外へ抜き出
した。
(Example 4) In the step before the CO□ absorption step, SO2 was first absorbed. As the absorption liquid for SOR, the r liquid after solid-liquid separation of the carbon dioxide absorption liquid was used, and absorption was performed in pua and s. Processed gas: C0.12%, SOx 20
Nitrogen gas containing 0 ppm was introduced into the absorption liquid at a flow rate of 400 N+/hour, and at the same time oxygen gas was introduced at a flow rate of 2ON+/hour, and a portion of the absorption liquid was drawn out of the system.

次に、上記工程を通過した被処理ガスを炭酸ガス吸収液
(実施例1と同様に調整した)に導入した。吸収液pH
は内生された吸収液スラリーと5%NaOH水溶液で1
0.5〜11.0とした。このとき同時にm毒ガスを2
ON+/時間の流ので導入した。その他の処理は実施例
1と同様な方法で行なった。
Next, the gas to be treated that had passed through the above steps was introduced into a carbon dioxide absorption liquid (prepared in the same manner as in Example 1). Absorption liquid pH
is 1 with internalized absorption liquid slurry and 5% NaOH aqueous solution.
It was set to 0.5 to 11.0. At this time, 2 m poisonous gas
It was introduced because of the ON+/time flow. Other treatments were performed in the same manner as in Example 1.

得られた結果は、CO□の吸収率か70%以−Eであり
、SO□の吸収率か97%以上であった。
The obtained results were that the absorption rate of CO□ was 70% or more, and the absorption rate of SO□ was 97% or more.

また、得られたCO,ガスの純度は95%以上であった
。S02を吸収し、抜き出した液については、隔膜電解
法によりNa011か再生されることか確認された。
Moreover, the purity of the obtained CO and gas was 95% or more. It was confirmed that Na011 could be regenerated from the liquid extracted after absorbing S02 by diaphragm electrolysis.

(発明の効果) 本発明によれば、特別な添加物を必要とすることなく、
有害な副反応も起こらない、従って、悪臭、有害物の排
出がなく、特別な排水処理も不要である。
(Effect of the invention) According to the present invention, without the need for special additives,
No harmful side reactions occur; therefore, there are no foul odors or harmful substances discharged, and no special wastewater treatment is required.

運転コストが安価な、効率の良い炭酸ガスの吸収除去、
回収を行なうことかできる。
Efficient absorption and removal of carbon dioxide with low operating costs,
Collection can be carried out.

多量に排出され、ダスト含有量の多い排ガス、特にボイ
ラー排ガス等の場合においても、150°C以下の条件
において効率よく炭酸ガスを除去、回収することかでき
る。
Even in the case of exhaust gas that is discharged in large quantities and has a high dust content, especially boiler exhaust gas, carbon dioxide gas can be efficiently removed and recovered under conditions of 150° C. or lower.

また、本発明の方法、特に実施例3及び4の方法によれ
ばC02及びSO3を同一のNa系吸収液で処理するこ
とが可能となり、簡単なシステムで効率良く運転するこ
とかできる。
Further, according to the method of the present invention, particularly the methods of Examples 3 and 4, it becomes possible to treat CO2 and SO3 with the same Na-based absorption liquid, and the system can be operated efficiently with a simple system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の各工程におけるpHの安定性
を概念的に示すグラフである。 w42図は、本発明の方法の全工程の1!要を示す図で
ある。
FIG. 1 is a graph conceptually showing the pH stability in each step of the method of the present invention. Figure w42 shows 1! of all steps of the method of the present invention! FIG.

Claims (1)

【特許請求の範囲】 1、排ガスから炭酸ガスを回収、除去する方法において
、水性吸収液による炭酸ガスの吸収工程、炭酸ガスを吸
収した水性吸収液の少なくとも一部分を抜き出して加熱
し、炭酸ガスを放出させる水性吸収液の再生工程、及び
再生された水性吸収液を冷却し、前記吸収工程に戻す工
程を含み、前記水性吸収液が主として炭酸ナトリウム及
び/又は炭酸水素ナトリウムからなるスラリーを含むこ
とを特徴とする方法。 2、酸素を含む酸化性ガスを、前記吸収工程において又
は前記吸収工程と再生工程との中間の工程において、前
記水性吸収液に導入することによって排ガス中の亜硫酸
ガスを硫酸塩として固定することを特徴とする請求項1
の方法。 3、前記吸収工程の前に、炭酸ナトリウム及び炭酸水素
ナトリウムを含む水溶液を用いるSO_2の吸収工程を
設けることを特徴とする請求項1の方法。
[Claims] 1. A method for recovering and removing carbon dioxide gas from exhaust gas, which includes a step of absorbing carbon dioxide gas using an aqueous absorption liquid, and extracting and heating at least a portion of the aqueous absorption liquid that has absorbed carbon dioxide gas to remove carbon dioxide gas. a step of regenerating the aqueous absorption liquid to be released; and a step of cooling the regenerated aqueous absorption liquid and returning it to the absorption step; How to characterize it. 2. Fixing sulfur dioxide gas in exhaust gas as sulfate by introducing an oxidizing gas containing oxygen into the aqueous absorption liquid in the absorption step or in an intermediate step between the absorption step and the regeneration step. Claim 1
the method of. 3. The method according to claim 1, characterized in that, before the absorption step, an SO_2 absorption step using an aqueous solution containing sodium carbonate and sodium bicarbonate is provided.
JP1169960A 1989-07-03 1989-07-03 Removing and recovering method for carbon dioxide gas out of exhaust gas Granted JPH0338219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169960A JPH0338219A (en) 1989-07-03 1989-07-03 Removing and recovering method for carbon dioxide gas out of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169960A JPH0338219A (en) 1989-07-03 1989-07-03 Removing and recovering method for carbon dioxide gas out of exhaust gas

Publications (2)

Publication Number Publication Date
JPH0338219A true JPH0338219A (en) 1991-02-19
JPH0521610B2 JPH0521610B2 (en) 1993-03-25

Family

ID=15896021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169960A Granted JPH0338219A (en) 1989-07-03 1989-07-03 Removing and recovering method for carbon dioxide gas out of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0338219A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
WO2004113226A1 (en) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba System and method for collecting carbon dioxide in exhaust gas
WO2006100667A1 (en) * 2005-03-21 2006-09-28 Cargill, Incorporated A Register Delaware Corporation Of A method for the enhanced production of algal biomass
EP1733782A1 (en) * 2005-06-15 2006-12-20 Kvaerner Power Oy A method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
JP2013544636A (en) * 2010-10-18 2013-12-19 武▲漢凱▼迪▲電▼力股▲分▼有限公司 Method and apparatus for recovering carbon dioxide in flue gas using activated sodium carbonate
WO2015052325A1 (en) * 2013-10-11 2015-04-16 Nilu - Stiftelsen Norsk Institutt For Luftforskning Capture of carbon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886405A (en) * 1956-02-24 1959-05-12 Benson Homer Edwin Method for separating co2 and h2s from gas mixtures
JPS51149866A (en) * 1975-06-19 1976-12-23 Mitsui Miike Mach Co Ltd A wet desulfurizing process for exhaust gases
JPS55104904A (en) * 1979-01-31 1980-08-11 Hitachi Ltd Recovering method for co2 and elemental sulfur from gas mixture
JPS60131817A (en) * 1983-12-20 1985-07-13 Nippon Shokubai Kagaku Kogyo Co Ltd Manufacture of high-purity carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886405A (en) * 1956-02-24 1959-05-12 Benson Homer Edwin Method for separating co2 and h2s from gas mixtures
JPS51149866A (en) * 1975-06-19 1976-12-23 Mitsui Miike Mach Co Ltd A wet desulfurizing process for exhaust gases
JPS55104904A (en) * 1979-01-31 1980-08-11 Hitachi Ltd Recovering method for co2 and elemental sulfur from gas mixture
JPS60131817A (en) * 1983-12-20 1985-07-13 Nippon Shokubai Kagaku Kogyo Co Ltd Manufacture of high-purity carbon dioxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
WO2004113226A1 (en) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba System and method for collecting carbon dioxide in exhaust gas
WO2006100667A1 (en) * 2005-03-21 2006-09-28 Cargill, Incorporated A Register Delaware Corporation Of A method for the enhanced production of algal biomass
EP1733782A1 (en) * 2005-06-15 2006-12-20 Kvaerner Power Oy A method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
WO2006134225A1 (en) * 2005-06-15 2006-12-21 Kvaerner Power Oy A method and an apparatus for recovering carbon dioxide from flue gases
US7910079B2 (en) 2005-06-15 2011-03-22 Metso Power Oy Method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
JP2013544636A (en) * 2010-10-18 2013-12-19 武▲漢凱▼迪▲電▼力股▲分▼有限公司 Method and apparatus for recovering carbon dioxide in flue gas using activated sodium carbonate
WO2015052325A1 (en) * 2013-10-11 2015-04-16 Nilu - Stiftelsen Norsk Institutt For Luftforskning Capture of carbon dioxide

Also Published As

Publication number Publication date
JPH0521610B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
JP3349346B2 (en) Desulfurization and decarboxylation process
JP4995084B2 (en) Super-cleaning of combustion gases including CO2 removal
US4085194A (en) Waste flue gas desulfurizing method
KR102147166B1 (en) Regenerative recovery of sulfur dioxide from effluent gases
JP4216152B2 (en) Desulfurization decarboxylation method and apparatus
JPH09262432A (en) Method for recovering basic amine compound in waste gas of decarboxylation column
JP3392646B2 (en) Method for recovering basic amine compound in decarbonation tower exhaust gas
US4133650A (en) Removing sulfur dioxide from exhaust air
JP2678697B2 (en) Method of removing acid gas from combustion exhaust gas
JPH0262296B2 (en)
JPH1060449A (en) Purification of coke oven gas
JP2015000372A (en) Acid gas recovery system
JP4838489B2 (en) Method and apparatus for removing nitrogen dioxide and carbon dioxide
JPH0338219A (en) Removing and recovering method for carbon dioxide gas out of exhaust gas
RU2080908C1 (en) Method of isolating hydrogen sulfide from gas
JPS596922A (en) Regeneration of absorbing liquid of sulfur containing gas
JPH0686911A (en) Method for simultaneous treatment of desulfurization and decarbonation
JP3248956B2 (en) Exhaust gas treatment method
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
JP3716195B2 (en) Desulfurization decarboxylation method
JPH05245340A (en) Treatment of combustion exhaust gas
JPH0331488B2 (en)
CN114159950A (en) Flue gas desulfurization and decarburization coupled treatment system and method
JP2001348346A (en) Method for purifying methane fermentation gas
JPH06343858A (en) Carbon dioxide absorbent